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SUMMARY

Background: Alzheimer’s disease (AD) is characterized by a number of se-
rious and debilitating behavioral and psychological symptoms of dementia
(BPSD). The most common of these BPSD is apathy, which represents a major
source of morbidity and premature institutionalization in the AD population.
Many studies have identified discrete changes to the dopaminergic (DAergic)
system in patients with AD. The DAergic system is closely related to the brain
reward system (BRS) and some studies have suggested that dysfunction in the
DAergic system may account for symptoms of apathy in the AD population.
Method: Changes to the dopamine (DA) system in AD will be reviewed, and
evidence supporting the involvement of the DAergic system in the develop-
ment of apathy will be examined. Additionally, some pharmacological inter-
ventions with DA activity have been identified. The utility of these treatments
in the AD population will be reviewed, with a focus on apathy as an out-
come. Results: Evidence presented in this review suggests that DA dysfunc-
tion in discrete brain areas is an important correlate of apathy in AD and that
the DAergic system may be a rational target for pharmacological treatment of
apathy.

Introduction

Alzheimer’s disease (AD) is a progressive and incurable
neurodegenerative disease that affects a rapidly increas-
ing number of individuals over the age of 65 [1]. It is
the most common cause of dementia [2], representing a
major source of morbidity and mortality in the elderly
[3]. Behavioral and psychological symptoms of demen-
tia (BPSD) are important manifestations of AD, and con-
tribute to decreased patient and caregiver quality of life
[4–6]. Apathy is a BPSD defined by Marin as a diminished
level of motivation, not resulting from emotional distress,
an intellectual deficit, or a decreased level of conscious-
ness [7,8]. Apathy is the most common BPSD, affecting
up to 47% of those with mild AD and up to 80% of those
with moderate AD [9]. Apathetic AD patients are often
unable to attend to basic activities of daily living [10],
and apathy is the only BPSD that has a more marked

effect on activities of daily living than impairments caused
by deficits in cognition [11]. Additionally, AD patients
with apathy are at a higher risk of premature institution-
alization [12]; and BPSD, including apathy, substantially
increase health care costs [13].

Treatment of AD since the early 1990s has focused
on the cholinergic system, using cholinesterase inhibitors
(ChEIs) in an effort to limit the progressive cognitive de-
cline seen in most AD patients [14]. Recent studies sug-
gest, however, that between 38% [15] and 60% [16]
of AD patients with baseline BPSD fail to improve after
ChEI treatment. There have been no randomized con-
trolled trials (RCTs) of ChEIs that focus on apathy as a
primary outcome, though some studies have noted ben-
efits in apathy as a secondary measure or a post hoc anal-
ysis [17–20]. Other studies have shown that ChEIs are
not necessarily effective in the treatment of behavioral
symptoms, such as apathy, in the moderate-to-severely
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impaired AD population [21]. In addition to ChEIs,
a noncompetitive NMDA-receptor agonist, memantine,
has been studied and approved for the treatment of
moderate-to-severe AD. A number of RCTs have demon-
strated the use of memantine in the treatment of BPSD
and cognitive decline associated with AD [22–24]. Unfor-
tunately, there have been no published RCTs that focus
on apathy as a primary outcome, with only one study
reporting improvements in apathy in a post hoc analysis
[25].

In lieu of inconsistent data supporting ChEIs and me-
mantine in the treatment of apathy and other BPSD,
case reports and small open label studies [26] in the
late 1990s proposed the use of psychostimulants—acting
primarily on the dopaminergic (DAergic) brain reward
system (BRS)—for the treatment of apathy in AD. The
BRS is a widely studied neural network that is known to
play a role in mediating reward behavior and guiding an
individual toward ends that are considered to be reward-
ing [27,28]. Rewards are cognitive or biological stim-
uli that generate and increase the frequency of behavior
that contributes to a positive emotional state [28,29]. Re-
wards are inherently linked to motivation [27] and are
therefore—according to Marin’s definition [7,8]—closely
related to apathy. The neural pathways of the BRS are ex-
tensive and dysfunction of activity in the BRS is strongly
related to feelings of apathy in both healthy and im-
paired individuals [30,31]. Hence, treatment for apathy
and other behavioral symptoms in AD may theoreti-
cally be achieved by pharmacotherapies focused on the
DAergic system.

This review will summarize evidence supporting the
role of impaired DA activity in AD, specifically focusing
on the role of DA in apathy associated with AD. Pharma-
cotherapies that may have a beneficial effect on the treat-
ment of these symptoms will be summarized—focusing
discussion on the function and clinical relevance of
central nervous system (CNS) psychostimulants includ-
ing: methylphenidate, dextroamphetamine, modafinil,
bromocriptine, and amantadine. Articles were retrieved
using electronic databases (MEDLINE, EMBASE) and
cross-references from relevant articles. The following
keywords were used: Alzheimer’s disease, dementia,
apathy, dopamine, dopamine metabolism, dopamine
receptor, dopamine transporter, SPECT, PET, MRI,
methylphenidate, dextroamphetamine, modafinil, aman-
tadine, bromocriptine

The Dopaminergic System in AD

DA is a complex neuromodulator, which is neither strictly
excitatory nor strictly inhibitory—but rather depends on

the functional state of target neurons [32]. DA binds to
five distinct DA receptors, divided into two general cat-
egories by downstream signaling cascade: D1-like recep-
tors (D1 and D5) and D2-like receptors (D2, D3, D4) [32].
DA levels in the synapse are regulated by the dopamine
transporter (DAT), which is located on the presynap-
tic membrane of DAergic neurons and is responsible
for the reuptake of DA, thus terminating its activity in
the synapse [33,34]. The neural pathways of the BRS
are extensive, originating in the substantia nigra and
ventral tegmental area and projecting extensively
throughout the brain, reaching the nucleus accumbens,
striatum, amygdala, hippocampus, medial prefrontal cor-
tex, cerebral cortex, thalamus, and olafactory cortex
[28,35]. DAergic activity is separated into four major
anatomical pathways—the nigrostriatal, the mesolim-
bic, the mesocortical, and the tuberoinfundibular [36].
This discussion will focus on the nigrostriatal, mesolim-
bic, and mesocortical pathways. The nigrostriatal path-
way connects the substantia nigra with the striatum,
and is strongly implicated in movement disorders and
Parkinson’s Disease [36]. The mesolimbic pathway begins
in the ventral tegmental area and projects to the nucleus
accumbens in the striatum, the amygdala, the hippocam-
pus, and the medial prefrontal cortex [35]. The meso-
cortical pathway connects the ventral tegmental area
to the cerebral cortex, and is closely associated with
the mesolimbic pathway [35]. Both the mesocortical
and mesolimbic pathways are involved in the BRS, and
are implicated in feelings of motivation and apathy
[37]—making both pathways and their associated brain
structures important to our discussion. There is substan-
tial and convincing evidence demonstrating DAergic dys-
function in the various structures of these neural path-
ways in subjects with AD, reviewed below.

Findings from Postmortem Studies

Postmortem studies on the brains of AD patients have re-
vealed varying levels and locations of damage sustained
within the DAergic system in AD. Storga et al. [38] found
lower DA levels in the striatum, amygdala, substantia ni-
gra, cingulate gyrus, and raphe nucleus of postmortem
AD brains compared to those of controls. Other post-
mortem studies of AD brains have demonstrated that
DA levels are decreased in the striatum [39–41] and
the temporal cortex [42], but remain unchanged in the
frontal cortex [43]. Additionally, levels of homovanil-
lic acid (HVA)—a major metabolite of DA—have been
demonstrated to be decreased in the amygdala [39], the
hippocampus [42], and the striatum [44]. Storga et al.
[38] found that decreased DA levels in affected areas
of the brain correspond to increases in tyrosine—the
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primary precursor of DA—in the same regions. It has
been suggested that decreased DA in these regions
may be a result of impaired tyrosine hydroxylase, the
rate-limiting enzyme in DA biosynthesis [45]. In terms
of broader DAergic pathways, these findings point to
changes within the mesocorticolimbic (striatum, amyg-
dala, hippocampus, cingulate gyrus, temporal cortex) and
nigrostriatal (striatum) pathways.

Other postmortem studies have demonstrated changes
in DA receptor density and distribution in AD. Re-
ceptor binding studies have found that the density of
D2-like receptors is significantly reduced in the striatum
of AD patients compared to age-matched healthy controls
[46–48]. Studies examining D1-like receptors (D1 and
D5) have found that there are no significant differences
in the densities of these receptors between AD patients
and age-matched controls in the frontal cortex or stria-
tum [48–51]. A recent binding study of postmortem AD
brains found that, in the frontal cortex, D2, D3, and D4 re-
ceptor expression is markedly reduced, while D5 expres-
sion is increased compared to age-matched healthy con-
trols [52]. Interestingly, this study also found an increase
in D1 receptors in the frontal cortex of AD brains com-
pared to healthy controls. A study on healthy brains from
Goldsmith et al. [53] showed that there is a modular
organization of bands throughout the rostral and mid-
levels of the temporal cortex that are rich in D2 recep-
tor density. Joyce et al. [54] demonstrated that these D2

receptors bands are largely absent from postmortem AD
brains. These studies suggest that a change to DA re-
ceptor density and distribution occurs in the AD brain.
Changes seem to be most marked in the D2-like re-
ceptor family within the striatum of patients with AD
and possibly extending to the temporal or frontal cor-
tex. Changes to these brain structures suggest dysfunc-
tion in the DAergic mesocorticolimbic pathway that con-
nects the ventral tegmental area to the cortex and the
striatum.

DA dysfunction may also be attributed to lower lev-
els of DAT in AD patients. Mice with a lower density
of DAT exhibit decreased DA release [55]. A number of
studies in the AD population have reported various re-
sults with regard to DAT changes. Two studies [56,57]
reported that AD patients exhibited significantly lower
DAT synthesis than controls, while another [58] found
no difference in DAT levels between AD patients and
normal controls. Another recent study found that poly-
morphisms in the DAT gene of AD patients are associated
with various behavioral symptoms [59]. These discrepant
DAT findings are difficult to reconcile. In humans, DAT
levels have been shown to decrease by age 50, suggesting
an age-related reduction in the quantity of DAT, which
may complicate findings [60]. It is also possible that DAT

changes only occur in a subpopulation of AD patients
that experience extrapyramidal, or movement, symptoms
[56,57] as will be discussed below.

Findings from In Vivo Studies

Postmortem studies are limited by the delay between
death, freezing and tissue analysis, and the fact that find-
ings cannot always be accurately attributed to the an-
temortem state. Fortunately, neuroimaging studies have
verified, in vivo, many findings from postmortem studies
regarding changes to the DA system in AD patients. A
positron emission tomography (PET) study by Pizzolato
et al. [61] used [123I]-IBZM (a radiolabeled D2-specific
antagonist) and demonstrated a significant decrease in
D2 receptors levels in the striatum of AD patients. It
should be noted that IBZM is an antagonist and may
bind to DA receptors in both high-affinity (G-protein cou-
pled form) and low-affinity (G-protein uncoupled form)
states [62]. Decreased levels of D2 receptors found in
this study, therefore, may not simply be attributed to a
change in receptor affinity state. Another PET study, us-
ing [11C]raclopride (another D2 antagonist) observed a
marked decrease in D2 receptors in the striatum of AD pa-
tients who manifested BPSD compared to controls [63].
Interestingly, and in stark contrast to postmortem stud-
ies and other in vivo studies, Piggott et al. found no dif-
ferences in D2 binding between AD and control brains,
but did find a 20% increase in D3 receptor binding in the
nucleus accumbens of AD brains [64]. In a more recent
study, Piggott and colleagues once again found that D2

receptor density was unchanged in AD brains compared
to age-matched control brains [65].

Other neuroimaging studies have measured the up-
take of various radiolabeled DA analogues as a marker
of DA neuron levels. One PET study using [18F] 6-fluoro-
L-dopa (FDOPA)—a radioligand which is taken up by DA
neurons—demonstrated decreased FDOPA uptake in the
striatum of AD patients, which correlated with decreased
cognitive scores in this population [66]. Another study
used a different uptake ligand—[3H]GBR-12935—to as-
say DA uptake and found a 50% reduced uptake in the
putamen (a structure within the striatum) of AD pa-
tients [67]. Yet another uptake study used a radiolabeled
dopamine analogue ([11C]β-CFT) and demonstrated a
21% decrease in DA uptake in the putamen and a 23%
decrease in the caudate nucleus compared to healthy
controls [68]. In contrast to these studies, a study by
Murray et al. showed no decrease in DA uptake in the
putamen, but rather a 48% reduction in uptake in
the nucleus accumbens of AD patients compared to
normal controls [56]. Although variable, these findings
largely corroborate findings from postmortem studies,

CNS Neuroscience & Therapeutics 17 (2011) 411–427 c© 2010 Blackwell Publishing Ltd 413



Apathy in the Treatment of Alzheimer’s Disease R.A. Mitchell et al.

and strongly suggest dysfunction of the DAergic system
within the striatum of AD patients.

The specific effects of DA disruption within the stria-
tum are uncertain. Damage to the nigrostriatal tract of
the DA system is implicated in motor disorders [36],
and it follows that AD patients with extensive DA dys-
function in the striatum may also exhibit symptoms of
parkinsonism (discussed in more detail below). With re-
spect to BPSD and apathy, the effects of damage to the
striatum are less clear. Many of the above PET stud-
ies are limited by the radioligands that have been used,
which tend to be striatum-specific and do not measure
other brain areas involved in the BRS. Newer DA radioli-
gands, such as [18F]Fallypride, have been shown to bind
with equal specificity to extrastriatal brain areas [69,70].
Future PET studies on AD patients may be done us-
ing [18F]Fallypride to measure possible DA dysfunction
in cortical brain areas involved in the mesocorticolimbic
BRS.

Postmortem and in vivo evidence linking DA disruption
to AD consists of significant decreases in the metabolism
of tyrosine to DA, decreased DA receptor availability, de-
creased presynaptic DAT levels, and an overall decrease
in the uptake of labeled DA analogues within the stria-
tum. Since the time of these changes to the DA system
is unknown, it is unclear how these changes progress
and how they relate to the underlying neurodegenerative
process of AD. Substantial evidence suggests, however,
that changes to the DA system are associated with spe-
cific functional and behavioral outcomes in AD patients,
which will be reviewed below.

Dopaminergic System and Apathy
(Table 1)

DA neurons in the mesocorticolimbic and nigrostriatal
pathways innervate a number structures in the stria-
tum and frontal cortex which are believed to medi-
ate feelings of motivation and reward-seeking behavior
[27,28,32,37]. A large body of evidence suggests that DA
mediates reward pursuit behavior by attributing incentive
salience (“wanting”) to reward stimuli. Indeed, it is sug-
gested that DA contributes causally to incentive salience
and is, in fact, necessary for normal “wanting” [71]. Ad-
ditional research has suggested that DA agonists tend to
promote reward-seeking behavior, while DA antagonists
tend to attenuate reward-seeking behavior [72–77]. Us-
ing Marin’s definition of apathy as “the absence or lack of
emotion, interest, concern or motivation” [7,8] and bear-
ing in mind the relationship between DA and reward-
seeking, or “wanting” behavior, many studies have
proposed a DAergic basis of apathy in AD. Imaging stud-

ies have identified correlates between pathophysiologi-
cal changes to DAergic neuron-containing BRS structures
and feelings of apathy in AD patients.

SPECT Studies

Several studies have used single-photon emission com-
puterized tomography (SPECT) to estimate regional
cerebral blood perfusion in AD patients who exhibit
symptoms of apathy. Most of these studies have demon-
strated dysfunction within the anterior cingulate [78–83]
and orbitofrontal regions [79,81–83]. Some studies have
also found perfusion to be decreased in temporal re-
gions [79,81,84] and other areas [85]—these findings are
inconsistent however, and have not been replicated in
other perfusion studies investigating the same regions
[31,83,86]. Many of the above studies [79–85] did not
differentiate between apathetic AD patients with depres-
sive symptoms and apathetic AD patients without depres-
sive symptoms. Apathy is frequently comorbid with de-
pression, but can also be a separate diagnosis [87–91], and
it is important to exclude patients with depressive symp-
toms from these studies. A recently published SPECT
study examined findings from a large group of AD pa-
tients (n = 51) without symptoms of depression [31].
Results corroborated those of previous studies, showing
significantly decreased blood perfusion to the anterior
cingulate and orbitofrontal cortex regions of AD patients
with apathy.

Apathy has been previously noted as the hallmark be-
havior in patients with lesions to the anterior cingulate
[92]; however, the importance of lesion laterality is dis-
puted. Some studies have associated apathy with bilateral
hypoperfusion in the anterior cingulate [79,80], while
others have found predominantly left-sided [31,81,83] or
predominately right-sided [78,82] hypoperfusion. Simi-
larly, significance of lesion laterality in the orbitofrontal
cortex is not known, with studies reporting different find-
ings with regard to the side of hypoperfusion related to
apathy in the orbitofrontal cortex. The anterior cingulate
and orbitofrontal regions are both crucial areas of the BRS
and are involved in DAergic-mediated reward and plea-
sure behavior in healthy individuals [93–95]. The find-
ings from these perfusion studies, therefore, suggest a
link between the DAergic system and symptoms of apa-
thy in dementia. Further evidence of this link is provided
in a recent study on patients with Parkinson’s Disease
[96]. This study demonstrated that, following subthala-
mic nucleus deep brain stimulation (STN-DBS), patients
demonstrated decreased glucose metabolism within the
anterior cingulate region. It was found that this decreased
metabolism in the anterior cingulate correlated strongly
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Table 1 Neuroimaging studies of AD patients with apathy

Study Finding Comments

SPECT Perfusion Studies

Benoit 1999 [78] Apathy (NPI apathy) correlated with hypoperfusion in right

cingulate.

63 total patients with AD; apathy in 37 patients; SPECT

only done on 20 patients

Benoit 2002 [83] Apathy (NPI apathy) correlated with hypoperfusion in left

anterior cingulate, left orbitofrontal gyrus, right inferior

frontal gyrus, and the right gyrus lingualis.

30 total AD patients; 15 with apathy

Benoit 2004 [82] Apathy (IA—lack of initiative and interest score) correlated

with hypoperfusion in bilateral superior orbitofrontal gyrus

(controlling for NPI depression), and right anterior cingulate

cortex.

30 total patients with AD; 14 with apathy

Craig 1996 [79] Moderate-to-severe apathy (NPI apathy) correlated with

hypoperfusion in the anterior cingulate, orbiofrontal,

dorsolateral, and anterior temporal regions.

31 patients with AD; 21 with more than mild apathy

Lanctôt 2007 [31] Apathy (NPI apathy) correlated with hypoperfusion in right

orbitofrontal corex and left anterior cingulate

51 total nondepressed AD patients; 23 with apathy

Lopez 2001 [85] Apathy correlated with hypoperfusion in bilateral

dorsolateral prefrontal cortex and bilateral basal ganglia.

8 total AD patients; 1 with apathy; 1 with major

depression; 1 with emotional lability; 5 controls

Migneco 2001 [80] Apathy (NPI apathy) correlated with hypoperfusion in

bilateral anterior cingulate.

41 total patients; 28 patients with AD and 13 patients with

mild cognitive impairments; 21 patients with apathy

Ott 1996 [84] Apathy severity (AES) correlated with hypoperfusion in right

posterior temporal and right parietal regions.

40 total patients with AD;

Robert 2006 [81] Apathy (IA—lack of initiative and interest score) correlated

with hypoperfusion in right frontal lobe, right anterior

cingulate, and right inferior temporal lobe (in each case

controlling for IA emotional blunting, NPI depression).

31 total patients with AD; 19 with apathy

MRI studies

Jonsson 2009 [97] Apathy (STEP) significantly correlated with increased volume

of white matter hyperintensities.

167 total patients with dementia; 84 with AD; 127 with

apathy

Starkstein 2009 [98] Apathy (AES) significantly correlated with increased volume

of white matter hyperintensities in the frontal lobe.

79 total AD patients; 14 with apathy; 10 with both apathy

and depression

Abbreviations: AD,Alzheimer’s Disease; AES, Apathy Evaluation Scale; IA, Apathy Inventory; NPI, Neuropsychiatric Inventory; STEP, StepwiseComparative

Status Analysis.

with increased apathy—further suggesting a structural
link between dysfunction in BRS structures and apa-
thy. Another recent SPECT study investigated glucose
metabolism in the brains of AD patients with apathy,
and also found decreased metabolic activity in the ante-
rior cingulate and orbitofrontal cortex, reinforcing find-
ings from hypoperfusion studies [99]. A study from David
et al. built upon blood perfusion and metabolic SPECT
findings by examining the association between in vivo

DAT binding (using DA analogue, 123I-FP-CIT) and ap-
athy in AD patients [100]. That study demonstrated that
AD patients with apathy had significantly decreased DAT
binding in the putamen—strongly implicating a link be-
tween apathy and DAergic dysfunction in BRS structures
of the AD population.

MRI Studies

White matter changes are frequently found in radiolog-
ical images of patients with AD. In MRI images of AD
patients, these changes typically appear as white mat-
ter hyperintensities [101]. Hyperintensities on MRI are
often the result of an insult to microvascular networks
within the brain [102–104]. These hyperintensities oc-
cur regularly in older adults with small vessel disease
and the development of these lesions has been linked to
a decline in cognitive function [105]. Two recent stud-
ies [97,98] in the AD population have found that these
hyperintensities occur in greater volume in the brains of
apathetic AD patients than in nonapathetic AD patients.
Starkstein et al. found that patients with apathy had a
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significantly greater volume of white matter hyperinten-
sities in their frontal lobes than patients without apa-
thy [98]. Unfortunately, that study did not distinguish
brain regions beyond the principal lobes of the brain
(frontal, parietal, temporal, occipital) and it is unknown
whether those white matter changes occurred specifically
in the orbitofrontal area, as suggested by SPECT perfusion
studies previously mentioned. Jonsson et al. [97] also
found that white matter changes occur in significantly
greater volume in AD patients with apathy than AD pa-
tients without apathy, but also did not specify where in
the brain these white matter hyperintensities occurred.
Bearing in mind the relationship between these hyper-
intensities, microvascular injury, and small vessel disease
[102–105], it is possible that the increased volume of hy-
perintensities in the brains of AD patients with apathy is
associated with decreased blood perfusion, and neuronal
death, in the orbitofrontal and anterior cingulate regions
of these patients (as suggested previously by SPECT stud-
ies). More MRI surveys are needed to elucidate specific
areas of increased white matter hyperintensity in patients
with apathy in AD.

Extrapyramidal Symptoms and Apathy

A number of patients experience extrapyramidal symp-
toms, or parkinsonism, in addition to the typical cognitive
symptoms of AD. The prevalence of parkinsonism in AD
is largely disputed, with rates ranging from 11% to 53%
[106–110]. Extrapyramidal symptoms include movement
disorders, such as akinesia and akathisia, which are typ-
ically seen in patients with Parkinson’s disease [110]. A
number of investigators have demonstrated that symp-
toms of apathy are significantly associated with the pre-
sentation of extrapyramidal symptoms in AD patients
[111,112], suggesting a possible link in pathophysiolog-
ical mechanisms between the two symptoms. Several
studies in this population have found interesting, yet
conflicting findings with regard to the association be-
tween DA dysfunction and extrapyramidal symptoms.
One study demonstrated that AD patients with extrapyra-
midal symptoms had lower DAT synthesis than non-
parkinsonism AD counterparts [56]. In contrast to this,
a more recent study found no changes to DAT levels in
AD patients exhibiting extrapyramidal symptoms [58].
Other studies investigating changes to D2 receptors found
a marked decrease in D2 receptor levels in the striatum of
AD patients with extrapyramidal symptoms compared to
AD patients without extrapyramidal symptoms [61,113].
A study by Rinne et al. [68] demonstrated that a de-
crease in the reuptake of a dopamine ligand correlated
with the severity of extrapyramidal symptoms in an AD
population. Despite some conflicting results, the major-

ity of these studies provide strong evidence linking dys-
function in the DA system with the presence or sever-
ity of extrapyramidal symptoms. A study from Starkstein
et al. [112] demonstrated in a large AD population (n =
169) that patients with apathy at baseline exhibited a sig-
nificant increase in extrapyramidal symptoms at follow-
up. This finding suggests that apathy and extrapyramidal
symptoms in AD may be the result of a common mecha-
nism. Considering extensive changes to the DA system in
both apathy and extrapyramidal symptoms, the common
mechanism may be a dysfunction within the DA system.

Taken together, findings from SPECT studies, MRI
studies, and extrapyramidal symptom studies point to
dysfunction in the DAergic system and BRS structures
as an important pathophysiological correlate of apathy
in AD patients. Based on this evidence, it is reasonable
and clinically relevant to target the DAergic system for
the treatment of apathy in AD patients.

Pharmacotherapy (Table 2)

Treatment for cognitive decline in AD has typically fo-
cused on the use of ChEIs. Some recent evidence sug-
gests that ChEIs may also be effective in treating various
BPSDs [16,18]. These results are inconsistent however,
and other studies have found that only 40% [16] to 62%
[15] of AD patients improve in BPSDs with ChEI treat-
ment. Some studies of ChEIs have examined apathy as
a secondary outcome, and have found varying results. A
meta-analysis of galantamine found a reduction in NPI
score, but no significant reduction in the NPI apathy item
[114]. A number of studies have examined donepezil in
the treatment of AD, with improvement in apathy as a
secondary measure—those studies have produced widely
conflicting results with regard to apathy [18,20,115–119].
Rivastigmine has been studied in RCTs on the AD pop-
ulation, with improvements of apathy reported as a
secondary outcome. Findings in those studies are conflict-
ing, with one RCT finding an improvement in NPI ap-
athy score [120], and another finding no change [121].
At therapeutic concentrations, ChEIs may interact with
the DAergic system and stimulate DA release through
the nicotinic acetylcholine receptors (nAChR) [122]. This
is particularly true of the ChEI galantamine, which is a
known nicotinic modulator. Therefore, the striatal nico-
tinic cholinergic system may influence DA levels, and
ChEIs may have a potential secondary effect on apathy.

Memantine, a novel NMDA-receptor agonist has
shown promise as a treatment for severe AD, but has not
been used in an RCT where apathy has been a primary
outcome measure. While one case report has noted its
potential utility in the treatment of apathy [25], apathy is
not considered a memantine-responsive symptom [123].
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Table 2 Characteristics and findings of CNS stimulant trials on apathy

Population and

Study Type of trial sample size Intervention Finding

Drayton 2004

[124]

Chart review 30 patients with executive

dysfunction and dementia

Amantadine

(50–400 mg/day)

17 of 30 patients were “much improved” or

better on CGI.

Kraus 1997

[125]

Case report 7 patients; 6 with TBI; 1 with

meningitis

Amantadine

(25–400 mg/day)

Four patients “responded” and three patients

“partially responded” to amantadine.

Van Reekum

1995 [126]

N of 1, double-

blind placebo-

controlled trial

1 TBI patient Amantadine (300 mg/day) Improvement in symptoms of apathy (based on

clinical observation).

Debette 2002

[127]

Case report 1 postanoxic

encephalopathy patient

with apathy

Bromocriptine (15 mg/day),

levodopa (200 mg/day), and

bensarizine (50 mg/day)

Improved symptoms of apathy in one case, but

was not helpful in two other cases (based on

clinical observation).

Marin 1995

[128]

Case report 1 patient with postsurgical

occipital lobe infarction

Bromocriptine (90 mg/day)

and methylphenidate

(50 mg/day)

Improvement in symptoms of apathy (based on

clinical observation).

Huey 2008

[129]

Double-blind case

crossover trial

8 FTD patients Dextroamphetamine

(20 mg/day) or quentiapine

(150 mg/day)

Improvement in symptoms of apathy (based on

NPI apathy item) in patients taking

dextroamphetamine.

Lanctôt 2008

[130]

Open-label

d-AMPH probe

study

20 AD patients Dextroamphetamine (10 mg

single dose)

Patients with apathy (NPI apathy subscore >3)

had a diminished subjective response to

d-AMPH (based on ARCI).

Chatterjee

2002 [131]

Case report 1 PD patient with apathy Methylphenidate

(10 mg/day)

Improvement on apathy item of UPDRS.

Galynker 1997

[26]

Open-label study 27 AD and vascular

dementia patients

Methylphenidate

(10–20 mg/day)

Improvement of negative symptoms (including

apathy) on SANS.

Herrmann 2008

[132]

Double-blind

randomized

controlled trial

13 AD patients Methylphenidate

(20 mg/day) or placebo

Greater improvement in symptoms of apathy

(based on AES) in patients taking MTP than

patients taking placebo (P = 0.045).

Keenan 2005

[133]

N of 1, double-

blind ABBA design

(placebo, drug,

drug, placebo)

1 patient with idiopathic

normal pressure

hydrocephalus

Methylphenidate

(20–40 mg/day)

Improvement in symptoms of apathy (based on

AES self-rated scale).

Maletta 1993

[134]

Case report 3 AD patients with anorexia

secondary to apathy

Methylphenidate

(10–20 mg/day)

Improvement in symptoms of apathy in each

case (based on clinical observation).

Padala 2005

[135]

Case report 1 patient with major

depression

Methylphenidate

(40 mg/day)

Improvement in symptoms of apathy (based on

AES).

Padala 2007

[136]

Case report 4 patients; 2 with major

depression, 1 with vascular

dementia; 1 with PTSD

Methylphenidate

(20 mg/day)

Improvement in symptoms of apathy (based on

AES).

Padala 2010

[137]

Open-label study 23 AD patients Methylphenidate

(20 mg/day)

Improvement in symptoms of apathy (based on

AES).

Ravindran 2008

[138]

Double-blind

randomized

controlled trial

145 patients with major

depression taking an SSRI

or Dual action agent

antidepressant

Methylphenidate OROS

(18–54 mg/day) or placebo

Improvement in symptoms of apathy (based on

AES) in treatment group compared to placebo

(P = 0.01).

Spiegel 2009

[139]

Case report 3 patients with

cerebrovascular accidents

Methylphenidate

(5–12.5 mg/day)

Improved in symptoms of apathy (based on NPI

apathy item).

Padala 2007

[140]

Case report 1 patient with dementia and

depression

Modafinil (200 mg/day) Improved in symptoms of apathy (based on

AES).

Abbreviations: AD, Alzheimer’s disease; AES, Apathy Evaluation Scale; ARCI, Addiction Research Centre Inventory; CGI, Clinical Global Impression; FTD,

frontotemporaldementia;MTP,methylphenidate;OROS,osmotic-releaseoral system;PD,Parkinson’sdisease;PTSD,posttraumatic stressdisorder; SANS,

Scale for the Assessment of Negative Symptoms; SSRI, Selective Serotonin Reuptake Inhibitor; TBI, traumatic brain injury; UPDRS, Unified Parkinson’s

Disease Rating Scale.
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Given that apathy is prevalent in up to 80% of mod-
erate AD patients [9], it is vital that an effective and tar-
geted pharmacotherapy is explicated for the treatment of
this BPSD. Based on evidence for the involvement of the
DA system in apathy as outlined previously, the use of
targeted DA agents for the treatment of apathy in AD pa-
tients has been proposed.

Methylphenidate

Methylphenidate (MTP) is a CNS psychostimulant that
exerts a therapeutic effect by increasing the synaptic
concentration DA. This increase in synaptic DA is ac-
complished by MTP blocking presynaptic DAT and de-
creasing the reuptake of DA into presynaptic termi-
nals [141,142]. The blockage of DAT by MTP has been
shown to increase synaptic DA levels at a rate propor-
tional to DAT blockage [142]. MTP is not specific to the
DAergic system, however, and also has prominent effects
in the norepinephrine system—it is not entirely known
whether MTP’s beneficial effects are due to actions in the
DAergic system or other neurotransmitter systems [143].
MTP binds with the highest specificity in the caudate-
putamen, nucleus accumbens, bed nucleus of the stria
terminalis, and the median eminence [144]—areas that
are associated with the BRS [27,28]. This CNS stimulant
has been most widely used in the treatment of attention
deficit hyperactivity disorder (ADHD) [145], but more re-
cently has had expanded therapeutic utility in other ar-
eas, including the treatment of dementia.

Maletta and Winegarden reported using MTP on
nursing home patients with dementia in a series of case
reports published in 1993 [134]. Those case reports sug-
gest that MTP is effective in reversing anorexia secondary
to apathy in these patients. Galynker et al. [26] measured
the effect of MTP on “negative symptoms of
dementia”—which included apathy—in a sample of
27 patients with AD or vascular dementia. Results
from that study demonstrate that negative symptoms of
dementia—including apathy—seem to be responsive to
MTP treatment. Jansen et al. [146] used MTP in a case
crossover, double-blinded, randomized trial with one
patient. That study showed efficacy in treating apathy
in the single patient, using a low dose of MTP (5 mg
bid). In a RCT investigating the treatment of apathy in
AD with MTP [132], 13 AD patients using 20 mg/day of
MTP (10 mg bid) were assessed in a placebo-controlled
crossover design. That trial measured apathy as a primary
outcome—using the Apathy Evaluation Scale (AES)
[8]—and demonstrated that MTP significantly improved
scores of apathy. A recent open-label trial investigated
the use of 20 mg/day of MTP in 23 patients with AD
and baseline apathy (>40 on the AES scale) [137]. That

study found a significant improvement in AES scores
after 12 weeks of treatment. Other case reports have
described using MTP to effectively treat apathy in the
depressed population [135,136], the Parkinson’s popula-
tion [131], cerebrovascular accident patients [139], and
patients with idiopathic normal pressure hydrocephalus
[133]. Another recent RCT reported that apathy scores
improved significantly in depressed patients who were
treated with MTP in combination with an antidepressant,
compared to patients using the antidepressant alone
[138].

These studies point to the positive effect of MTP on a
number of behavioral symptoms, most notably apathy. A
small sample size limits the interpretation of results from
the only RCT looking specifically at the treatment of ap-
athy by MTP [132]. Results from that RCT also suggest
that MTP tolerability may be a concern in this popula-
tion as a significantly greater number of patients dropped
out from the treatment arm of the study than the placebo
arm, due to adverse effects of MTP. In the open-label MTP
trial [137], no patients dropped out due to adverse events,
but two patients required dose reductions because of a
decreased appetite attributed to MTP treatment. Safety
studies, and eventually more large-scale, double-blinded
RCTs are needed to further demonstrate the effectiveness
of MTP in the treatment of apathy in AD.

Dextroamphetamine

Dextroamphetamine (d-AMPH) increases the concentra-
tion of DA in the synapse by preventing the re-uptake
of DA by presynaptic DAT [147,148] and by releasing
DA from newly synthesized central stores into the synap-
tic cleft [149]. In vivo SPECT and PET studies with ani-
mal models [150,151] and with humans [152,153] have
demonstrated that d-AMPH stimulates D2 and D3 recep-
tor binding in a dose-dependant manner. The effect of
d-AMPH on the DA system seems to be most pronounced
in BRS structures within the striatum [152,154,155] and
as result, d-AMPH tends to produce feelings of subjec-
tive euphoria and pleasure in patients [156]. d-AMPH
has been demonstrated to reliably increase synaptic con-
centrations of DA within the BRS in several studies
[152,153,157–159] but has not been widely used in the
dementia population, due to uncertain tolerability in an
older cohort. One small study (n = 8) in patients with
frontotemporal dementia found that scores of apathy
improved in patients taking d-AMPH over a period of
4 weeks [129]. That study did not look at apathy as a pri-
mary measure however, and found apathy improvement
in a post hoc analysis of NPI subscales.

d-AMPH was used as a probe for DA function in
a sample (n = 20) of AD patients with and without
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apathy [130]. Apathetic AD patients had significantly
lower scores on the Addiction Research Center Inventory
(ACRI) drug reward composite score [160] than patients
without apathy. This reward score is a measurement
of perceived positive effects from amphetamine treat-
ment. PET studies have linked positive feelings following
d-AMPH administration specifically to D2 receptor bind-
ing [152,161,162]. The decreased ACRI score found in
apathetic patients following d-AMPH probe suggests an
association between DA dysfunction and apathy in the
AD population. This method has been validated by other
studies using d-AMPH as a probe in the major depression
disorder population [163,164] and an alcohol-dependent
population [165]. Findings from this d-AMPH probe study
may have treatment implications, and provide further ev-
idence that apathetic AD patients stand to benefit from a
drug that specifically targets the DA system.

The safety of both d-AMPH and MTP in an older de-
mentia population remains unclear. As mentioned previ-
ously, tolerability in the only RCT of MTP was a concern,
with dropouts in the study occurring exclusively in the
treatment arm, due to adverse effects of MTP treatment
[132]. None of the above MTP or d-AMPH studies re-
ported abuse or dependency problems. Since d-AMPH use
has not yet been examined in any large-scale trials of an
elderly dementia population, its safety is somewhat un-
clear. In the study by Huey et al. using d-AMPH in eight
frontotemporal dementia patients, all patients were able
to tolerate a 20 mg/day dose of d-AMPH for 4 weeks with-
out reporting adverse effects due to medication [129]. Re-
gardless of this report, both d-AMPH and MTP must be
used with caution in an elderly population considering
the potential adverse effects of treatment, which include:
hypertension, tachycardia, anorexia, abuse liability, ex-
acerbation of anxiety and/or psychosis, and problems in
a coronary artery disease population (positive ionotropic
effects). Safety studies of both drugs in elderly dementia
patients are clearly required.

Modafinil

Modafinil is a stimulant that is pharmacologically distinct
from d-AMPH and does not seem to have the same as-
sociations with dependency [166,167]. The mechanism
of action of modafinil is not entirely known, but ev-
idence points to increased activity within the DA sys-
tem [168–170] and decreased GABAergic activity [171].
Modafinil promotes vigilance and has been widely used
as a long-term treatment for narcolepsy [172–174]. Re-
cent studies have also demonstrated its effectiveness in
improving cognitive performance [175,176]. One case re-
port [140] investigated modafinil treatment for symptoms
of apathy in a 78-year-old man without a formal diagno-

sis of AD and a history of depression. After 4 weeks of
treatment, improvements in motivation were noted and
after 10 weeks, a significant improvement in the patient’s
apathy was measured on the AES. Modafinil has a low
risk of dependency, relatively good tolerance and a lack
of drug interactions [166,167,140–178]. These character-
istics, in concert with modafinil’s DAergic activity, make
it an attractive potential therapy for the treatment apathy
in AD—and warrant larger studies investigating its utility
in this population.

Other Dopaminergic Therapies

Amantadine is another drug with DA effects that has
been investigated in the treatment of apathy. The ex-
act mechanism of action of amantadine is not fully un-
derstood, but it has been demonstrated to stimulate the
release of DA and delay DA reuptake [179]. It is also
a potent NMDA receptor antagonist. One study investi-
gated the use of 300 mg/day of amantadine in a patient
with apathy following traumatic brain injury [126]. Four
treatment-blind therapists each noted improvements in
this patient’s apathy, with no side effects reported by the
patient. Another series of case reports describe the treat-
ment of apathy in six traumatic brain injury patients and
one meningitis patient with 25–400 mg/day of amanta-
dine [125]. That study found that four patients with ap-
athy were “responders” to amantadine, while three were
“partial responders” based on caregiver reports and clini-
cal observation. In a chart review of 30 dementia patients
treated with 50–400 mg/day of amantadine, 17 patients
(56.7%) were rated as “much improved” or better on the
clinical global impression (CGI) scale [124]. In that study,
only 3 patients (10%) reported side effects, with none be-
ing severe enough to a warrant discontinuation of aman-
tadine. The findings from these studies, and the activity of
amantadine on the DAergic system, point to its possible
use in the apathetic AD population.

Bromocriptine is a DA agonist [180] that has been
used in combination with other therapies to reduce ap-
athy in non-AD patients. Bromocriptine (90 mg/day)
and methylphenidate (50 mg/day) reduced symptoms of
apathy in a 49-year-old postinfarct patient [128]. An-
other series of case reports described using bromocriptine
in combination with levodopa (50 mg/day) or benser-
azide (12.5 mg/day) to improve apathy in patients with
postanoxic encephalopathy [127]. That report demon-
strated marked improvements in apathy in one patient,
but no changes to symptoms of apathy in two other
patients.

Both amantadine and bromocriptine have activity in
the DA system and have potential utility in the treatment
of apathy. Unfortunately, they are associated with a
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number of serious side effects including anxiety, agita-
tion, seizures, and exacerbation of psychiatric symptoms
of schizophrenia. As a result, both pharmacotherapies
warrant safety trials before being considered for treat-
ment of apathy in AD.

It should be noted that amantadine and MTP have
been previously considered for the treatment of behav-
ioral symptoms of dementia. Roccaforte and Burke [181]
review a number of older studies that report the bene-
ficial effects of amantadine and MTP on “amotivational
states,” “senility,” and recovery from “poor motivation
syndrome.” As that review demonstrates, psychostimu-
lants have been studied for use in the treatment of apathy
for some time, and the findings from these early studies
remain somewhat relevant to our current discussion.

Conclusions

The majority of studies investigating the DAergic sys-
tem in AD have demonstrated a decreased density of
DA receptors, decreased levels of extracellular DA, de-
creased levels of DA metabolites, decreased density of
DAT, and decreased DA reuptake by DAT. Cumulatively,
these findings suggest DAergic neuronal destruction in
the brains of AD patients. Many of these findings are
from postmortem studies and it is important to note that
conclusions are somewhat restricted due to limitations
inherent with this methodology. Postmortem findings
represent the physiological state at the time of death
that cannot necessarily be applied to the antemortem
AD state. Fortunately, findings from many in vivo imag-
ing studies support the results from postmortem studies.
In vivo studies provide evidence of a significant decrease in
D2 family receptor density and decreased DA reuptake in
the brains of AD patients. These findings seem to be most
pronounced in structures associated with the nigrostri-
atal and mesocorticolimbic tracts of AD patients—most
notably the striatum. The time course of these changes
is largely unknown and it is not clear how DAergic dys-
function is related to the underlying neurodegenerative
processes of AD.

DA is known to mediate feelings of motivation and
pleasure, and it is likely that dysfunction in the DAergic
system of AD patients is responsible, at least in part, for
this population’s high prevalence of apathy. SPECT stud-
ies have shown that AD patients who experience apathy
have decreased blood perfusion to their anterior cingu-
late and orbitofrontal cortex—areas that are innervated
by DAergic neurons and are associated with feelings of
pleasure and motivation. Recent MRI studies have shown
that AD patients with apathy have an inordinately high
volume of white matter hyperintensities in their frontal
lobes. These hyperintensities are typically associated with

microvascular insult and decreased blood flow. Taken
in concert with SPECT perfusion findings, these results
suggest that decreased blood flow or vascular insult to
orbitofrontal and cingulate regions may be partially re-
sponsible for DAergic neuron destruction and resultant
symptoms of apathy in these AD patients. Evidence link-
ing DAergic dysfunction to apathy is provided by a d-
AMPH challenge study [130]. Additional evidence link-
ing DAergic dysfunction to apathy is provided in studies
investigating AD patients with parkinsonism. Many AD
patients with extrapyramidal symptoms have irregular-
ities in DA uptake or DA receptor density. As reported
by Starkstein et al. [112], a significant number of these
patients also develop apathy—suggesting a mechanistic
similarity of DAergic dysfunction between apathy and ex-
trapyramidal symptoms in these patients.

CNS stimulants that target DA have been successful in
the treatment of apathy. Some of these pharmacother-
apies, most notably MTP, have been found to safely
ameliorate symptoms of apathy in the AD population.
Unfortunately, there have been few large-scale RCTs in-
vestigating the use of other CNS stimulants to treat apa-
thy in an elderly AD population. Paucity of data concern-
ing the use of these drugs is likely a result of concerns
about their tolerability in the elderly population and risks
associated with dependency. Findings from preliminary
studies, however, suggest the utility of many of these
therapies in the treatment of apathy, and warrant larger
RCTs. Modafinil may be particularly useful in this popu-
lation, given its demonstrated cognitive benefits, its low
risk of dependency, and its high tolerability.

DA dysfunction in discrete brain areas is an important
correlate of apathy in AD, but it is still unclear at what
time during the course of AD changes to the DAergic sys-
tem occur, or whether the extent of DAergic disruptions
preclude it as a target for pharmacotherapy. Evidence
presented in this review suggests that the DAergic system
may be a useful and rational target for pharmacotherapies
in the treatment of this BPSD. Given the morbidity asso-
ciated with apathy, it is vital that the application of cur-
rently available treatments are further investigated, and
that novel interventions are proposed and explored.
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