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Cilostazol increases intracellular cyclic adenosine monophosphate (cyclic
AMP) levels by inhibiting type III phosphodiesterase. It was approved by the
Food and Drug Administration for the treatment of intermittent claudication.
Its principal actions include inhibition of platelet aggregation, antithrombotic
action in cerebral ischemia, and vasodilation, mediated by increased cyclic
AMP levels. In a multicenter, randomized, placebo-controlled, double-blind
clinical trial, cilostazol has been shown to protect patients from recurrent cere-
bral infarction. It has been recently suggested that cilastozol could be useful
in the treatment of transient focal cerebral ischemic injury. Beneficial effects
of cilostazol in cerebral ischemic infarction and edema formation has been
confirmed in rats by the magnetic resonance imaging (MRI). The preventive
effect was ascribed to cAMP-dependent protein kinase (PKA)-coupled maxi-
K channel activation with additional antioxidant and poly(adenosine diphos-
phate [ADP]-ribose) polymerase inhibitory actions. Most recently, cilostazol
has been shown to prevent vacuolation and rarefaction in the white matter of
the rats subjected to chronic cerebral hypoperfusion in association with sup-
pression of astrocyte and microglial activation. Taken together, recent exper-
imental studies with cilostazol showed promising results in cerebral ischemia
and chronic cerebral hypoperfusion.

Introduction

Cilostazol [Pletaal
R©

] was developed as a selective in-
hibitor of cyclic nucleotide phosphodiesterase 3 (PDE3)
(Kimura et al. 1985). Under inhibition of PDE3 activ-
ity (recombinant human PDE3A, IC50 = 0.54 ± 0.06
μM; Shakur et al. 2002) and suppression of cyclic AMP
degradation, intracellular cyclic AMP level was increased
in platelets and blood vessels, leading to inhibition of
platelet aggregation and dilation of vascular smooth mus-
cle cells (Kimura et al. 1985). Additional reports described
the pleiotropic actions of cilostazol, thereby providing a
variety of clinical uses including prevention of recurrent
stroke (Gotoh et al. 2000), coronary restenosis (Douglas
et al. 2005), and peripheral occlusive disease. These indi-
cations were based on antiplatelet, vasodilator, and an-
tiproliferative actions of cilastozol in preclinical studies
(Kambayashi et al. 2003).

Cilostazol has been shown to inhibiting platelet aggre-
gation induced by a variety of stimuli, including arachi-

donic acid, adenosine diphosphate (ADP), epinephrine,
collagen, thrombin, and high shear stress (Minami et al.
1997; Matsumoto et al. 1999). Cilostazol was approved in
the United States for treatment of intermittent claudica-
tion (Dawson et al. 1998).

Antiplatelet therapy modestly improved outcome in
both acute stroke (aspirin) and in secondary stroke pre-
vention (aspirin with or without dipyridamole) (Bednar
2000). This therapy is a key component of sec-
ondary preventive strategies in ischemic stroke (Ma-
jid et al. 2001). The secondary prevention strategies
rely largely on the risk factor reduction, carotid en-
darterectomy, anticoagulation for cardioembolic stroke,
and antiplatelet agents for atherothrombotic stroke (Eas-
ton 1998). In line with these reports, cilostazol was sug-
gested for treatment of cerebral ischemic events caused
by thrombus formation in the carotid artery (Kohda
et al. 1999). Cilostazol has been shown in a multicen-
ter, randomized, and double-blind clinical trial to pro-
vide a considerable risk reduction (about 41.7%) in
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Figure 1 Chemical structure of cilostazol (6-[4-(1-cyclohexyl-1H-tetrazol-

5-yl)butoxy]3,4-dihydro-2(1H)-quinolinone).

patients with recurrent cerebral infarction (Gotoh et al.
2000).

Our recent studies demonstrated the protective ef-
fects of cilostazol against transient focal cerebral ischemia
and chronic cerebral hypoperfusion injury. Cilostazol sig-
nificantly decreased ischemic brain infarction, inhibited
apoptotic and oxidative cell death (Choi et al, 2002), and
attenuated gray and white matter damage 24 h after fo-
cal cerebral ischemia in rats (Honda et al. 2006). Reduc-
tion of the brain ischemic infarction and edema by cilosta-
zol was confirmed by magnetic resonance imaging (MRI)
in rats (Lee et al. 2003). These results were further sup-
ported by Ye et al. (2007), in that cilostazol was effective
in mice in chronic as well as in acute injury induced by
focal cerebral ischemia. Additionally, cilostazol protected
rats, subjected to permanent bilateral common carotid
artery ligation (BCCAL), from cognitive impairment and
white matter lesions induced by chronic cerebral hypop-
erfusion (Lee et al. 2006; Watanabe et al. 2006). The
present article summarizes our recent knowledge of the
neuroprotective effects of cilostazol in in vitro and in vivo
studies.

Chemistry

Chemical structure of cilostazol (Pletaal
R©

; OPC-130136)
is shown in Figure 1. Its chemical name is 6-[4-(1-
cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-
quinolinone and its molecular weight is 369.47. It is
manufactured and distributed by Otsuka Pharmaceutical
Co. Ltd (Tokushima, Japan). Cilostazol has high plasma
protein binding ability. In an in vitro study, 95% of
[14C]cilostazol was found to bind to plasma proteins
(Akiyama et al. 1985). In vivo after a single oral dose

(50 mg/kg), 95.5% of cilastozol was bound to plasma
proteins (Bramer et al. 1999).

Pharmacology

In Vitro Protective Action of Cilostazol

Inhibition of lipopolysaccharide (LPS)-induced apoptosis
by cilostazol in human umbilical vein endothelial cells
(HUVECs) has been reported by Kim et al. (2002). They
demonstrated in vitro inhibition of LPS-induced apoptosis
in HUVECs by cilostazol and its metabolites (OPC-13015
and OPC-13213) and found that cilastozol can reverse
the LPS-induced decrease in Bcl-2 protein, increase in
Bax protein and cytochrome c release from mitochon-
dria. Additionally, they documented that cilostazol and its
analogs scavenge hydroxyl radicals, suppress production
of the intracellular reactive oxygen species, and decrease
the formation of tumor necrosis factor-α (TNF-α). The
cell survival studies emphasized the importance of cAMP
stimulation in the somatostatin transcription by cyclic
AMP response element binding protein (CREB) phos-
phorylation at Ser-133 (Gonzalez and Montminy 1989),
and the survival-promoting effect of brain-derived neu-
rotrophic factor or neurotrophin-3 (Franke et al. 2000).
Consistent with these results, TNF-α-induced reduced
viability of SK-N-SH (human brain neuroblastoma cell
line) and HCN-1A cells (human brain cortical cell line)
were significantly reversed by cilostazol (0.1∼100 μM) in
a concentration-dependent manner (Hong et al. 2003).
These authors further elucidated the signal transduction
pathway by which cilostazol recovers the cell viability,
and found that TNF-α (50 ng/mL)-induced suppressed
Akt and CREB-phosphorylation were markedly elevated
(up to 3- to 4-fold) by cilostazol at 10 μM (p < 0.01).
It remains to be defined in further studies whether ex-
pression of these neurotrophic factors is involved in the
action of cilostazol.

Activation of maxi-K+ channels appears to be in-
volved in the downstream signal transduction pathway
leading to the recovery of cell viability in SK-N-SH
cells. It has been reported that maxi-K+ channels, large
conductance calcium-activated K+ channels, are rapidly
activated by depolarization and increased intracellular
calcium (Latorre et al. 1989), and that the K+ channel
opening reduces neurotransmitter release by suppress-
ing accumulation of pathological levels of Ca2+, and
attenuates ischemic injury (Robitaille and Charlton
1992). Activation of maxi-K+ channels has been found
to protect neurons against glutamate release and exci-
totoxicity, and to reduce the pathological consequences
of ischemia (Lawson 2000). Recent studies have docu-
mented that the maxi-K+ channel opener BMS 204352
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[maxipost, (S)-3-(5-chloro-2-methoxyphenyl)-3-fluoro-
6-(trifluoromethyl)-1,3-dehydro-2H –indole-2-one;
Cheney et al. 2001] protects neuronal cells against acute
ischemic damage by blocking Ca2+ entry and minimizing
neuronal depolarization (Gribkoff et al. 2001). In the
previous electrophysiological studies (Hong et al. 2003),
cilostazol increased the outward K+ currents by approxi-
mately 4-fold in SK-N-SH cells by activating the maxi-K+

channels without affecting the K+
ATP channels. In line

with this report, cilostazol significantly decreased the
cytosolic Ca2+ level elevated by TNF-α (50 ng/mL) in
the SK-N-SH cells. In vitro (Kim et al., 2004) and in vivo

(Lee et al. 2004) studies, cilostazol ameliorated neuronal
damage by suppressing apoptotic cell death. This effect
involved opening of maxi-K+ channels associated with
an increase in the Akt phosphorylation, which was
suppressed by iberiotoxin. These results strongly suggest
that the antiapoptotic effect of cilostazol is mediated by
maxi-K+ channel opening.

Anti-Inflammatory Effects

Shin et al. (2004) reported that remnant lipopro-
tein particles (RLP)-induced decreased cell viability of
HUVECs in association with decreased oligonucleoso-
mal DNA fragmentation was significantly reversed by
pretreatment with cilostazol (0.01∼100 μmol/L). In
accordance with these results, cilostazol significantly
suppressed RLP-stimulatd NAD(P)H oxidase-dependent
superoxide formation and cytokine production (TNF-α
and interleukin-1β). Recently, Park et al. (2005) showed
that cilostazol reduces expression of adhesion molecules
and chemokines and monocyte adhesion to HUVECs.
Cilostazol suppressed RLP (50 μg/mL)-stimulated mono-
cyte adhesion (3.3-fold) in HUVECs as well as in-
creased cell surface expression of vascular cell adhesion
molecule-1 (VCAM-1), intercellular adhesion molecule-
1, E-selectin, and monocyte chemoattractant protein-1
(MCP-1). At 10 μM BAY 11-7085, a specific inhibitor
of inhibitory kappaB (IκB) phosphorylation, had simi-
lar effect. Further study (Park et al. 2006) showed that
cilostazol (1 μM) increased K+ currents in human en-
dothelial cells by activating maxi-K+ channels, and that
this effect was abolished by iberiotoxin (100 nM), a
maxi-K+ channel blocker. In line with these findings,
cilostazol significantly suppressed TNF-α-induced IκBα

degradation, so that translocation of the nuclear factor-
κB (NF-κB) p65 subunit into the nucleus was blocked.
These effects of cilostazol were consistently antagonized
by iberiotoxin (p < 0.05), KT 5720 or Rp-cAMPs (cAMP-
dependent protein kinase [PKA] inhibitors; p < 0.05) but
not by KT 5823 or Rp-cGMPs (cGMP-dependent pro-
tein kinase [PKG] inhibitors). These findings indicate that

increased intracellular cAMP levels by cilostazol are di-
rectly coupled to its maxi-K+ channel opening action
via protein kinase A activation in human endothelial
cells, thereby suppressing TNF-α-stimulated superoxide
production and expression of adhesion molecules. These
results are further supported by the reports that PKA
activation by cAMP-elevating agents, such as forskolin
and dibutyryl cAMP, inhibited TNF-α-induced NF-κB-
dependent reporter gene expression and reduced NF-
κB-dependent expression of adhesion molecules and
chemokines (Ollivier et al. 1996; Aizawa et al. 2003).

Based on these in vitro findings, the antiatherogenic
effect of cilostazol was elucidated in the low-density
lipoprotein receptor-null mice fed a high cholesterol
diet, where cilostazol significantly suppressed multiple
plaque lesions in the proximal ascending aorta including
aortic sinus. This effect was accompanied by decreased
macrophage accumulation with reduced superoxide and
TNF-α formation, as well as VCAM-1 and MCP-1 ex-
pression. Accumulating evidence suggests that the anti-
inflammatory action of cilostazol is responsible for the
antiatherosclerotic effect of cilostazol (Lee et al. 2005).

Protection from Focal Cerebral Ischemic Injury

Many reports have shown that cilostazol exerts neuro-
protective effects against transient focal ischemic brain
injury (Table 1). Cilostazol decreased ischemic brain in-
farction in association with inhibition of apoptotic and
oxidative cell death (Choi et al. 2002), and attenuated
gray and white matter damage at 24 h after focal cere-
bral ischemia in rats (Honda et al. 2006). Reduction of
the brain ischemic infarction by cilostazol was confirmed
by MRI in rats (Lee et al. 2003). The infarct areas were
reduced in accordance with the apparent diffusion co-
efficient (ADC) and T2 images obtained after treatment
with cilostazol. Hoehn-Berlage et al. (1995) previously
suggested that the decline of ADC is related to the reduc-
tion in cerebral blood flow that causes a failure of high-
energy metabolism and leads to cytotoxic edema. The
blood brain barrier (BBB) breakdown was reported to oc-
cur following postischemic reperfusion of the brain (Sage
et al. 1984). The integrity of the BBB plays an important
role in the pathological changes, since BBB disruption is
associated with brain edema formation and cerebral in-
farction following postischemic reperfusion (Betz 1996).
Consistent with the report of Yang et al. (1999), disrup-
tion of BBB in the ipsilateral hemisphere was observed
after focal cerebral ischemia, which was significantly sup-
pressed by cilostazol (Lee et al. 2004).

In the penumbral region, blood flow is reduced to
a critical level during middle cerebral artery occlusion
(MCAO), but reperfusion after ischemia provides an
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excess of oxygen with restored blood flow, leading to
not only enhancement of neuronal viability but also to
catalysis of enzymatic oxidative reaction. The produced
reactive oxygen species trigger apoptosis and laddered
DNA fragmentation (Bredesen 1995). Recently, Lee
et al. (2004) reported that cilostazol (30 mg/kg, orally)
significantly suppressed the laddering feature of DNA
fragmentation in the samples of 24 and 48 h reperfusion
after 2 h MCAO in rats. In the process of apoptosis, ac-
cumulating evidence points to a significant role of Bcl-2
and cytochrome c release from mitochondria to cytosol,
and caspase-3 activation in promoting cell survival and
cell death (Chan 2005). Martinou et al. (1994) showed
that the overexpression of Bcl-2 in transgenic mice pro-
tected neurons from ischemia-induced cell death. Simi-
larly, human Bcl-2 overexpression with herpes simplex
virus vectors limits neuronal death in focal cerebral is-
chemia (Lawrence et al. 1997). Bcl-2 protects the in-
tegrity of mitochondrial oxidative phosphorylation and
thus limits mitochondrial dysfunction induced by sev-
eral apoptosis stimuli (Kluck et al. 1997). In line with
these important proteins, CREB is suggested to be a post-
translationally activated transcription factor that is in-
volved in the numerous brain functions, including cell
survival (Walton et al. 1999). CREB is a key media-
tor coupling neurotrophin signals to survival messages
(Finkbeiner 2000). Neurotrophins, such as nerve growth
factor and brain-derived neurotrophic factor, have neu-
roprotective effects that are activated by CREB-mediated
transcription of various neuroprotective genes, includ-
ing Bcl-2 and BDNF (Bonni et al. 1999; Walton and
Dragunow 2000). Recently, Tanaka (2001) showed that
about 80% of the phosphorylated CREB-positive neurons
coexpressed Bcl-2 in the ischemic area of the brain. The
finding that cilostazol enhances CREB phosphorylation
in association with increased Bcl-2 levels, thereby reduc-
ing the caspase-3-positive cells in the penumbral region,
provides evidence for neuroprotection from cerebral is-
chemia (Lee et al. 2004) (Fig. 2F).

Evidence has accumulated that under moderate to se-
vere stress conditions, activation of PARP, a nuclear pro-
tein, contributes to DNA repair in response to moderate
DNA damage (de Murcia et al. 1997). The pharmacologi-
cal inhibition of PARP attenuates brain injury in rodents,
and mice lacking PARP gene are markedly protected from
cerebral ischemic damage (Eliasson et al. 1997; Endres
et al. 1997). It has been also shown that extensive DNA
strand breaks that occur following ischemia/reperfusion
can lead to overactivation of PARP, followed by the
massive consumption of NAD+, and eventual cell death
(Ducrocq et al. 2000). In the direct enzyme assay cilosta-
zol, that has a quinolinone moiety in its structure, inhib-
ited PARP with relatively low IC50 value (883 ± 41 nM).
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Figure 2 Representative immunohistochemical

staining of the CD11b (OX-42), TNF-α, superoxide,

nitrotyrosine, poly(ADP-ribose) polymer (PAR), and

cleaved caspase-3-positive cells in the penumbral

region of the vehicle- and cilostazol-treated group

in comparison with sham group. Compared with

the vehicle group, the OX-42, TNF-α, superoxide,

nitrotyrosine, PAR, and cleaved caspase-3-positive

cells in the penumbral region of the

cilostazol-treated group are less prominent at 24 h

reperfusion after 2 h MCAO. Little immunoreactivity

was shown in the sham groups. Each

representative Figure is derived from 4∼6 rat

brains of each group. Scale bar = 50 μm.

The 50% inhibitory concentration of cilostazol was
about two orders of magnitude lower than that of 3-
aminobenzamide (IC50, 20.77 ± 5.19 μM). In vitro,
in PC12 cells, cilostazol (0.1∼100 μM) concentration
-dependently inhibited H2O2 (100 μM)-induced PARP
activity. Additionally, cilostazol (30 mg/kg, two times
orally) significantly reduced the elevated PARP activity
and increased the density of poly(ADP-ribose) polymer
(PAR)-positive cells (a product of activated PARP) in the
penumbral zones of the rat cerebral cortex subjected to
focal cerebral ischemic injury (Lee et al. 2007) (Fig. 2E).
In accordance with these results, decreased NAD+ lev-
els in in vitro and in vivo studies were ameliorated by
cilostazol. This effect was associated with reduction in mi-
croglia (measured by the immunohistochemistry for OX-
42) and in TNF-α levels (Fig. 2A and B). Additionally, at
30 mg/kg cilostazol significantly suppressed both super-
oxide and nitrotyrosine (a marker of peroxynitrite, in-

teraction product of nitric oxide, and superoxide) levels
in the penumbral sample of the brain subjected to 24 h
reperfusion after 2 h MCAO (Fig. 2C and D).

It has been shown that overactivation of PARP can ini-
tiate a nuclear signal that propagates to mitochondria and
triggers the release of apoptosis-inducing factor (AIF),
a mitochondrial protein, from mitochondria to the nu-
cleus (Yu et al. 2002; Hong et al. 2004). In addition, AIF
was implicated in the PARP-1-dependent cell death af-
ter focal cerebral ischemia (Hong et al. 2004; Komjati
et al. 2004; Plesnila et al. 2004). In rat MCAO model,
the number of AIF-positive cells was strikingly increased
in the infarcts of vehicle-treated rats and significantly re-
duced by cilostazol. Simultaneous staining of AIF-positive
cells with Hoechst 33342, a marker of nucleus, revealed
that increased AIF-translocation to the nuclei was signif-
icantly decreased by cilostazol (Lee et al. 2007). These
results indicated that AIF-inhibiting and neuroprotective
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effects of cilostazol are closely related to its PARP in-
hibitory activity.

Protection from Chronic Cerebral
Hypoperfusion Injury

The white matter lesions are frequently observed in ag-
ing, hypertension, and cerebrovascular disease, and are
thought to be responsible for cognitive decline and gait
disorders in the elderly population (Boone et al. 1992).
There is ample evidence that chronic cerebral ischemia
induced experimentally by the bilateral ligation of com-
mon carotid artery (BCCA) in rats leads to demyelination
and axonal damage (Ihara et al. 2001). This experimen-
tal model has been proposed as a model for vascular de-
mentia and cerebrovascular white matter lesions (Wakita
et al. 1994; Tanaka et al. 1996; Tomimoto et al. 2003).
Wakita et al. (1999) reported suppression of the activated
microglia by anti-inflammatory drugs with attenuation of
the white matter lesions, suggestive of importance of in-
flammatory reaction in provoking the white matter le-
sion. Microglia and astrocytes are the major sources of
TNF-α (Sawada et al. 1989). TNF-α, a proinflammatory
cytokine in the central nervous system, induces various
pathological effects, including edema formation after is-
chemia and demyelination, and these lesions are amelio-
rated by anti-TNF-α antibody (Taupin et al. 1997). On
the other hand, oligodendroglial cell death has been re-
ported following BCCA occlusion in gerbils (Kurumatani
et al. 1998), and after transient global cerebral ischemia
in rats (Petito et al. 1998). Apoptosis of oligodendro-
cytes, a major cellular component of the white matter,
may, therefore, contribute directly to the white matter
lesions. Microglial activation is the major source of in-
flammatory cytokines in the ischemic brain (Gregersen

Figure 3 Neuroprotective mechanisms of

cilostazol against focal cerebral ischemia. The

neuroprotective potentials of cilostazol are

ascribed to its anti-inflammatory and antiapoptotic

effects mediated by scavenging hydroxyl radicals

and intracellular ROS, maxi-K channel opening, and

inhibition of PARP activity.

et al. 2000). Therefore, protection against the impact
of oxidative stress, inflammatory damage, and apopto-
sis is of importance in reducing critical damage of the
white matter and in preventing the cognitive impairment.
Chronic cerebral hypoperfusion caused a large increase in
the astrocytes and microglia with decreased oligodendro-
cytes in the white matter (optic tract, corpus callosum,
internal capsule) of the rats subjected to BCCAL (Cho
et al. 2006; Lee et al. 2006; Watanabe et al. 2006). The ac-
tivation of astrocytes and microglia was significantly sup-
pressed by cilostazol. In addition, cilostazol also prevented
the loss of oligodendrocytes (Lee et al., 2006).

The evidence is accumulating that in the human brain
apoptosis of the oligodendrocytes is increased in the
white matter lesions; it involves myelin degeneration, as-
trogliosis, activation of microglia, and loss of oligodendro-
cytes (Akiguchi et al. 1997; Tomimoto et al. 2003). Oligo-
dendrocytes, a major cellular component of the white
matter, are more vulnerable to the oxidative stress than
other glial cells such as astrocytes (Pantoni et al. 1996;
Hollensworth et al. 2000). They readily undergo apop-
tosis in different paradigms causing ischemic and non-
ischemic damage with an activation of caspase path-
ways (Petito et al., 1998). After cerebral hypoperfusion
in male Wistar rats, cilostazol reduced apoptosis of oligo-
dendrocytes through the phosphorylation of CREB and
subsequent elevation of Bcl-2 in the white matter re-
gion (Watanabe et al. 2006). In line with these findings,
cilostazol (60 mg/kg/day, orally) significantly reduced the
apoptotic cell death in association with reduced caspase-3
immunoreactivity and TUNEL-positive cells in the white
matter of rat brains subjected to BCCAL (Lee et al. 2006).

The protective effects of cilostazol against cerebral
hypoperfusion-induced cognitive impairment and white
matter damage were assessed in a rat BCCA ligation
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model (Lee et al. 2006; Watanabe et al., 2006). In the
experiment with Wistar rats in Morris water maze task,
the prolonged latency induced by BCCA ligation was sig-
nificantly shortened by the administration of cilostazol
(50 mg/kg/day) throughout the entire period of the ex-
periment (at 3, 7, 14, 21, and 28 days). In the vehi-
cle group of chronic cerebral hypoperfusion model, the
vacuolation and rarefactions were significantly increased
in the white matter, which were accompanied by ex-
tensive activation of both microglia and astrocytes and
suppression of oligodendrocytes in association with in-
creased TNF-α production, caspase-3 immunoreactivity,
and TUNEL-positive cells in the white matter includ-
ing optic tract. In conjunction with the improvement of
the spatial learning memory, cilostazol (60 mg/kg/day,
orally) prevented the occurrence of vacuolation and rar-
efaction of the white matter with reduced apoptosis (Lee
et al. 2006). Additionally, post-treatment with cilostazol
strongly reversed not only activation of microglia and as-
trocytes but also diminished oligodendrocytes following
chronic cerebral hypoperfusion. These results were sup-
ported by the reports of Watanabe et al. (2006), in that
cilostazol (50 mg/kg/day) upregulated the expressions of
Bcl-2 and cyclooxygenase-2, leading to a protective ef-
fect through increased CREB phosphorylation pathway.
Taken together, these findings provide a novel therapeu-
tic strategy for cilostazol treatment of cognitive impair-
ment in poststroke patients.

Recent Clinical Trials in Stroke

A randomized, placebo-controlled, double-blind, com-
parative trial (the Cilostazol Stroke Prevention Study;
CSPS), has shown that cilostazol (100 mg, twice daily)
reduces the risk of secondary stroke by 41.7% in com-
parison with placebo, suggesting that the cilostazol can be
highly effective in reducing the risk of subsequent cere-
bral infarction (Gotoh et al. 2000). Most recently, Huang
(2007) reported that both cilostazol and aspirin prevented
ischemic stroke recurrence in patients with ischemic
disease, but severe cerebral hemorrhage was higher in
aspirin-treated as compared to cilostazol-patients. An-
other recent report showed that cilostazol is cost-effective
in prevention of the recurrence of cerebral infarction (In-
oue et al. 2006). Cilostazol also effectively arrested the
progression of asymptomatic infarction areas when as-
sessed by MRI in Japanese subjects with type II diabetes
mellitus without symptomatic coronary vascular events
(Shinoda-Tagawa et al. 2002). Interestingly, Shinohara
(2006) emphasized that administration of cilostazol to
patients with cerebral infarction in the chronic stage re-
duced the recurrence of infarction and the incidence of
pneumonia at least in Japanese patients.

Conclusions

Current treatment options for stroke and neurodegener-
ative diseases are still limited. In vitro studies and in vivo in
different experimental animal models, cilostazol exerted
a highly significant neuroprotection due to its pleiotropic
effects. The neuroprotective potential of cilostazol are as-
cribed to its anti-inflammatory and antiapoptotic effects
mediated by its antioxidant, maxi-K channel opening,
and PARP inhibitory activities (Fig. 3). Taken together,
these findings suggest that cilostazol is a promising candi-
date for pharmacological intervention in stroke and neu-
rodegenerative diseases.
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Addendum

The chemical names of drugs mentioned in the text by
code number only are:

BAY 11-7085 is (E)-3-(4-t-butylphenyl-sulfonyl)-2-
propenenitrile.

BMS-204352 or maxopost is (S)-3-(5-chloro-2-
methoxyphenyl)-3-fluoro-6-(trifluoromethyl)-1,3-
dehydro-2H- indole-2-one.

KT 5720 is [9R,10S,12S]-2,3,9,10,11,12-hexahydro-
10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolol
[1,2,3-fg; 3,2,1-kl] pyrrolo [3,4-1] [1,6] benzodiazocine-
10 carboxylic acid hexyl ester.

KT 5823 is (9S,10R,12R)-2,3,9,10,11,12-hexahydro-
10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-
diindol[1,2,3-fg:3’,2’,1’-ll]pyrrolo[3,4-i][1,6] benzoic
acid methyl ester.
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