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Abstract

The adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are hetero-octameric protein 

complexes comprising four pore-forming subunit Kir6.x subunits and four regulatory subunit 

sulfonylurea receptor SURx subunits. They are prominent in myocytes, pancreatic β cells and 

neurons, and link cellular metabolism with membrane excitability. Using genetically modified 

animals and genomic analysis in patients, recent studies have implicated certain KATP channel 

subtypes in physiological and pathological processes in a variety of cardiovascular diseases. In this 

review, we focus on the causal relationship between KATP channel activity and pathophysiology in 

the cardiovascular system, particularly from the perspective of genetic changes in human and 

animal models.
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Introduction

It has been over 30 years since Noma first discovered adenosine triphosphate-sensitive 

potassium channels in cardiac muscle in 19831. They were subsequently found in skeletal 

myocytes2, pancreatic β cells3, vascular smooth muscle4, vascular endothelium5 and the 

central nervous system6. Although they may be the most densely expressed potassium 

channels in the heart7, KATP channels are closed under normal condition and play little or no 

role in cell excitability. However, when exposed to a severe metabolic stress, such as anoxia, 
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metabolic inhibition, or ischemia, these channels can open and the consequent decrease in 

excitability and contractility is thought to be cardioprotective because of preservation of 

ATP8. In addition to preservation of ATP, KATP activation-dependent shortening of the action 

potential, as well as reduction of Ca2+ entry and inhibition of contractility, may in turn lead 

to arrhythmias and cardiac insufficiency9. If fully activated, KATP channel density in the 

heart can result in complete cessation of cardiac electrical activity and contractile failure7, 8. 

Therefore, the KATP channel may represent a ‘double-edged sword’ in regulating cardiac 

excitability. In vascular smooth muscle and endothelium, activation of KATP channels will 

lead to membrane hyperpolarization, resulting in decreased Ca2+ current and vasodilation10. 

Conversely, inhibition of KATP channels will cause membrane depolarization, increase in 

Ca2+ current and vasoconstriction10. Hence, KATP channels can also play a key role in 

regulating vessel tone and blood flow. Here, we give an overview of recent advances in 

understanding of the molecular structure and physiological function of KATP channel in 

heart and blood vessels, with specific focus on the relationship between genetic changes in 

KATP channels and cardiovascular function.

Molecular structure, distribution and regulation of KATP

KATP channels are hetero-octamers composed of four pore-forming inward rectifier Kir6.X 

(Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11 respectively) subunits, each coupled 

with a regulatory subunit sulfonylurea receptor SURX (SUR1 or SUR2, encoded by SUR1 

and SUR2 respectively, Figure 1A)11–13 . The SUR genes are large, each containing ~40 

exons, and there are two recognized major spliced variants of SUR2, SUR2A and SUR2B, 

which result from alternative splicing of the terminal exon in ABCC914, 15. SUR2A and B 

consequently differ in the last 42 amino acids of the C terminus, resulting in distinct 

physiological and pharmacological properties. The obligate octameric arrangement may 

result from co-regulation of expression of Kir6 and SUR subunits: ABCC8 and KCNJ11 are 

immediately adjacent to each other on human chromosome 11p15.113, whereas ABCC9 and 

KCNJ8 are immediately adjacent to one another on human chromosome 12p12.1(Figure 

1B)13, 14.

Kir6.X subunits are typical Kir channel subunits, consisting of two transmembrane M1 and 

M2 helices connected by a pore-forming loop with a glycine-phenylalanine-glycine 

signature motif for K+ selectivity, and cytoplasmic N- and C-termini16. SUR subunits are 

members of the ABC protein superfamily, and consist of two six-helix transmembrane 

domains (TMD1 and TMD2), and an additional unique five-helix TMD0 at the N-terminus 

of SUR subunit joined to TMD1 by a cytoplasmic linker (L0) that provides a physical link 

between SUR function and Kir6 subunit gating and trafficking17. As in all ABC proteins, 

each of TMD1 and TMD2 are linked at the C-terminal ends to cytoplasmic nucleotide 

binding domains (NBD1 and NBD2, respectively)18. The structure and the sequence of 

NBDs are highly conserved. Both contain a conserved Walker A (WA) motif and a Walker B 

(WB) motif. These motifs contain Mg2+-adenosine nucleotide binding sites. At least NBD2 

catalyzes ATP hydrolysis and is critical for Mg-nucleotide regulation of ABC protein 

functional activity (Figure 1C)19, 20.
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KATP channels are expressed in various tissues, but the constitution differs significantly 

between and within different tissues. The current consensus is that KATP channels consist 

primarily of Kir6.2 and SUR2A in both normal human atrial and ventricular myocyte cells, 

although all four subunits are detected21. Under different physiological or pathological 

conditions, the KATP channel subunit constitution may change or there may be plasticity of 

SUR subunits which can lead to different subunits being functional in different conditions21. 

In mice, it is clear that SUR1 and Kir6.2 are the primary subunits in atrial KATP while SUR2 

and Kir6.2 are the main subunits in the ventricle22, 23. KATP channels have also been 

identified throughout the cardiac pacemaker/conduction system, including the sino-atrial 

(SA) node24, atrio-ventricular (AV) node25 and Purkinje fibers26, and several studies have 

indicated Kir6.1, Kir6.2 and SUR2B are necessary for functional KATP in these 

tissues23, 25–28. Vascular smooth muscle KATP channels are primarily formed by Kir6.1 and 

SUR2B, whereas vascular endothelial KATP channel is suggested to be composed of Kir6.1, 

Kir6.2 and SUR2B29, 30.

In addition to the cell membrane, KATP channels have been reported to be present in 

mitochondria, and to be involved in regulation of oxidative phosphorylation, and protection 

from ischemia-reperfusion injury31–34. Recent studies have suggested that this proposed 

mitoKATP may contain Kir1.1 and/or SUR2A-5535–38, but direct evidence is lacking, and 

even the constitution of any mitoKATP remains unclear.

KATP channel regulation is complex, and involves metabolites, hormones and 

neurotransmitters as well as transcriptional mechanisms39. A hallmark feature of KATP 

channels is their sensitivity to metabolic changes in nucleotide levels. Micromolar ATP 

inhibits channels by direct interaction with Kir6 subunits, and since the cellular ATP 

concentration is relatively high (i.e. millimolar) in physiological conditions, ATP inhibition 

is usually sufficient to maintain channels in predominantly closed states (Figure 1D)40 . 

However, ATP inhibition is overridden by MgATP and MgADP interacting with SUR 

subunit NBFs7, and ATP sensitivity is reduced by membrane phosphoinositides, such as 

phosphatidylinositol-4,5-bisphosphate (PIP2), long-chain acyl-CoA esters (LC-CoAs), and 

metabolic derivatives of free fatty acids41. Both PIP2 and LC-CoAs act on Kir6.2 to 

antagonize ATP inhibition and increase channel open probability42. In addition, other 

metabolic factors including PH, nitric oxide (NO), eicosanoids, hydrogen sulfide (H2S) as 

well as hormones and neurotransmitters, can also affect KATP channel activity39, 43, 44.

KATP channels are uniquely endowed with sensitivity to a large number of pharmacological 

agents that interact with the SUR subunits. Multiple KATP channel openers (KCOs) (e.g., 

nicorandil, cromakalim, pinacidil and diazoxide) act on SURx subunits to activate the 

channel18. SUR1-containing channels can be strongly activated by diazoxide, but not by 

pinacidil or cromakalim23, 45, 46, whereas channels containing SUR2A respond potently to 

both pinacidil and cromakalim, but weakly to diazoxide46–48. Channels containing SUR2B 

are sensitive to diazoxide and cromakalim, as well as to pinacidil47–49. Because nucleotide 

binding and hydrolysis at NBDs are important for the binding and action of these KCOs, the 

different sensitivities of SUR1 and SUR2 subtypes to these KCOs may partially result from 

differences in nucleotide sensitivity45, 49–51. Pinacidil and cromakalim effectively act to 

decrease sensitivity to inhibitory ATP, leading to increased channel opening at a given level 
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of cytosolic ATP, whereas diazoxide needs the presence of intracellular ADP for channel 

activity49. All SUR isoforms can be inhibited by sulfonylureas such as tolbutamide and 

glibenclamide, which are commonly used as KATP channel inhibitors52. SUR1-containing 

channels are more sensitive to sulfonylureas than SUR2-containing channels53–55, and are 

widely used to treat diabetes, where they act to trigger insulin secretion via interactions with 

SUR1-dependent KATP channels in pancreatic β-cells18.

KATP channels and cardiovascular diseases

There is now a significant literature reporting association of KATP gene mutations and 

variants with cardiovascular pathologies (Table 1). As discussed below, the evidence in 

support of causal association is weak in many cases, but some clear causal links have now 

been established.

Kir6.2

Kir6.2 is the primary pore-forming subunit of KATP channels in both cardiac myocytes and 

pancreatic β-cells91. Over 50 human mutations in KCNJ11–encoded Kir6.2 have been 

reported, and gain- and loss-of-function of Kir6.2 are were well known to cause neonatal 

diabetes and congenital hyperinsulinism, respectively92. In addition, the common Kir6.2 

variant, E23K (encoded by c.67G>A, rs5219) in KCNJ11, has been well characterized as a 

type 2 diabetes-associated risk factor. It has also been reported to be overrepresented in 

human congestive heart failure60, and associated with adverse subclinical myocardial 

remodeling among subjects with hypertension in a cross-sectional community-based cohort 

study, as well as abnormal cardiopulmonary stress test results in heart failure patients, and 

also occurrence of ventricular arrhythmias (VAs) in dilated cardiomyopathy patients60, 61, 63. 

Other studies have also indicated an association of E23K, A190A (c.570C>T, rs5218) and 

I337V(c.1009G>A) variants in the KCNJ11 gene to hypertension susceptibility, especially in 

the Asian population56–59, 62. In one animal study, it was suggested that the E23K variant 

increases susceptibility to ventricular arrhythmia in response to ischemia in rats93. However, 

another study that aimed to evaluate the clinical impact of single-nucleotide polymorphisms 

in KCNJ11 found the SNPs - rs5215_GG, rs5218_CT, and rs5219_AA for KCNJ11 – did 

not affect susceptibility to ischemic heart disease (IHD) or coronary microvascular 

dysfunction94. More recently, the I337V and E23K variants were reported to be associated 

with left ventricular mass and left ventricular end-diastolic volume in heart failure 

patients64, but direct causation remains unconfirmed.

Animal models with transgenic expression of ATP-insensitive Kir6.2 subunits are strikingly 

insensitive to any potential overactivity95. Genetic ablation of the Kir6.2 subunit in mice 

(Kir6.2−/−) results in poor cardiac functional recovery after exercise96 or IR injury97, but 

does not alter cardiac function under basal aerobic conditions98. However, another study 

showed increased basal AMPK activity, fatty acid oxidation, and glycogen storage, as well 

as decreased glycolysis and reduced mitochondrial density in Kir6.2−/− hearts. This suggests 

that KATP channels may somehow regulate cardiac metabolism99. Further studies might 

consider whether genetic variations in KCNJ11 may help to provide biomarkers of relevance 

to various cardiac problems.
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Kir6.1

Kir6.1 is the main channel forming subunit of KATP channels in smooth muscle. Disruption 

of KCNJ8 in mouse has been reported to cause ST segment elevation followed by 

atrioventricular block and early sudden cardiac death (SCD) because of coronary spasm100. 

Other studies do not report sudden death, but both Kir6.1−/− and mice with specific deletion 

Kir6.1 in smooth muscle do show elevated blood pressure101, 102. Two KCNJ8 mutations, an 

in-frame deletion (p.E332del, c.del995–997 GAA) and a missense mutation (p.V346I, c. 

1036 G>A), both localized to the Kir6.1 C-terminus, were identified in sudden infant death 

syndrome (SIDS) patients, and demonstrated to be LOF mutations67.

Conversely, transgenic expression of gain-of-function Kir6.1 subunits in smooth muscle 

leads to hypotension102, consistent with a major role in BP control. Kir6.1 may also be 

expressed in the cardiac conduction system27. Transgenic mice expressing Kir6.1 subunits in 

cardiomyocytes revealed AV nodal conduction abnormalities and junctional rhythm103, and 

a recent study reported that mice with Kir6.1 specifically knocked out of conducting tissues 

display decreased heart rate and sinus arrest104. Several mutations in Kir6.1 subunits have 

been reported in human patients with rhythm disturbances. A missense variant in exon 3 (p. 

S422L, c.1265C>T) of the KCNJ8 gene was first reported in a patient with recurrent 

ventricular fibrillation secondary to early repolarization syndrome68. Subsequent studies 

indicated a higher KATP current in cells heterologously expressing Kir6.1/S422L+SUR2A 

channel in whole-cell patch-clamp studies, as well as reduced ATP sensitivity in inside-out 

patch clamp experiments69–71. However, causal association to the J-wave syndrome has been 

questioned by additional studies that (1) revealed the S422L variant to be a common 

occurrence in Ashkenazim105, (2) reported no effect on KATP channel activity or ATP-

sensitivity66, and (3) show lack of any effects on the ECG of mice transgenically expressing 

the S422L variant in cardiac myocytes106. Most significantly, two novel KCNJ8 mutations 

have now been identified in patients with Cantu syndrome (see SUR2, below). A Cantu 

syndrome patient with the V65M (c. 193 G>A) variant in KCNJ8 had striking vascular 

abnormalities, including a dilated aortic root, very dilated and tortuous cerebral arteries and 

veins65, but no evidence of J-wave syndrome. Another Cantu patient with a missense 

mutation encoding Kir6.1[p.C176S, c.526 T>A], exhibited all clinical features of Cantu 

syndrome including cardiomegaly. Both of these two mutations were confirmed as gain of 

function mutations66, 107. ‘Cantu mice’, in which the Kir6.1[V65M] mutation was 

introduced to the endogenous gene locus using CRISPR/Cas9, also displayed the same 

phenotypes as Cantu patients, including dilated vessels, low blood pressure and cardiac 

hypertrophy108. These results, together with the findings of SUR2 association with Cantu 

syndrome (below) definitively tie this channel to a defined cardiovascular pathology.

SUR1

SUR1 is the predominant regulatory subunit of KATP channels in pancreatic β-cells as well 

as in mouse atria. Gain- and loss-of-function mutations in ABCC8 cause neonatal diabetes 

and congenital hyperinsulinism, respectively92. Recently several clinical studies have 

reported ABCC8 mutations to also be associated with cardiovascular diseases, including 

coronary heart disease, pulmonary arterial hypertension and atrial fibrillation72–74. The 
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SUR1 (p. A1369S, c.4105G>T) missense variant, an inherited haplotype with the 

Kir6.2[E23K] variant (above), which is strongly associated with risk of type 2 diabetes, has 

been reported to be favorable for body fat distribution and reduced risk of coronary heart 

disease, based on analysis of data from the UK Biobank74. More recently, Bohnen et al72 

reported twelve SUR1 coding variants (p.R958H, p.N72D, p.E186D, p.A240T, p.E791Q, 

c.T2694+2G, p.G111R, p.L135V, p.D813N, p.D1472N, p.T229I, p.R1314H) in a cohort 

study of pulmonary arterial hypertension. Patch-clamp analysis of recombinant channels 

revealed these to be consistently loss of function mutations, which could be 

pharmacologically rescued by the SUR1 activator diazoxide. Some of these variants have 

previously also been reported in association with hyperinsulinism, a disease that is 

definitively causally associated with loss of SUR1 or Kir6.2-dependent channel activity18. 

The N72D, L135V, D813N, R1314H variants were also associated with congenital heart 

disease, large atrial septal defect, first-degree heart block, atrial flutter and ventricular septal 

defect, respectively72. Coincidentally, a separate study reported the same SUR1 R1314H 

mutation in a cohort study of atrial fibrillation at almost the same time73, suggesting that 

SUR1 loss of function may also be related to atrial fibrillation. Given that KATP channels in 

both human heart and blood vessels are predominantly composed of SUR2, but not SUR1, 

the question then arises as to how these SUR1 variants are associated with cardiovascular 

diseases? Potentially, the precise subunit composition in any given cell type may, as 

suggested above, be more subtly variable, or more labile, than is currently perceived, making 

it critical to focus on precise subunit distributions. No basal cardiovascular problems have 

been reported to date in animal models with SUR1 deletion or mutation, although SUR1 

knockout (SUR1−/−) mice exhibited reduced infarct size and preservation of left ventricular 

function in myocardial ischemia/reperfusion injury109. These results are not trivially 

consistent with the findings in Kir6.2 knockout (Kir6.2−/−) mice, which showed enhanced 

ischemic damage function in myocardial ischemia/reperfusion injury97, 110, which may 

imply that these cardiovascular outcomes may be dependent on SUR1 function in other 

tissues, emphasizing the need for investigation of cell- and tissue-specific elimination or 

expression of SUR1 subunits before and after ischemic events.

On the other hand, overexpression of SUR1 subunits in mouse heart does not result in overt 

cardiac phenotypes other than PR prolongation, unless Kir6.2 subunits are also 

overexpressed111. It should be noted that several SUR1 splice variants are expressed in the 

heart, but their contributions to cardiovascular function have not been explored112–114. A 

recent study described the presence of SUR1 in both atrial and ventricle, but although 

SUR1-containing KATP channels constitutively reach the cell surface in atrial myocytes, they 

are normally stalled in the Golgi of ventricular myocytes, until deployed to the cell surface 

under sustained β-adrenergic stimulation115. Such findings lend further support for the need 

to carefully define KATP channel subunit composition in specific cardiovascular cell types 

under different physiological and pathological conditions.

SUR2

SUR2 is the major regulatory sulfonylurea receptor of KATP channel in both hearts and 

vessels. There have been many isolated reports of mutations associated with human 

cardiovascular pathology. A heterozygous frameshift SUR2A mutation L1524fs(c.4570–
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4572 delta InsAAAT) and heterozygous missense SUR2A mutation A1513T(c.4537G>A) 

were identified in two patients in a cohort of 323 individuals with idiopathic dilated 

cardiomyopathy. Both individuals had severely dilated hearts with compromised contractile 

function and rhythm disturbances. Both mutations are located in exon 38 of ABCC9, which 

encodes the C-terminal domain of SUR2A and both were reported to reduce ATP hydrolytic 

activity, thus leading to loss-of-KATP channel function, and enhanced susceptibility to 

dilated cardiomyopathy89. Another ABCC9 missense mutation (c.4640C>T), also resulting 

in a coding mutation (T1547I) in the C-terminal domain of SUR2A, was shown to result in 

attenuated channel activation by MgADP and associated with predisposition to adrenergic 

AF originating from the vein of Marshall90. In addition, a missense mutation (p.Met1198Ile, 

c.3594G>A) in ABCC9 was detected in one Left Ventricular Non-Compaction 

Cardiomyopathy (LVNC) patient85. In a cohort study of 144 victims of sudden unexplained 

nocturnal death syndrome (SUNDS), a SUNDS victim with AF hosted a rare ABCC9 
variant(p.Arg1197Cys, c.3589C>T)84. The functional characteristics of these two mutations 

have not been determined.

SUR2−/− mice exhibited similar phenotypes to Kir6.1 −/− mice, including repeated episodes 

of coronary artery vasospasm, elevated resting blood pressures and sudden death116. It was 

initially assumed that the presence of vasospasm and hypertension in SUR2−/− mice arose 

from the critical role of KATP channels in VSM cell function. However, subsequent studies 

provided conflicting results. In one117, SUR2 overexpression specifically in vascular smooth 

muscle cells, failed to rescue the SUR2 null phenotype, suggesting that spontaneous 

coronary vasospasm and sudden death in SUR2 null mice arose from a coronary artery 

vascular smooth muscle– extrinsic process. In another, overexpression of SUR2A generated 

a cardiac phenotype resistant to ischemia118. However, it was found that SUR2 null mice 

were also resistant to acute cardiovascular stress and exhibited reduced infarct size and 

improved cardiac function119. Clearly, further studies are required to fully explain SUR2 

loss-of-function phenotypes.

The above mutations were all putative loss-of-function mutations, but a potential gain-of-

function ABCC9 missense mutation, Val734Ile(c.2200G>A) in exon 17 which encodes a 13 

amino acids peptide located in the first nucleotide binding fold (NBD1) of SUR2 was 

detected in one precocious myocardial infarction (MI) patient, with which the individuals 

have a 6.40-fold risk of suffering MI before the age of 60 years as compared to healthy 

controls77. This mutation was also identified in a further eleven patients diagnosed with 

acute myocardial infarction (AMI)78. In this study, the sensitivity to MgATP was assessed in 

cell lines expressing Kir6.2 and either SUR2x or SUR2x-V734I. It was found that mutant 

Kir6.2/SUR2B channels, but not Kir6.2/SUR2A or Kir6.1/SUR2B channels, had reduced 

sensitivity to MgATP inhibition, suggestive of KATP overactivity in the endothelial cell 

subunit combination. In addition, the V734I variant was reported as a gain-of-function 

mutation in four early repolarization syndrome (ERS) patients with bradycardia79 and in a 

patient with a permanent pacemaker who presented with isolated cardiac conduction 

disease80, perhaps consistent with KATP channels playing a unique role in pacemaker and 

conduction system cells.
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In many of the above cases, phenotypes are subtle, or associations of specific phenotypes 

with the ABCC9 gene have not been replicated. However, this is not the case for Cantu 

syndrome, a multi-organ disease characterized by congenital hypertrichosis, distinctive 

facial features, osteochondrodysplasia and cardiac defects including cardiomegaly and 

dilated vessels. Cantu syndrome, was first reported in 1982 by Cantu120, and since the first 

genetic association of Cantu syndrome with ABCC9 in 201275, 76, more than 15 mutation 

sites in the gene have been reported from more than 100 patients75, 76, 81–83, 86–88, 121, 122. 

All identified mutations lead to GOF in KATP channel activity in recombinant cell 

experiments66, 107, 123. The mechanisms underlying these GOF mutations include decreased 

ATP inhibition and enhanced MgADP activation107, 123. A clear picture has emerged for 

mice carrying Cantu Syndrome SUR2 gain-of-function mutations introduced to the 

endogenous locus by CRISPR/Cas9 mutagenesis108. As with ‘V69M Cantu mice’ (above), 

introduction of the A478V mutation into the equivalent mouse SUR2 locus using CRISPR/

Cas9, SUR2[A478V], results SUR2[A478V] ‘Cantu mice’ that display the same phenotypes 

as Cantu patients, including dilated vessels, low blood pressure and cardiac 

hypertrophy108108, definitively tying Kir6.1/SUR2-dependent KATP channels to a defined 

cardiovascular pathology. These ‘Cantu mice’ now make available appropriate models for 

mechanism study and treatment exploration in Cantu syndrome.

Summary

Over the last 30 years, much effort has been expended to investigate the role of KATP 

channels in cardiovascular tissues. Multiple lines of evidence, from detection of KATP 

channel variants in patients, and from animal models, indicate that the KATP channel is 

causally involved in cardiovascular pathologies, although a note of caution should be 

sounded regarding the relevance of all reported associations, and to caution against over-

interpretation of human variants. The NIH Clinical Genome Resource Consortium (https://

www.clinicalgenome.org/curation-activities/gene-disease-validity/educational-and-training-

materials/standard-operating-procedures/) has developed specific guidelines for variant 

interpretation which currently conservatively only considers ABCC8 to be associated with 

hyperinsulinism, and ABCC9 to be associated with Cantu Syndrome. However, the evidence 

that ABCC8 is also associated with neonatal diabetes is very strong, and it is to be expected 

that additional associations will gradually be validated. In addition, the possibility that 

interaction of certain variants with other (seemingly benign) variants in other genes may 

contribute to disease progression, should be borne in mind. Even for variants within KATP 

channel genes, additional complexities may arise from the potentially complex subunit 

make-up of what should be considered a family of ion channels124, leading to distinct KATP 

channel properties and regulatory features in different organs and tissues, as well as 

potentially in subcellular organelles.

Although there is a rich available pharmacology of KATP channels, drug therapy as well as 

gene therapy for KATP channel mutant diseases remains unexplored. In future, animal 

models carrying different mutations identified in patients, as well as cell- and tissue-specific 

expression of KATP channel subunits, and isogenic human induced pluripotent stem cells 

should provide powerful tools with which to recapitulate and seek explanations for 
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phenotypes observed in patients, and thereby advance our understanding of pathogenesis as 

well as pharmacotherapy for such diseases.
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Figure 1: 
KATP channel structure and KATP channel mutations associated with cardiovascular diseases. 

(A) KATP channels are octameric complexes of four Kir6 subunits and four SUR subunits. 

(B) Human SUR and Kir6 gene structures. ABCC8 and KCNJ11 are next to each other and 

located on human chromosome 11p15.1, ABCC9 and KCNJ8 are also adjacent to each 

other, located on human chromosome 12p12.1. (C) KATP channel subunit mutations 

associated with cardiovascular pathologies. P - p-helix, M1, M2 - transmembrane helices , 

TMD - transmembrane domain, L0 - intracellular linker domain, NBD1 - first nucleotide 

binding domain, NBD2 - second nucleotide binding domain.
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Table 1

: Cardiovascular pathologies associated with KATP channel variants

Gene Nucleotide change Protein change Mutation feature Clinical Condition References

KCNJ11 c.67 G>A E23K GOF Heart failure, hypertension, ventricular 
arrhythmias

56–63

c.570 C>T A190A GOF Hypertension 56, 58, 59

c.1009 G>A I337V GOF Heart failure, hypertension 56, 64

KCNJ8 c.193 G>A V65M GOF Cantu syndrome 65

c.526 T>A C176S GOF Cantu syndrome 66

c.del995–997 GAA E332del LOF sudden infant death syndrome 67

c.1036 G>A V346I LOF sudden infant death syndrome 67

c.1265C>T S422L GOF J wave syndrome, atrial fibrillation 68–71

ABCC8 c.A214G N72D LOF Pulmonary arterial hypertension, Atrial 
septal defect

72

c.G331A G111R LOF Pulmonary arterial hypertension 72

c.C403G L135V LOF Pulmonary arterial hypertension, Heart 
block

72

c.G558T E186D LOF Pulmonary arterial hypertension 72

c.C686T T229I LOF Pulmonary arterial hypertension 72

c.G718A A240T LOF Pulmonary arterial hypertension 72

c.G2371C E791Q LOF Pulmonary arterial hypertension 72

c.G2437A E813N LOF Pulmonary arterial hypertension, Atrial 
fibrillation

72

c.G2873A R958H LOF Pulmonary arterial hypertension 72

c.G3941A R1314H LOF Pulmonary arterial hypertension, 
Ventricular septal defect, Atrial fibrillation

72, 73

c.4105G>T A1369S LOF Reduced risk of coronary heart disease 74

c.G4414A D1472N LOF Pulmonary arterial hypertension 72

ABCC9 c.178C>T H60Y GOF Cantu syndrome 75

c.621C>A D207E GOF Cantu syndrome 75

c.1138G>T G380C GOF Cantu syndrome 75

c.1295C>T P432L GOF Cantu syndrome 75

c.1433C>T A478V GOF Cantu syndrome 76

c.2200G>A V734I GOF myocardial infarction, Bradycardia, 
ICCD early repolarization syndrome,

77–80

c.3058T>C S1020P GOF Cantu syndrome 75

c.3116T>C F1039S GOF Cantu syndrome 75

c.3128G>A C1043Y GOF Cantu syndrome 76

C1050F GOF Cantu syndrome 81

c.3161C>A S1054Y GOF Cantu syndrome 75

c.3347G>A R1116H GOF Cantu syndrome 75
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Gene Nucleotide change Protein change Mutation feature Clinical Condition References

c.3346C>T R1116C GOF Cantu syndrome 75

c.3460C>T R1154W GOF Cantu syndrome 75, 76, 82, 83

c.3461G>A R1154Q GOF Cantu syndrome 75, 76, 83

c.3589C>T R1197C Uncertain SUNDS 84

c.3594G>A M1198I Uncertain LVNC 85

c.3605C>T T1202M GOF Cantu syndrome 86

c.4039 C > T R1347C GOF Cantu syndrome 87

c.4205C>G S1402C GOF early repolarization syndrome 79

c.4385C>G A1462G GOF Cantu syndrome 88

c.4537G>A A1513T LOF Dilated cardiomyopathy 89

4570–4572 delta InsAAAT L1524fs LOF Dilated cardiomyopathy 89

c.4640C>T T1547I LOF Atrial fibrillation 90

Bold font: Causality implied/confirmed by functional analyses

Normal font: Association unchallenged, but lacking functional analyses

Italic font: Association challenged by additional studies
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