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Abstract

Schizophrenia and bipolar disorder are complex mental disorders with risks contributed by 

multiple genes. Dysregulation of gene expression has been implicated, but little is known about 

such regulation systems in the human brain. We analyzed three transcriptome datasets using 394 

brain tissue samples from patients with schizophrenia or bipolar disorder and healthy control 

individuals without known history of psychiatric disorders. We built genome wide co-expression 

networks that included microRNAs (miRNAs). We identified a co-expression network module that 

was differentially expressed between patients and control individuals. This module contained 

genes that were principally involved in glial and neural cell genesis and glial cell differentiation, 

and included schizophrenia risk genes carrying rare variants. This module included five miRNAs 

and 545 mRNAs, with six transcription factors serving as hub genes in this module. We found that 

the most connected transcription factor POU3F2, a gene also identified on a GWAS for bipolar 

disorder, could regulate hsa-miR-320e and other putative target mRNAs. These regulatory 

relationships were replicated by PsychENCODE/BrainGVEX data and validated by knockdown 

and overexpression experiments in the SH-SY5Y and neural progenitor cell lines in vitro. We 

identified a psychosis-associated brain gene expression module that was enriched for rare coding 

variants in genes associated with schizophrenia and contained the putative bipolar disorder risk 

gene POU3F2 as a key regulator of gene expression in this module.

Abstract

Overline: Neuropsychiatric Disease

Single Sentence Summary: POU3F2 regulates expression of genes in brains of schizophrenia and 

bipolar disorder.

Accessible Summary: To reveal the dysregulated expression of genes and their regulators in 

brains of schizophrenia and bipolar disorder, we analyzed postmortem brain transcriptome data 

and discovered that POU3F2 was one of the core regulators of the gene coexpression network 

underlying schizophrenia and bipolar disorder risk, and further validated the regulatory 

relationships, and investigated related functions in cellular models.
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Introduction

Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric diseases that each 

affects millions of people worldwide (1). Despite a century of evidence establishing their 

genetic basis, only recently have specific genetic risk factors been identified (2). However, 

there is not a simple Mendelian model between the risk alleles and these psychiatric 

disorders. Instead, these psychiatric disorders are very complex and are polygenic in nature 

involving hundreds of genes with small effect sizes (3, 4). With the polygenic nature of these 

disorders, many studies have focused on converging individual genes into functional 

networks in order to reveal the underlying disease etiology. For example, Fromer et al. have 

reported a brain co-expression network captured SCZ association and impact of polygenic 

risk for SCZ (5). Gandal et al. identified several disease-shared and disorder-specific co-

expression modules in parallel with polygenic overlap among five major psychiatric 

disorders (6). However, it is still unclear how disease-associated module genes interact and 

contribute to the pathophysiology of SCZ and BD.

The most studied regulators of gene expression are transcription factors and microRNAs 

(miRNAs). Increasing evidence implicates connections between transcription factors and 

miRNAs with SCZ and BD. Transcription factors and miRNAs are known to impact brain 

development, are differentially expressed in postmortem brain tissue from patients with SCZ 

and BD, and their targets genes are enriched in SCZ and BD risk loci (7–9).

Based on the assumption that co-expression implies coregulation (10), and hub genes in co-

expression modules are likely to be the regulators of gene co-expression, we integrated 

genotype, mRNA, miRNA data from brain tissue samples from patients with schizophrenia 

or bipolar disease to search for transcription factors and miRNAs at the hub of disease-

associated modules, and to experimentally validate their putative regulatory relationships. 

We identified one hub gene, POU class 3 homeobox 2 (POU3F2), as the master regulator in 

the disease-associated module for schizophrenia and bipolar disease.

Results

Because SCZ and BD share genetic components and similar gene expression patterns (6, 

11), and with the goal to explore the biology underlying potential shared disease 

mechanisms between SCZ and BD, we used postmortem brain transcriptome data from 95 

patients with schizophrenia, 74 patients with bipolar disease, and 225 control individuals 

from multiple datasets; we combined SCZ and BD as major psychiatric disorders in all case-

control studies. Both mRNA and miRNA data from microarray and RNA sequencing (RNA-

seq) were incorporated. Detailed demographic information and quality control steps for the 

postmortem brain tissue data are provided in the Materials and Methods and tables S1, S2.

Disease-associated miRNA and mRNA co-expression network module

To detect disease-associated co-expression modules, we first analyzed the mRNA and 

miRNA expression in parietal cortex tissue samples from the Stanley Medical Research 

Institute (SMRI) using weighted gene co-expression network analysis (WGCNA) (12). To 

capture expression of a group of genes exhibiting case-control differences, we combined 
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case-control data to construct networks and identified 46 co-expression modules. We found 

one disease-associated module (daM) after removing the effects of sex, age, brain pH, RNA 

integrity number (RIN), and post-mortem interval (PMI) (control vs. SCZ+BD, P = 4.3e-5, 

FDR q = 7.0e-3). Five miRNAs and 545 genes were included in the daM. Functional 

enrichment test by DAVID v6.8 (13) analysis showed that these genes were enriched for 

gliogenesis (P = 1.5e-11, FDR q = 2.8e-8), glial cell differentiation (P = 1.5e-8, FDR q = 

2.8e-5) and neurogenesis (P = 3.8e-8, FDR q = 7.2e-5).

To investigate whether gene networks were conserved among patients with SCZ or BD and 

controls, we also constructed gene co-expression networks in other ways. We separated 

SCZ, BD and control samples to run WGCNA analysis independently, and compared their 

module differences. We used Zsummary to assess whether the connectivity level and pattern 

of a module in one dataset were preserved in another, where Zsummary > 2 implies 

moderate preservation and Zsummary > 10 indicates high preservation (14). We found that 

all modules detected in control samples were well preserved in SCZ or BD patients, 

indicating no significant module differences among those groups (Zsummary > 2, see 

Materials and Methods). We also applied WGCNA analysis on SCZ+control and BP+control 

brain tissue samples to determine if any disease specific modules existed. We detected one 

module showing significant association with SCZ in SCZ+control samples, but this did not 

survive multiple testing corrections (P < 0.05, FDR q value > 0.05). Genes in this module 

significantly overlapped with ones in the daM of the combined dataset (P < 0.01). We did 

not detect any disease-associated module in BP+control samples.

Module preservation in independent datasets

To test preservation of the daM, two independent datasets were used as replicates: one group 

comprised control samples from Andrew Singleton’s group, which also included miRNA 

and mRNA microarray expression data from 138 frontal cortex tissue samples (FCTX; 

GSE15745) (15); the other group comprised RNA-seq data for prefrontal cortex tissue 

samples from 63 controls, 70 SCZ, and 48 BD patients from the PsychENCODE/

BrainGVEX project (16) (Fig. 1A). The daM in the SMRI parietal cortex tissue data had 

Zsummary = 36.8 in frontal cortex data from GSE15745 (Fig. 1B) and Zsummary = 10.9 in 

prefrontal cortex data from BrainGVEX (Fig. 1C), indicating well-preserved membership 

and connectivity of the daM. It is worth noting that the corresponding module in 

BrainGVEX also exhibited significant disease association in the same direction (P < 0.01).

Enrichment of genetic variants associated with SCZ or BD

We tested whether genes in the daM were related to genetic association with SCZ or BD. 

For the genetic variants, we focused on common or rare single nucleotide variants and copy 

number variations (CNVs). For common variants, we applied MAGMA (17) and INRICH 

(18) to test the enrichment of daM genes with signals from SCZ or BD GWAS but did not 

detect any significant enrichment (Fig. 2A). For rare variants, we examined the rare variants 

burden of module genes associated with disease. Genes in the daM were significantly 

enriched for genes implicated in rare and de novo variants from three selected independent 

sources (19–21) (enriched P < 0.05) (Fig. 2A, B). The enrichment was more significant 

when we combined the three gene sets (overlapped gene number = 106, enriched P = 
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4.31e-7, Fig. 2A and table S3). As a negative control, we used type 2 diabetes associated 

genes from GWAS to test the enrichment with genes containing rare variants (22), and found 

no significant overlap with any of the three sources, nor the combined set. Other brain co-

expression modules from our data were also used as controls to test the enrichment. We 

observed another nine out of 46 modules significantly enriched for genes with rare coding 

variants, and the daM was the second significant module after multiple testing correction 

(adjusted P < 0.0001). For CNVs, we tested the enrichment of genes implicated in CNV 

regions but did not observe any significant enrichment.

Potential key regulators and their roles in the daM

In the daM, we focused on identifying transcription factors and miRNAs as key regulators 

and explored their functional roles. Five miRNAs were in the module: hsa-miR-585, and 

four hsa-miR-320 family members including hsa-miR-320b, hsa-miR-320c, hsa-miR-320d, 

and hsa-miR-320e. Six transcription factors were also included in this module: POU3F2, 

endothelial PAS domain protein 1 (EPAS1), paired box 6 (PAX6), zinc finger protein 423 

(ZNF423), SRY-box 5 (SOX5), and SRY-box 9 (SOX9).

We first explored different aspects of regulatory roles for miRNAs in the daM: module 

membership, pairwise weighted correlation with mRNA, and the enrichment of target genes 

with predicted binding. By calculating the module membership, we found these five 

miRNAs had significant correlations with the module eigengene (P < 0.001; Table 1). By 

extracting pairwise weighted correlation coefficient (rw) between the miRNA and mRNA, 

we detected strong correlations between miRNAs and mRNAs (rw > 0.05, original 

correlation r > 0.607). Numbers of correlated mRNAs for each miRNA are provided in Table 

1. We observed that expression of most of the mRNAs was inversely correlated with 

expression of miRNAs (476 out of 545, 87.3%), suggesting that miRNAs may play a role in 

regulating the transcriptome through direct downregulation of their mRNA targets. Using 

mirWalk2.0, we examined the predicted binding targets of each miRNA and calculated the 

overlapped genes in the daM (23). We found that mRNA genes predicted to be targets of the 

five miRNAs were significantly enriched in this module (hypergeometric probability test P < 

0.05, Table 1). This suggested that the predicted regulation relationships from mirWalk2.0 

were consistent with the expression correlation results from WGCNA.

We next explored the regulatory roles of transcription factors in the daM. 101 putative 

targets of the six transcription factors were included using transcription factor binding 

information obtained from Fuxman et al. and Kheradpour et al. (24, 25). Among the six 

transcription factors detected in the module, POU3F2 had the most regulated putative targets 

(N = 26) in this module, including transcription factors PAX6 and SOX9. The other 

transcription factors EPAS1, PAX6, ZNF423, SOX5, and SOX9, have 9, 21, 24, 10, and 11 

putative targets, respectively. We also provided those transcription factor pairwise 

correlation and disease association P values in replicated BrainGVEX data (tables S4, S5).

We visualized the relationships between transcription factors and their miRNA targets in this 

module with the six transcription factors and five miRNAs as hub genes (Fig. 3). We found 

the transcription factor-miRNA target binding relationship was consistent with the 

relationship extracted from module correlation testing. Hsa-miR-320e was the most 
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connected node in this module according to the correlation data (68 nodes with rw > 0.05, 

Table 1).

Causal relationships among key regulators in the daM

We tested whether transcription factors were upstream or downstream regulators of miRNAs 

or were regulated by other transcription factors through integration of genetic markers. 

Causal inference of correlated nodes (miRNAs, transcription factors, and their target protein-

coding genes in this study) were inferred by the network edge orienting (NEO) method (26). 

Because we were interested in the causal relationship between five miRNAs and six 

transcription factors, only miRNA quantitative trait locus (miQTL) signals associated with 

the five miRNAs and expression QTL (eQTL) signals associated with the six transcription 

factors were included in this analysis. Among the five miRNAs, only hsa-miR-320e had 

significant miQTL signals (P < 0.05, FDR q < 0.05), so this miRNA and six transcription 

factors were selected for regulation direction tests.

We used modified NEO (see Materials and Methods) to build a local structure equation 

model and to obtain edge-oriented scores. The orthogonal causal anchors (LEO.NB.OCA) 

(A → B) > 0.3 and candidate pleiotropic anchor (LEO.NB.CPA) (A → B) > 0.8 indicated 

the regulation direction was A to B. We observed that LEO.NB.OCA (POU3F2 → hsa-
miR-320e) = 0.526, LEO.NB.CPA (POU3F2 → hsa-miR-320e) = 1.55, which suggested 

that POU3F2 may be an upstream regulator that affected hsa-miR-320e’s expression (fig. 

S1; table S6). Meanwhile, NEO results indicated that POU3F2 was the upstream regulator of 

other transcription factors (PAX6, ZNF423 and SOX9) (fig. S1; table S6). These results 

suggested that POU3F2 was a key regulator in the daM.

Experimental validation of the putative causal regulatory relationship

With the hub positions of POU3F2 and hsa-miR-320e in the regulation network, we tried to 

confirm their predicted relationships through in vitro experiments. We used RNA 

interference (RNAi) and a gene overexpression assay to induce expression alterations of 

POU3F2 and hsa-miR-320e in SH-SY5Y neuroblastoma cells and examined the expression 

changes of their predicted targets.

The expression of POU3F2 decreased by 41% after RNAi in SH-SY5Y cells (P < 0.001). As 

a result, hsa-miR-320e expression increased by 170% (P < 0.001); expression of two 

negative controls (ECM7 and PSMB4) that were not predicted targets of POU3F2 did not 

change (Fig. 4A). In overexpression experiments, POU3F2’s expression increased by nearly 

ten fold (P < 0.001). As a result, hsa-miR-320e’s expression significantly decreased by 33% 

(P < 0.01), and the expression of two negative controls was not significantly changed (Fig. 

4B).

In the case of knocking down hsa-miR-320e, hsa-miR-320e’s expression decreased by 33% 

(P < 0.001) but had no effect on expression of POU3F2 (Fig. 4C). Overexpression of hsa-
miR-320e (increased by 120%, P < 0.001) did not change expression of POU3F2 (Fig. 4D). 

Two negative controls (CHMP2A and VPS29), which were not potential targets of hsa-
miR-320e, were not significantly changed in both knockdown and overexpression 
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experiments (Fig. 4C, D). These in vitro results confirmed POU3F2 was the upstream 

regulator of hsa-miR-320e experimentally.

POU3F2 regulates proliferation and differentiation of neural progenitor cells

Accumulating evidence suggests that POU3F2 is primarily expressed in the central nervous 

system and plays an important role in brain development and cell differentiation (27, 28). To 

further characterize its functional roles, we decided to knockdown POU3F2 in human neural 

progenitor cells (NPCs). NPCs were transfected with small hairpin RNAs (shRNAs) against 

POU3F2, and their proliferation and differentiation were evaluated using an 

immunofluorescence assay. After knocking down POU3F2 (expression decreased by 51%, P 

< 0.001), we found that the proliferation ratio of EdU+ (5-ethynyl-2’-deoxyuridine, a marker 

for proliferating cells) to DAPI+ (4′,6-diamidino-2-phenylindole, a marker of live cells) was 

significantly increased compared to control groups (P < 0.001; Fig. 5A, B). We next 

analyzed the differentiation of NPCs to neurons and found the proportions of Tuj1+ (a 

marker of immature neurons) and MAP2+ (a marker of mature neurons) were significantly 

decreased compared to control groups (P < 0.001; Fig. 5C, D). These results indicated that 

POU3F2 knockdown could promote NPCs’ proliferation ability and inhibit NPCs’ 

differentiation to neurons.

To investigate how POU3F2 affected cell proliferation and differentiation capabilities, we 

examined expression changes of six putative targets of POU3F2 in the daM in NPCs after 

POU3F2 knockdown or overexpression. These putative targets included SOX9, PAX6, 

ZNF423, NOTCH2, CLU, and TRIM8. The three transcription factors (SOX9, PAX6 and 

ZNF423) and the most connected gene in the daM (NOTCH2) have been reported to 

regulate brain development and neural differentiation in many studies (29–32). NOTCH2 
was also reported to be associated with SCZ (33). TRIM8 and CLU were also hub genes in 

the daM. These two genes are located in the 108 significant SCZ GWAS loci (3) and are 

involved in tumor cell proliferation and differentiation (34, 35). Expression of SOX9, 

ZNF423, NOTCH2, CLU and TRIM8 significantly decreased by 10%, 7.9%, 39%, 17% and 

15% after POU3F2 knockdown, and significantly increased by 57%, 8.0%, 39%, 23% and 

40% after POU3F2 overexpression (P < 0.05; Fig. 5E, F). Expression of PAX6 was not 

significantly increased after POU3F2 overexpression, suggesting it may not be regulated by 

POU3F2 in our NPC model. Expression of negative controls (VPS29 and VCP) was not 

significantly changed (Fig. 5E, F).

Discussion

Prior work has documented abnormalities in coordinated gene expression networks in 

postmortem brain tissue from patients with SCZ or BD. However, these studies have 

involved either a single-dimension correlated network that cannot resolve the driver node 

within the module or have not done a regulatory relationship analysis. Most findings have 

been presented as correlations instead of causal relationships. In this study, we integrated 

multiple dimensional data sets and revealed a role for POU3F2 as a regulator of the network. 

POU3F2 is clearly only one regulator and there are many pathways that may potentially be 
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involved in the etiology of SCZ or BD. Our study provides a framework to capture such 

pathways and to tease out their regulatory relationships.

POU3F2 has been reported to be associated with SCZ using brain activation level from 

functional magnetic resonance imaging as a quantitative phenotype (36). POU3F2 has been 

shown to lie close to the BD risk loci in the most recent Psychiatric Genomics Consortium 

BD GWAS data (37). Expression changes in POU3F2 have been observed in neurons 

derived from SCZ patient-specific induced pluripotent stem cells (38). POU3F2 was 

discovered based on the sequence similarity of the POU domain and is also known as 

Brain-2 (Brn-2) since it is expressed in the central nervous system (39). The function of 

POU3F2 was initially studied in melanocytic cells. In our study, we observed that POU3F2 
knockdown could promote NPC proliferation and inhibit neuronal differentiation (Fig. 

5A-5D). The aberrant expression of POU3F2 could lead to alterations in cell number and 

may be one possible explanation for anatomical changes in the brain tissue of patients with 

BD (40).

The genes in daM significantly overlapped with ones from the PsychENCODE Capstone 

One study, which detected one module associated with disease and was functionally 

enriched for genes involved in glia differentiation (geneM3/isoM1, Overlap P < 0.01). Genes 

in the daM also overlapped with our previous findings using datasets from multiple brain 

banks (33), and with results from the Torkamani et al. study (41) (overlapping P < 0.01).

In our study, we observed that the daM harbored risk genes carrying rare variants but not the 

common variants identified by GWAS studies. However, the genes in daM could still be 

related to common risk variants. For example, rs11191359, rs4146429, rs4146428 are eQTL 

signals of TRIM8, located in the promoter region of TRIM8. They are located in 

schizophrenia-associated region and have linkage disequilibrium with SCZ GWAS SNP 

rs7907645 (GWAS association P = 1.27e-11) (3). TRIM8 expression is regulated by the 

transcription factors POU3F2 and PAX6 (24). Variants in the TRIM8 promoter region may 

disrupt the binding efficiency of POU3F2 and PAX6 and reduce expression of TRIM8. 

Integrating genetic risk variants with regulatory networks may provide new insights about 

the transcriptional regulatory architecture that could underlie certain psychiatric disorders.

Our study does have several limitations. First, although hundreds of brain samples were 

used, the sample size was still relatively small. Possibly due to the small sample size, 

analyses of the co-expression modules in the uncombined SCZ and BD samples did not 

yield robust findings. Second, limited data were generated containing both miRNA and 

mRNA expression for building networks involving miRNAs. This could lead to missing 

some important miRNA regulatory relationships. Third, gene expression changes may be 

affected by altered cellular population in patients (42). In our study, we estimated the 

proportions of each cell type using a deconvolution method and found no significant 

difference (fig. S2). Larger sample sizes and new methods may be required to better estimate 

cell numbers. Fourth, we only validated a few regulatory pathways in the daM. Large-scale 

validation should be completed in the future. Lastly, we observed the daM genes involved in 

gliogenesis, glial cell differentiation and neurogenesis, but we only validated the regulatory 
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loop in neuroblastoma and neural progenitor cell lines. Further investigation is needed to 

clarify whether these regulatory networks also occur in non-neural cells.

By integrating genotype, miRNA, and mRNA expression data, and transcription factor and 

miRNA binding information, we found cascade regulation relationships from SNP variants 

to transcription factors to miRNAs or other target genes. Our results suggest that complex 

diseases such as SCZ and BD require a systems biology approach, with an integration of 

multi-dimensional data sets to elucidate a better understanding of disease risk.

Materials and Methods

Study design

This study was designed to investigate the dysfunctional regulatory network and key 

regulators in postmortem brain tissue from patients with SCZ or BP. We analyzed genome-

wide mRNA, miRNA, or genotyping data from postmortem brain tissue from 169 patients 

with SCZ or BD and 225 healthy control individuals who did not have a known history of 

psychiatric disorders. We first applied WGCNA and QTL analysis to reveal mRNA-miRNA 

and genotype-mRNA/miRNA relationships. DaM was detected exhibiting case control 

expression difference after removing confounding factors. We next used web resources to 

explore transcriptional regulators (transcription factors and miRNA binding information) 

and identified POU3F2 as a master regulator of other transcription factors and miRNAs in 

the daM. The function of POU3F2 was examined in cell differentiation and proliferation 

experiments and its regulatory activities were validated using RNAi, gene overexpression, 

and luciferase reporter experiments.

Samples

Discovery data: Parietal cortex (PC) tissue specimens from the SMRI Neuropathology 

Consortium and Array collections included SCZ, BD, and control samples (table S1) (43). 

We removed non-Europeans, duplicates, and samples missing any of the mRNA, miRNA, or 

genotyping data. After filtering, we retained 75 samples (51 patients and 24 controls), 

yielding data for 19,984 mRNAs, 470 miRNAs, and 1,452,078 SNPs for subsequent 

analyses. The detailed demographic, clinic information and their distribution differences 

among groups are provided in table S1.

Replicate data: The two replication datasets were microarray data from Andrew 

Singleton’s group (GEO Accession Number: GSE15745) and RNA-seq data of BrainGVEX 

from PsychENCODE. GSE15745 contains frozen frontal cortex tissue samples from 138 

neurologically normal Caucasian subjects after quality control (15). The BrainGVEX project 

includes samples from SMRI, so we excluded those overlapping samples when using 

PsychENCODE as replicates. Seventy SCZ, 48 BD, and 63 controls from PsychENCODE 

were used for validation. The detailed demographic, clinic information and their distribution 

differences among groups are provided in table S2.
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Module construction and preservation statistics

We identified mRNA and miRNA with correlated expression patterns using WGCNA (12). 

We calculated a correlation matrix for all possible pairwise nodes (mRNA and miRNA) and 

chose the power = 6 for weighting the correlation matrix following an approximate scale-

free topology. We set minimum block size as 30 and biweight midcorrelation (bicor) to build 

the network. We detected network modules using the dynamic tree cut algorithm with the 

mergeCutHeight as 0.05 and deepSplit as 2. WGCNA and the dynamic tree cut algorithm 

were implemented in R (version 3.1.3) (12). The unsigned network type was used to keep 

the negative relationships between miRNAs and mRNAs. We plotted the pairwise 

connection network using Cytoscape v3.6.1 (44).

Because our sample size is relatively small, we used two additional datasets to assess the 

module preservation. The validation data sets include samples from BrainGVEX and 

GSE15745. We applied Zsummary test to assess module preservation between expression 

datasets (14). The recommended thresholds are Zsummary < 2 implies no evidence for 

module preservation, 2 < Zsummary < 10 implies weak to moderate evidence, and 

Zsummary > 10 implies strong evidence for module preservation.

Network Edge Orienting (NEO) analysis of transcription factor-miRNA interactions

In addition to binding information, we used modified NEO to investigate the causal 

relationship between transcription factors and miRNAs (26). The imported data was the 

expression data of Transcription factors and miRNAs, and genotype data. The outputs are 

local-structure edge orienting (LEO) scores, which use the likelihoods of local structural 

equation models to integrate selected traits and markers to assess the causal relationship 

between correlated quantitative variables. We selected the genotype data that included 

eQTLs of Transcription factors and miRNAs from our analysis of SMRI samples and from 

results of the GTEx portal (www.gtexportal.org), CommonMind Consortium 

(commonmind.org/), and UK Brain Expression Consortium (http://www.braineac.org/). 

Totally 901 SNPs were included in NEO analysis. The candidate pleiotropic anchor (CPA) 

model was used to test single marker edge orienting and the orthogonal causal anchor 

(OCA) model was used to test multiple genetic markers. The likelihood-based CPA score 

assessed whether the chosen model would yield a higher likelihood than did the alternative 

models. We used a threshold of 0.8, as the software suggested, which implies that the model 

likelihood score of the causal model was 100.8 = 6.3 fold higher than that of the next best 

model. For the OCA score, we used a threshold of 0.3, as suggested, which implies that the 

model likelihood score of the causal model was 100.3 = 2 fold higher than that of the next 

best model.

NPC proliferation and differentiation assay

We investigated the function of POU3F2 in neuronal cell proliferation using BeyoClick™ 

EdU Cell Proliferation Kit with Alexa Fluor 555 (Beyotime, C0075S). Briefly, after 

POU3F2 knockdown, NPCs were incubated with 10 μM EdU solution for 5 hours to label 

proliferating cells. And then Cells were fixed with 4% paraformaldehyde and permeabilized 

with 0.3% Triton X-100/PBS. The prepared Click Additive Solution was used to detect the 

EdU-incorporated cells. Finally, cells were labeled with Hoechst 33342 in order to count the 
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proportion of EdU positive cells. For neuron differentiation assay, we used a STEMdiff 

Neuron Differentiation Kit (Stemcell, 08500) and a STEMdiff Neuron Maturation Kit 

(Stemcell, 08510) to generate neurons according to manufacturer’s instructions. For 

immunofluorescence staining assay, cells were fixed with 4% paraformaldehyde and 

permeabilized with 0.5% Triton X-100/PBS. Then cells were blocked using 5% BSA/PBS 

for 30 min at room temperature followed by incubation with indicated primary antibodies 

for one hour at room temperature: Tuj1 (1:300, CST, 5568), MAP2 (1:300, CST, 8707). 

After three washes with PBS, cells were incubated with fluorescently labeled secondary 

antibodies for one hour at room temperature, followed by staining with the fluorescent 

nuclear dye DAPI (beyotime, C1002). The proportions of EdU+, Tuj1+ and MAP2+ cells 

were quantified with Image J software.

Statistical analysis

Descriptive statistics are reported as mean and standard deviation (SD) or minimum to 

maximum values. Biological or technical replicates from experiments are reported as mean 

± SEM. We applied Student’s t-test to compare the mean difference between two 

independent groups if the data were normally distributed in each group. Nonparametric 

Wilcoxon signed-rank test was used if the data were not normally distributed. For single 

testing, a two-tailed P value less than 0.05 was consided as statistical significance, *P < 

0.05, **P < 0.01, ***P < 0.001. For multiple testing, the FDR q value was calculated based 

on the nominal distribution of P values. We performed all statistical analysis using the 

program R (version 3.1.3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Conservation of disease-associated module genes in postmortem brain tissue from 
different sources.
(A) Genes detected in the disease-associated module (daM; red) for the Stanley postmortem 

brain samples were also clustered in the modules for FCTX postmortem brain samples 

(blue) and BrainGVEX postmortem brain samples (turquoise). The preservation Zsummary 
of the daM was 36.8 for FCTX samples (B) and 10.9 for BrainGVEX samples (C) 

(Zsummary > 10 indicates high preservation). MiRNA and mRNA microarray expression 

data were obtained for 138 postmortem frontal cortex samples from healthy control 

individuals in the FCTX data set. RNA-seq data was obtained for postmortem prefrontal 

cortex samples from the BrainGVEX data set for 63 healthy control individuals, 70 patients 

with SCZ and 48 patients with BD.
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Fig. 2. Enrichment of common and rare genetic variants in the daM for SCZ or BD postmortem 
brain tissue.
(A) Enrichment of genes in the disease-associated module (daM) with common and rare 

variants. For common variants, we applied MAGMA and INRICH to test the enrichment. 

Self-contained gene-set analysis tested whether genes in a gene set showed joint association 

with SCZ, and competitive gene-set analysis tested whether those genes showed differential 

association with SCZ compared with other genes in the rest of the genome. Thresholds of 1 

× 10−5, top 0.1%, top 1%, and top 5% of all significant SNPs were used as index SNPs in 

INRICH, and none of them detected significant enrichment. For rare variants, data from two 

exome sequencing studies and one database were used to test the enrichment. We applied a 

hypergeometric method to test the overlap with genes collected from Purcell’s study (20), 

NPdenovo database (19), and the combined gene sets from these two studies. We applied 

logistic regression to test the rare variant burden using disruptive and damaging ultra-rare 

variant (dURV) counts for each gene from Genovese’s study (21). (B) The number of genes 

containing de novo or rare mutations from three sources (19–21) overlapping with genes in 

daM.

Chen et al. Page 17

Sci Transl Med. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Transcription factor-target binding information in the daM.
All mRNAs, miRNAs, and their relationships in the daM were plotted. The colored lines 

indicate the pairwise correlation extracted from module testing with rw > 0.05. Six 

transcription factors (POU3F2, PAX6, EPAS1, ZNF423, SOX5, SOX9), their binding 

targets, and names of five miRNAs were labeled in this figure, and other genes in the module 

were plotted as dots in this network. Transcription factors and their targets were framed in 

six separate colored boxes. Rw is the weighted correlation coefficient from the transformed 

pairwise correlation matrix, where rw > 0.05 is equivalent to the original r > 0.607.
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Fig. 4. The causal relationship between POU3F2 and hsa-miR-320e.
(A, B) Shown are the qPCR results after knocking down POU3F2 (A) and after 

overexpression of POU3F2 (B) in SH-SY5Y neuroblastoma cells. (C, D) The qPCR results 

after knocking down hsa-miR-320e (C) and after overexpression of hsa-miR-320e (D) in 

SH-SY5Y cells. Orange bars indicate genes’ expression of POU3F2, hsa-miR-320e and 

negative controls after knocking down or overexpressing POU3F2 or hsa-miR-320e, and the 

blue bars indicate gene expression in control groups before knocking down or 

overexpression of POU3F2 or hsa-miR-320e. ECM7 and PSMB4 were negative controls for 

POU3F2, and CHMP2A and VPS29 were negative controls for the miRNA hsa-miR-320e. 

Three biological replicates were used, and for each biological replicate we designed three 

technical replicates. * P < 0.05, ** P < 0.01, ***P < 0.001. Data are represented as mean ± 

standard error of the mean (SEM).
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Fig. 5. POU3F2 regulates proliferation and differentiation of NPCs.
(A, B) Immunofluorescence staining for EdU (a marker of proliferating cells) after POU3F2 
knockdown in human NPCs (A); quantification of proliferation is shown in panel B. (C, D) 

Immunofluorescence staining for Tuj1 (a marker of immature neurons) and MAP2 (a marker 

of mature neurons) after POU3F2 knockdown in NPCs (C); quantification of differentiation 

of NPCs into neurons is shown in D. (E, F) qPCR data showing POU3F2 putative targets 

after knocking down (E) or overexpressing POU3F2 (F). Three biological replicates were 

used, and for each biological replicate we designed three technical replicates. * P < 0.05, ** 

P < 0.01, ***P < 0.001. Data are represented as mean ± SEM.
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Table 1.

Characteristics of miRNAs in daM and their predicted binding targets.

miRNA Chr Correlated with ME* (p-
value)

miRWalk2.0 WGCNA

Genes predicted as 
binding targets in daM (# 

of total target genes)

Significance of binding 
targets in module 

(Enrichment p-value)

# of correlated genes 

in module (rw
#
>0.05)

hsa-miR-320b Chr1 3.70E-05 333 (10126) <1e-10 14

hsa-miR-320c Chr18 1.31E-05 303 (9480) <1e-10 34

hsa-miR-320d Chr13 1.09E-05 297 (8904) <1e-10 44

hsa-miR-320e Chr19 4.79E-06 263 (7887) <1e-10 68

hsa-miR-585 Chr5 1.30E-05 139 (7742) 0.046 0

*
ME, module eigengene.

#
rw is the weighted correlation coefficient from the transformed pairwise correlation matrix, where rw>0.05 is equivalent to the original r > 0.607.
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