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ABSTRACT

Glutamate regulates the function of central nervous system (CNS), in part, through the

cAMP and�or IP3�DAG second messenger-associated metabotropic glutamate receptors

(mGluRs). The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) has

been extensively used to elucidate potential physiological and pathophysiological func-

tions of mGluR5. Unfortunately, recent evidence indicates significant non-specific actions

of MPEP, including inhibition of NMDA receptors. In contrast, in vivo and in vitro charac-

terization of the newer mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine

(MTEP) indicates that it is more highly selective for mGluR5 over mGluR1, has no effect

on other mGluR subtypes, and has fewer off-target effects than MPEP. This article reviews

literature on both of these mGluR5 antagonists, which suggests their possible utility in

neurodegeneration, addiction, anxiety and pain management.

INTRODUCTION

It is well established that the excitatory neurotransmitter glutamate acts through

two classes of receptors — fast ligand-gated ionotropic receptors and slower G-protein

coupled receptors (51,58). Because this prevalent amino acid helps maintain homeostasis

in the adult brain, pathological alterations in its release, receptors or signaling cascade can

mediate temporary and�or permanent effects that disrupt normal function (48,62,72,102,

103,132,150,193,215).
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The ionotropic glutamate receptor class (iGluRs) consists of á-amino-3-hydroxy-5-me-

thyl-4-isoxazoleproprionic acid (AMPA), kainate (KA) and N-methyl-D-aspartate

(NMDA) receptors. These ion channels are permeable to both potassium and sodium, and

in the case of NMDA receptors and some AMPA receptors, calcium ions. In contrast, the

metabotropic glutamate receptor class (mGluRs) consists of three groups classified ac-

cording to their structure, signal transduction mechanisms and pharmacological sensitiv-

ities (51,163). Group I mGluRs (mGluR1 and 5) are positively associated with phospholi-

pase C via Gq proteins and initiate an inositol triphosphate�diacylglycerol (IP3�DAG)

second messenger cascade, whereas group II (mGluR2 and 3) and III mGluRs (mGluR4,

6, 7, and 8) are negatively coupled to adenylylcyclase via Gi�o proteins (51).

Through the mGluRs, glutamate can modulate excitatory (AMPA and NMDA re-

ceptors) and inhibitory (GABA) signaling pathways, in addition to various ion channels,

including many specific for potassium and calcium (9,21,46,52,86,100,101,175,179,186,

213). Because these systems are inherently involved in the function and pathophysiology

of CNS, drugs that modulate mGluRs can have multiple modulatory�therapeutic effects

throughout the CNS.

PHARMACOLOGY

MGluRs and Neuroprotection

Many studies support a role for group I mGluR modulation in both in vivo and in vitro

models of CNS injury (163). In general, non subtype-specific inhibition of group I

mGluRs tends to be neuroprotective. In animal models of head injury, NMDA toxicity and

global ischemia, as well as in vitro models of trauma and ischemia the activation of

group I mGluR is neurotoxic (1,6,36,37,63,110,123,188).

Differential effects for the mGluR1 and mGluR5 subtypes have been observed. These

may reflect differences in desensitization factors (3,66,136); regulation of intracellular

calcium signaling (93); interactions with iGluRs and ion channels via homer; PSD-95

complexes and Shank (30,92,168,199,200); signaling through various heterotrimeric G-

protein subunits (45,67); regulation of mGluR mediated responses by regulators of G-pro-

tein signaling proteins (161); or expression pattern differences attributable to anatomical

location (131,132,169,196), ontogeny (11,23,41,71,155,172,174), injury (64,76,88,117,

119), or disease (4,12,27,43,132,156,175).

Endogenous activation of group I mGluRs induces multifactorial processes underlying

neurotoxicity (1,6,36,37,63,110,123,188) including:

1) amplification of neuronal degeneration through iGluR-induced zinc flux and con-

comitant production of reactive oxygen species (40,42,44,56,72,73,166,168,170,171,191);

2) reduction of the Mg2+ block of NMDA receptors (102,103,215);

3) enhancement of glutamate release by decreasing endogenous inhibition (19,35);

4) the release of Ca2+ from intracellular stores via IP3 dependent mechanisms (208);

and

5) induction of the production of arachidonic acid (61), as well as other mechanisms.

Because of the direct association between positive modulation of group I mGluRs and

the potentiating effects on iGluRs, care must be taken in interpreting results obtained with

non-specific group I mGluR modulators, especially compounds that can directly regulate
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iGluR activity (135). Moreover, it is important to differentiate the specific contributions of

mGluR1 and mGluR5. In relation to cell death phenotype and the pathophysiologically-

induced position within the apoptosis�necrosis continuum, this separation is especially

important (104). Multiple models of CNS injury, including stroke, brain trauma and spinal

cord injury (36,63,110,114,119), suggest that activation of mGluR1 (124) can exacerbate

necrosis (1,36,37,63,122,123,135,188). In contrast, the mGluR5 subtype (122) appears to

attenuate apoptosis (5,6,52).

2-Methyl-6-(phenylethynyl)pyridine (MPEP)

One of the first mGluR5 subtype specific antagonists used to help separate the effects

of mGluR5 from mGluR1 induced by non-specific group I mGluR agonists �antagonists

is 2,6-disubstituted pyridine 2-methyl-6-(phenylethynyl)pyridine (MPEP) (68,69,163).

MPEP non-competitively inhibits mGluR5 through a novel allosteric site (68,69,141) re-

ducing the efficacy of glutamate-stimulated phosphoinositide (PI) hydrolysis without af-

fecting the Hill coefficient or EC50 of glutamate (68,163). MPEP completely inhibits

quisqualate-stimulated PI hydrolysis (IC50 = 36 nM) (69) and is without effect on human

mGluR6 (�10 ìM), mGluR1b (�30 ìM), or mGlu2, -3, -4a, -7b, or -8a (�100 ìM) (69).

Similarly, in the rat hippocampus, MPEP (10 mg�kg i.p.) blocks dose-dependent

(RS)-2-chloro-5-hydroxyphenylglycine (CHPG)-induced increases in PI hydrolysis (8). It

has been proposed that such inhibition results from MPEP stabilizing the inactive confor-

mation of mGluR5 by preventing the association of the transmembrane-6 and -3 helices

(111).

In vivo receptor occupancy studies of MPEP (10 mg�kg i.p.) demonstrate significant

species variability. For example, in rat brain, MPEP can maintain >75% receptor occu-

pancy for up to 2 h, whereas, in mouse brain >75% receptor occupancy only lasts up to

15 min (7). Binding studies have demonstrated that the mGluR5 antagonist [3H]methoxy-

methyl-MTEP, which has high affinity (Kd = 20 ± 2.7 nM), is displaced by MPEP with an

IC50 value of 15 nM (8). In rats, systemic administration of unlabeled MPEP reduced the

binding of [3H]methoxymethyl-MTEP with an ID50 value of 2 mg�kg i.p. (8).

Over the past several years, MPEP has been used to study the potential role of the

mGluR5 subtype in neuroprotection (16,18–20,26,35,38,75,105,114,119,154,158), Par-

kinson’s disease (10,20,31,32,50,60,65,74,91,137,140,158,181,201,205,207,210), Hun-

tington’s disease (65,164), epilepsy (2,17,65,106,109,112,113,115,116,120,124,178,187,

198), Fragile X syndrome (13,211), addiction (107,145,195,214), anxiety (15,29,33,34,39,

49,54,55,81,90,97,98,142,149,151,153,159,165,180,182–185,192,203,209), nociception

(22,78,99,108,125,143,144,190,206,216), learning and memory (173), lateral geniculate

nucleus relay cell communication (57), thalamic sensory processing (160), signal dis-

crimination in the semicircular canals (82), and others (177).

Unfortunately, in addition to acting as an mGluR5 specific antagonist. MPEP has been

reported to have electrophysiological effects on human NMDA1A�2B (10 ìM),

NMDA1A�2A (100 ìM) and kainate Glu6-(IYQ) (100 ìM) receptor subtypes. In ad-

dition, effects on rat AMPA Glu3-(flop) (100 ìM) expressed in Xenopus laevis oocytes

(69) and on rat NMDA receptors in rat primary cortical neurons (20 ìM) have been ob-

served (135). See Table 1 for actions and selectivity of MPEP and MTEP.
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3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP)

The recently developed MTEP was expected to have less non-specific effects than

MPEP. Initial characterization of MTEP in an in vitro Ca2+ flux assay provided an IC50 of

5 nM and a Ki of 16 nM (54). Furthermore, MTEP has a log D value of 2.1 compared with

3.5 for MPEP (54) indicating better solubility and CNS penetrability. In vivo and in vitro

characterization of MTEP (7,8,53) indicates that it is highly selective for mGluR5 and has

no significant effect on other mGluR subtypes. Moreover, MTEP has fewer off-target ef-

fects than MPEP, such as minimal inhibition of NMDA�glycine-evoked increases in re-

combinant human NR1A�2B receptor-mediated intracellular calcium (MTEP: 19% at

300 ìM; MPEP: IC50 = 18 ìM) (53,54). Taken together, these results suggest that MTEP

has greater selectivity at mGluR5 than other known antagonists (53).

In vivo and in vitro studies indicate that the cytochrome P450 (CYP) isoforms

CYP1A1�2, CYP2C6 and CYP2C11 are primarily responsible for the metabolism of

MTEP (77). The major oxidative metabolites of MTEP are a hydroxymethyl metabolite,

two oxides, a thiazole-ring opened metabolite and CO2 (212). Metabolism of MTEP

(1 ìM) in dog, monkey and human hepatic microsomes was similar (approximately 65%)

(77). Metabolic stability studies accurately predicted the in vivo clearance for MTEP

(2 mg�kg, i.v. and 10 mg�kg p.o.) in rats; (Clp = 28.5 ± 2.3 mL�min�kg; VDss = 8.4 ±

± 1.4 L�kg; terminal t1�2 = 8.3 ± 0.9 h; 16% bioavailability) (77). Administration of

MTEP (1 mg�kg, i.v.) to rhesus monkeys resulted in a Clp of ~42 mL�min�kg (77).

Similar to MPEP, in vivo receptor occupancy studies of MTEP (3 mg�kg i.p.) demon-

strate significant species variability. In rat brain, MTEP also maintains >75% receptor oc-

cupancy for 2 h, whereas, in mouse brain >75% occupancy lasts for only 30 and 15 min

(7).

The Role of mGluR5 in Neurodegeneration

As mentioned above in vivo and in vitro studies suggest that activation of the mGluR5

subtype is neuroprotective through its ability to attenuate apoptosis (5,6,52,121), and does

not appear to modulate necrosis. This concept is supported by multiple studies. For ex-
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TABLE 1. MPEP and MTEP: Meachanism(s) of action and selectivity

Name Mechanism(s) of action Off-site effects

MPEP, 2-methyl-6-(phenyl-

ethynyl)pyridine

1) Non-competitive

mGluR5 antagonist

1) mGluR1d, IC50 > 10 ìM

2) Allosteric modulator 2) NR2B IC50 = 18 ìM

3) Inhibits PLC�IP3�DAG 3) MAOA, IC50 = 8 ìM

MTEP, 3-[(2-methyl-1,3-thi-

azol-4-yl)ethynyl]pyridine

1) Non-competitive

mGluR5 antagonist

1) mGluR1d, IC50 > 10 ìM

2) Inhibits PLC�IP3�DAG 2) NR2B IC50 > 300 ìM

3) MAOA, IC50 = 30 ìM

MPEP and MTEP are mGluR5 specific antagonists that inhibit the PLC�Gq�IP3�DAG second mes-

senger cascade (7,8,53,54,68,69,163). Although both compounds have off-site effects (54), MTEP is

better suited for paradigms in which NMDA receptors play a significant role.



ample, use of antisense oligonucleotides against group I mGluR revealed that inhibition of

mGluR1, but not mGluR5 is neuroprotective (123) in an in vitro necrotic injury model. In

a model of global ischemia, 10 pmol MPEP (2� i.c.v.) or 10 mg�kg MPEP (2� i.p.) had no

effect on CA1 pyramidal cell death (114). Similarly, in vitro, MPEP (0.1–1 ìM) had no

effect on oxygen and glucose deprivation-induced neuronal damage (114). Further support

was provided by studies in which the group I mGluR agonist (S)-3,5-dihydroxyphenyl-

glycine (DHPG) or the mGluR5 selective agonist, (RS)-2-chloro-5-hydroxyphenylglycine

(CHPG) decreased apoptotic cell death induced by either the non-specific protein kinase C

(PKC) inhibitor staurosporine or the topoisomerase II inhibitor etoposide (6). The DHPG

effects were blocked by MPEP but not by a mGluR1 antagonist (6).

Nevertheless, it has been reported that MPEP is neuroprotective (16,19,20,38,154). For

example, in a model of parkinsonism, MPEP (4 � 5 mg�kg, i.p. injections, 30 min before

each MPTP injection) was protective against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine (MPTP; 80 mg�kg) toxicity (20). In another study, pretreatment with MPEP im-

proved cognitive and motor functions and reduced lesion volume following lateral fluid

percussion injury (FPI) (122). In a rat intraluminal filament model of temporary middle

cerebral artery occlusion, a model for focal cerebral ischemia, MPEP also appears to be

neuroprotective (16). Combined, these studies suggest that perhaps in certain in vivo

models, mGluR5 activation exacerbates injury. However, in the latter study above, acti-

vation of mGluR5 with CHPG after focal cerebral ischemia, also reduced 24 h infarct

volume in a dose-dependent manner (16). Hence, in the temporary middle cerebral artery

occlusion model, both CHPG and MPEP were neuroprotective. It is important to note that

even though early (15 min) post-injury treatment with optimal dose MPEP provided

neuroprotection, delayed (135 min post-injury) treatment was not effective (16). These

conflicting data can be explained by experiments which show the ability of MPEP to in-

hibit NMDA receptor activity, in addition to acting as an mGluR5 antagonist (16,123).

Moreover, the ability of CHPG to provide neuroprotection can potentially be explained by

its anti-apoptotic activity (6).

To address the important question as to whether mGluR5 antagonists provide neuropro-

tection, in part, through their ability to directly modulate NMDA receptor activity, the ef-

fects of MTEP or MPEP were tested in cultured cortical neurons derived from rat and

either wild-type (WT) or mGluR5(–�–) mice exposed to NMDA- or glutamate-induced

toxicity (105). These two well-established in vitro models of neuronal injury produce sig-

nificant cell death within 24 h (122,135). The mGluR5 knockout mouse cortical cultures

were used to address whether MPEP-mediated neuroprotection against NMDA-induced

neurotoxicity occurs independent of mGluR5. Pretreatment with MPEP (20 ìM and

higher) showed significant neuroprotection as revealed by either LDH release or calcein

AM assays. In contrast, pretreatment with MTEP (2 to 100 ìM) had no effect (105). Both

MPEP and MTEP at 200 ìM decreased NMDA-induced cell death in cortical cultures

from mGluR5-knockouts. Thus, blockade of neuronal mGluR5 is not protective against

glutamate receptor mediated cell death, and the use of mGluR5 antagonists at high con-

centrations can lead to neuroprotection through mechanisms not associated with mGluR5

modulation.

In summary, multiple lines of evidence indicate the necessity to distinguish between

the group I mGluR subtypes 1 and 5. With regard to neuroprotection, mGluR1 activation

appears to exacerbate necrosis, whereas mGluR5 activation protects against apoptosis.
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Although the mGluR5 specific antagonist MPEP has been used extensively to determine

the role of mGluR5 in CNS function and pathology, its non-specific effects, such as inhi-

bition of NMDA receptors, may make it difficult to assign specific physiological roles for

mGluR5 using this compound. Unlike MPEP, the newer mGluR5 antagonist MTEP does

not provide neuroprotection at doses that are both optimal for mGluR5 blockade, in part,

because it does not have direct effects upon NMDA receptor activity.

A Role for mGluR5 in Addiction and Pain

Addiction

In addition to its role in neurodegeneration, mGluR5 studies using MPEP and�or

MTEP suggest that mGluR5 contributes to the processes underlying addiction. Drug cues

can recruit responses in the amygdala, anterior cingulate, orbital prefrontal and dorsolate-

ral prefrontal cortex, and nucleus accumbens (89). Moreover, the ventral tegmental area-

nucleus accumbens pathway appears to be the central regulator of reward signals induced

by drugs of abuse (126). It has been proposed that addiction, in part, involves certain mo-

lecular mechanisms that underlie learning and memory (89,126). Because many of these

addiction-associated regions participate in learning and memory, and because both iGluRs

and mGluRs are intimately involved in such processes, it is not surprising that glutamate

receptors appear, in part, to underlie mechanisms associated with addiction.

Both iGluRs and mGluRs are implicated in the behavioral effects of psychostimulants

(96,191,205). For example, acute cocaine treatment significantly reduces the mRNA level

for GluR3, GluR4, and NMDAR1 subunits in the nucleus accumbens, and NMDAR1

mRNA levels in dorsolateral striatum and the ventral tegmental area (70). Moreover, re-

peated cocaine administration significantly increases levels of GluR2 mRNA in prefrontal

cortex and mGluR5 mRNA levels in the nucleus accumbens and dorsolateral striatum

(70). Additional studies using mGlu5 (–�–) mice also support a role for mGluR5 in co-

caine self-administration and cocaine-induced locomotor sensitization (47).

Studies using MPEP or MTEP have also implicated mGluR5 in effects caused by psy-

chostimulants (83,84,94,107,145,148), nicotine (80,94,146,147,195,214), or ethanol (14,

55,85,135,164). MPEP dose-dependently (1–9 mg�kg) decreases nicotine (rats: 0.01 or

0.03 mg�kg�infusion; mice: 0.048 mg�infusion) or cocaine (0.25 mg�infusion) self-admi-

nistration, but does not appear to alter acute nicotine (0.25 mg) or cocaine (10 mg�kg)-in-

duced facilitation of brain reward function in rats (94). MPEP (50 mg�kg) also blocks

expression of context-conditioned morphine (10 mg�kg) or amphetamine but not cocaine

(10 mg�kg) or 3,4-methylenedioxymethamphetamine (MDMA) reward in the rat (83,84).

In addition, MPEP (5 mg�kg i.p.) significantly enhances the locomotor activity increased

by PCP (phencyclidine; 2.5 mg�kg s.c.) (148), but inhibits amphetamine (1 mg�kg s.c.)-

induced hyperactivity (148).

In squirrel monkeys, MPEP attenuated cocaine self-administration, cocaine-induced re-

instatement of drug seeking and the discriminative stimulus effects of cocaine at doses

that did not markedly impair motor function or operant behavior in the context of drug dis-

crimination (107). Although MPEP exhibits some selectivity for mGluR5 receptors in

vitro and in vivo (69,197), it also has the ability to directly reduce NMDA receptor activity

(134) and to interact functionally with NMDA receptors in rats (87,152). Thus, the ability

of MPEP to elicit cocaine-attenuating effects may reflect, at least in part, modulation of
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NMDA receptor activity. Moreover, although these findings suggest that mGluR5 antago-

nists may be a valuable tool against addiction, chronic use of MPEP is potentially prob-

lematic due to its effects on the NMDA receptor.

To date, relatively few studies have used MTEP to examine the role of mGluR5 in ad-

diction. In a naloxone-precipitated morphine withdrawal model, MTEP (1–10 mg�kg)

dose-dependently inhibited naloxone-induced symptoms of morphine withdrawal, without

effects on locomotor activity (145). In another study, MTEP was effective in models of

ethanol addiction (85). Together, the experimental studies with MPEP or MTEP suggest

that blocking mGlu5 receptors may provide a novel and effective pharmacotherapeutic ap-

proach for the treatment of certain types of drug dependence and addiction.

Nociception

A role for group I mGluRs, including mGluR5, in nociception has been well estab-

lished by functional studies (95,127,129,157,202). Nociceptive responses of thalamic

neurons are mediated in part by mGlu5 receptors (25). In a model of cannabinoid-induced

anti-nociception in the periaqueductal grey (PAG) matter of rats, MPEP prevented the

ability of the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpho-

linylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate

(WIN 55,212-2) to increase nociceptive reaction latency in the plantar test. Moreover,

studies indicate that mGlu5 receptors may modulate nociception in the periaqueductal

grey (PAG) matter of rats (144) and that antihyperalgesic effects of WIN 55,212-2 are me-

diated through interactions with spinal metabotropic glutamate-5 receptors (79). MPEP

(50 nmol) also blocked increases in nociceptive reaction induced by intra-periaqueductal

grey matter microinjections of capsaicin (1–3–6 nmol�rat) (143).

A role for mGluR5 in nociception is further supported by studies showing that in re-

sponse to noxious stimuli, there are changes in mGluR5 expression (59,88,118). Such

changes can lead to altered gene expression (24) and synaptic plasticity (128) within the

sensory elements of the nociceptive pathways. For example, nerve injury-induced in-

creases in mGluR5 in lumbar DRG A-fiber somata correlated with the ability of MPEP to

dose-dependently reverse thermal hyperalgesia following L5 spinal nerve ligation. Such

results led these authors to suggest that after L5 spinal nerve injury, mGluR5 expression

on A-fibers may be essential for the development of thermal hyperalgesia (88).

It is also suggested that mGluR5 can modulate pain due to inflammation and neuro-

pathy (95). For example, in multiple rodent models (218), MPEP (3–30 mg�kg, i.p.) pro-

duced a dose-dependent reversal of thermal and mechanical hyperalgesia following com-

plete Freund’s adjuvant (CFA)-induced inflammatory hypersensitivity. In addition, MPEP

decreased thermal hyperalgesia observed in carrageenan-induced inflammatory hypersen-

sitivity without affecting paw edema. Moreover, MPEP abolished acetic acid-induced

writhing activity in mice, and was shown to reduce mechanical allodynia and thermal hy-

peralgesia observed in a model of post-operative hypersensitivity and formalin-induced

spontaneous pain. At 30 mg�kg, i.p., MPEP also significantly attenuated mechanical

allodynia observed in three neuropathic pain models: spinal nerve ligation, sciatic nerve

constriction and vincristine-induced neuropathic pain. Similar to MPEP, MTEP

(3–30 mg�kg, i.p.) also reduced complete CFA-induced thermal hyperalgesia. At

100 mg�kg, i.p., however, both MPEP and MTEP showed CNS side effects as measured

by rotarod performance and exploratory locomotor activity (218).
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Both MPEP and MTEP were also tested in the mouse formalin and rat spinal nerve li-

gation (SNL) pain models, as well as in anxiety models including the Vogel conflict and

conditioned lick suppression (CLS) tests for anxiety (203). Systemic administration of

MPEP and MTEP reduced hyperalgesia induced by formalin and mechanical allodynia

following SNL and showed anxiolytic effects (203).

Additional studies in rats showed that MPEP, in a dose-dependent and reversible

manner, blocked pressure-induced responses to contralateral hindpaw nociceptive neurons

within the ventroposterolateral thalamus (28). In a spinal cord in vitro model, MPEP

(30 ìM, 60 min) attenuated ventral root potentials following single shock electrical stimu-

lation of the dorsal root and inhibited responses evoked by repetitive stimulation (28).

Finally, it has also been suggested that both peripheral and central mGluR5 receptors

may play a role in nociceptive transmission observed during post-operative pain in rats

(217). In this model, MPEP (ED50 = 15 mg�kg, i.p.) showed dose-dependent effects.

Overall, experimental pain studies using both MPEP and MTEP support a role for

mGluR5 in nociceptive processes and suggest that selective modulation of mGlu5

receptors may provide a new pharmacotherapeutic approach for certain types of pain.

SUMMARY

Multiple studies using the mGluR5 antagonists MPEP and MTEP suggest that the

mGluR5 receptor may be involved in physiological or pathophysiological responses asso-

ciated with neurodegeneration, addiction, pain and anxiety. However, given non-specific

effects of MPEP, studies in which this compound alone was used to infer a role for

mGluR5 actions should be re-assessed with more selective compounds such as MTEP or

by using receptor knockout animals.
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