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Abstract

Positron emission topography (PET) has been substantially used in recent years. To minimize the 

potential health risks caused by the tracer radiation inherent to PET scans, it is of great interest to 

synthesize the high-quality full-dose PET image from the low-dose one to reduce the radiation 

exposure while maintaining the image quality. In this paper, we propose a locality adaptive multi-

modality generative adversarial networks model (LA-GANs) to synthesize the full-dose PET 

image from both the low-dose one and the accompanying T1-weighted MRI to incorporate 

anatomical information for better PET image synthesis. This paper has the following 

contributions. First, we propose a new mechanism to fuse multi-modality information in deep 

neural networks. Different from the traditional methods that treat each image modality as an input 

channel and apply the same kernel to convolute the whole image, we argue that the contributions 

of different modalities could vary at different image locations, and therefore a unified kernel for a 

whole image is not appropriate. To address this issue, we propose a method that is locality 

adaptive for multimodality fusion. Second, to learn this locality adaptive fusion, we utilize 1 × 1 × 

1 kernel so that the number of additional parameters incurred by our method is kept minimum. 

This also naturally produces a fused image which acts as a pseudo input for the subsequent 

learning stages. Third, the proposed locality adaptive fusion mechanism is learned jointly with the 

PET image synthesis in an end-to-end trained 3D conditional GANs model developed by us. Our 

3D GANs model generates high quality PET images by employing large-sized image patches and 

hierarchical features. Experimental results show that our method outperforms the traditional multi-

modality fusion methods used in deep networks, as well as the state-of-the-art PET estimation 

approaches.
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1 Introduction

As a nuclear imaging technology, positron emission topography (PET) has been increasingly 

used in clinics for disease diagnosis and intervention. It enables the visualization of 

metabolic processes of human body by detecting pairs of gamma rays emitted indirectly 

from the radioactive tracer injected into the human body. However, the radioactive exposure 

inevitably raises concerns for potential health hazards. Nevertheless, lowering the tracer 

dose will introduce noises and artifacts, thus degrading the PET image quality to a certain 

extent. Therefore, it is of great interest to synthesize the high-quality full-dose PET (F-PET) 

image from the low-dose PET (L-PET) image to reduce the radiation exposure while 

maintaining the image quality. Modern PET scans are usually accompanied by other 

modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI). By 

combining functional and morphologic information, PET/MRI system could increase 

diagnostic accuracy for various malignancies. Previous research also indicates the benefit 

brought by multi-modality data to PET image quality enhancement [1–3].

There have been some works for F-PET image synthesis. Most of them, however, are based 

on voxel-wise estimation methods, e.g., random forest regression method [1], mapping-

based sparse representation method [2], semi-supervised tripled dictionary learning method 

[4], and multi-level canonical correlation analysis (CCA) framework [5]. These methods are 

all based on small patches and the final estimation of each voxel is determined by averaging 

the overlapped patches, resulting in over-smoothed images that lack the texture of a typical 

F-PET image.

In recent years, deep learning has been used to improve image synthesis. Dong et al. [6] 

proposed a convolutional neural networks (CNNs) model for image super-resolution. With 

the similar architecture, Li et al. [7] estimated the missing PET image from MRI for the 

same subject. More recently, generative adversarial networks (GANs) have also showed their 

superior performance in many image synthesis tasks [8]. In the literature, the incorporation 

of multi-modality data in deep learning models is usually conducted in a global manner. For 

example, in CNN-based deep learning models such as two recent multi-channel GANs 

models [9], multi-modalities are treated as multiple input channels, and for each channel a 

unified kernel (invariant to image locations) is applied for the convolution over the whole 

image. Such a kind of multi-modality fusion is referred to as the multi-channel method in 

this paper. However, we argue that the contributions of different modalities could vary at 
different image locations, and therefore a unified kernel for a whole image is not 
appropriate.

In this paper, inspired by the appealing success of GANs and also motivated to tackle the 

limitation of the current multi-channel deep architectures, we propose a “locality adaptive” 

multi-modality GANs (LA-GANs) model to synthesize the F-PET image from both the L-

PET and the accompanying T1-weighted MRI images. The contributions of our method are 

as follows. (1) We propose a new mechanism to fuse multi-modality information in deep 

neural networks. The weight of each imaging modality varies with image locations to better 

serve the synthesis of F-PET. (2) Using multi-modality (especially making it locality 

adaptive) may induce many additional parameters to learn. We therefore propose to utilize 1 
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× 1 × 1 kernel to learn such locality adaptive fusion mechanism to minimize the increase on 

the number of parameters. Doing so also naturally leads to a fused image that acts as a 

pseudo input for the subsequent learning stages. (3) We develop a 3D conditional GANs 

model for PET image synthesis, and jointly learn the proposed locality adaptive fusion with 

the synthesis process in an end-to-end trained manner. Our 3D GANs model generates high 

quality PET images by employing large-sized image patches and hierarchical features.

2 Methodology

The proposed LA-GANs model is illustrated in Fig. 1, which consists of three parts: (1) the 

locality adaptive fusion network, (2) the generator network, and (3) the discriminator 

network. Concretely, the locality adaptive fusion network takes both an L-PET and a T1-

MRI as input and generates a fused image by learning different convolutional kernels at 

different image locations. After that, the generator network produces a synthesized F-PET 

from the fused image, and the discriminator network subsequently takes a pair of images as 

input, i.e., the L-PET and the real or synthetic F-PET, and aims to distinguish between the 

real and synthetic pairs. When the discriminator can easily distinguish between them, it 

means that the synthesized F-PET has not well resembled the real one, and that the fusion 

network and the generator network should be further improved to produce more realistic 

synthesis. Otherwise, the discriminator should be enhanced instead. Therefore, the three 

networks are trained jointly with the discriminator network trying to correctly distinguish 

between the real and synthetic F-PET, while the fusion and generator networks trying to 

produce realistic images that can fool the discriminator. Please note that, we use 3D 

operations for all the networks to better model the 3D spatial information.

2.1 Architecture

Locality Adaptive Fusion Network—This is a module for multi-modality information 

fusion. As mentioned before, in most multi-channel based networks, image convolution is 

performed in a global manner, i.e., for each modality the same filter is applied to all image 

locations to generate the feature maps that will be combined in higher layers. This could not 

effectively handle the location-varying contributions from different imaging modalities. To 

tackle this problem, locality adaptive convolution should be enforced. However, if the 

locality adaptive convolution is simply conducted in the multi-channel framework, many 

additional parameters will have to be learned due to adding new imaging modalities. This is 

not favorable for medical applications where the number of the training samples is often 

limited. Therefore, we propose to add a module that produces a fused image from multi-

modality images and use the fused image as the pseudo input to the generator network. In 

this way, the increase of the number of modalities will not cause any increase on the number 

of parameters in the generator. Moreover, we propose to utilize 1× 1 × 1 kernel for locality 

adaptive convolution to minimize the number of necessary parameters to learn in this fusion 

module. The fusion network will be jointly learned with the generator and the discriminator 

to ensure that they can effectively negotiate with each other to achieve the best possible 

performance on image synthesis. Specifically, the entire L-PET and T1-MRI images are 

partitioned, respectively, into N non-overlapping small patches, i.e., Pi
L and Pi

T1(i = 1, …, N), 

as indicated by the patches in different colors in Fig. 1. Then, the two patches at the same 
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location (indicated by using the same color) from the two modalities, i.e., Pi
L and Pi

T1, are 

convolved, respectively, using two different 1 × 1 × 1 filters with parameters wi
L and wi

T1. For 

instance, in the fusion block in Fig. 1, the two gray filters are respectively operated on the 

two gray patches of the L-PET and T1-MRI images to generate their corresponding 

combined patch. Formally, the combined patch Pi
C is obtained as follows:

Pi
C = wi

L ∗ Pi
L + wi

T1 ∗ Pi
T1,

s.t. wi
L + wi

T1 = 1; wi
L > 0; wi

T1 > 0, i = 1, …, N
(1)

In this way, we will learn N pairs of different convolution kernels for N local patches. The 

outputs of the fusion are further assembled to form an entire fused image as the input of the 

following generator network.

Generator Network—In our generator network, we adopt both the convolutional layers 

and de-convolutional layers to ensure the same size of the input and output. Since the L-PET 

and F-PET images belong to the same modality, there is a lot of low-level information 

shared between them. As such, we follow the U-Net and add skip connections between the 

convolutional and de-convolutional layers, thus combining hierarchical features for better 

synthesis. Also, the skip connection strategy mitigates the vanishing gradient issue, allowing 

the network architecture to be much deeper.

Our network architecture (more details in the supplementary) contains multiple 

Convolution-BatchNormalization-LeakyRelu components. Specifically, it constitutes 12 3D 

convolutional layers. In the encoder part which includes the first 6 convolutional layers, we 

use 4 × 4 × 4 filters and a stride of 2 for convolution, and 0.2 negative slope for the leaky 

ReLu. The number of feature maps increases from 64 in the 1st layer to 512 in the 6th layer. 

In the decoder part, we perform up-sampling with a factor of 2.

Discriminator Network—The discriminator network is a typical CNN architecture 

consisting of 4 convolutional layers, and each of them uses 4 × 4 × 4 filters with a stride of 

2, similar to the encoder structure of the generator. The first convolution layer produces 64 

feature maps, and this number is doubled at each of the following convolutional layers. On 

top of the convolutional layers, a fully connected layer is applied and followed by a sigmoid 

activation to determine whether the input is the real pair or the synthetic one.

2.2 Objective Functions

Let us denote xL an L-PET image, xT1 the accompanying T1-MRI image, and yF the 

corresponding real F-PET image (i.e., the ground truth annotation). In this study, we learn 

three function mappings. The first mapping Fα: xL ∈ ℝLow, xT1 ∈ ℝT1 − MRI yF ∈ ℝFused

is for the locality adaptive fusion network, which produces a fused image yF from xL and 

xT1. The second mapping Gβ: yF ∈ ℝFused yF ∈ ℝSynthetic is for the generator network, 

which maps the fused image yF to a synthetic F-PET image yF. The third mapping 
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corresponds to the discriminator network function 

Dγ: xL ∈ℝLow, xT1 ∈ ℝT1 − MRI, YF ∈ ℝFull) d ∈ [0, 1], whose task is to distinguish the 

synthetic pair YF : = xL, yF  (ideally d → 0) from the real pair YF := (xL, yF) (ideally d → 

1). The symbols α, β and γ denote the parameter sets of the three networks, respectively, 

and are automatically learned from a training set xL
i , xT1

i , yF
i

i = 1
m

. Formally, we solve the 

following optimization problem

min
α

min
β

max
γ

V Fα, Gβ, Dγ =

𝔼 logDγ xL, yF + 𝔼 log 1 − Dγ xL, Gβ Fα xL, xT1 + λVL1 Fα, Gβ ,

(2)

with λ > 0 being a trade-off constant. The last term is an L1 loss, used to ensure that the 

synthetic F-PET image stays close to its real counterpart. The L1 loss is defined as

VL1 Fα, Gβ = 𝔼 yF − Gβ Fα xL, xT1 1 . (3)

Please note that, the fusion network F and the generator network G, in a sense, can be 

regarded as a whole network whose goal is to synthesize realistic-looking F-PET images that 

can fool the discriminator network D. Following the approximation scheme in [10], the term 

log (1 – Dγ(xL, Gβ(Fα(xL, xT1)))) can be replaced by minimizing a simpler form −logDγ(xL, 

Gβ(Fα(xL, xT1))). Therefore, training the fusion network F and generator network G equals 

minimizing

Lℱ, 𝒢 Fα, Gβ = − ∑i logDγ xL
i , Gβ Fα xL

i , xT1
i + λ∑i yF − Gβ Fα xL

i , xT1
i

1 . (4)

On the other hand, the discriminator network D tries to tell the real pair (xL, yF) from the 

synthetic pair xL, yF  by maximizing Eq. (2). Therefore, training the discriminator network 

corresponds to maximizing

L𝒟 Dγ = ∑i logDγ xL
i , yF

i + log 1 − Dγ xL
i , Gβ Fα xL

i , xT1
i . (5)

2.3 Training LA-GANs

The fusion network F together with the generator network G and the discriminator network 

D are trained in an alternating manner as [10]. Specifically, we first fix F and G to train D, 

and then fix D to train F and G. As shown in Eq. (2), the training of F, G and D is just like 

playing a min-max game: F and G try to minimize the loss function while D tries to 

maximize it, until an equilibrium is reached. In the test stage, only the fusion and generator 

networks are needed for synthesis. All networks are trained by Adam solver with mini-batch 

stochastic gradient descent (SGD) and the mini-batch size is 128. The training process runs 
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for 200 epochs, and the learning rate is set to 0.0002 for the first 100 epochs, and then 

linearly decays to 0 in the second 100 epochs.

3 Experiments and Results

We validate our proposed method on a real human brain dataset consisting of 8 normal 

control (NC) subjects and 8 mild cognitive impairment (MCI) subjects, each with an L-PET 

image, a T1-MRI image and an F-PET image. Subjects were administered an average of 203 

MBq of [18F]FDG. The PET scans were acquired by a Siemens Biograph mMR PET-MR 

scanner. For each subject, the PET images are aligned to its T1-MRI to build the voxel-level 

correspondence via affine transformation. Each aligned image has the resolution of 2.09 × 

2.09 × 2.03 mm3 and the image size of 128 × 128 × 128. Considering the small number of 

the training samples, we extract 125 large 3D image patches of size 64 × 64 × 64 from each 

image, rather than directly using the entire 3D image, to train the deep model. In addition, to 

make full use of available samples, we follow the widely used “Leave-One-Subject-Out” 

strategy. To train the proposed locality adaptive convolution network, we further partition 

each large image patch into 4096 non-overlapping 4 × 4 × 4 regions for fusion. Our method 

is implemented by PyTorch, and all the experiments are carried out on an NVIDIA GeForce 

GTX 1080 Ti with 11 GB memory.

Comparison with the State-of-the-Art PET Estimation Methods

We compare our method with the following state-of-the-art multi-modality based PET 

estimation methods: (1) mapping based sparse representation method (m-SR) [2], (2) tripled 

dictionary learning method (t-DL) [4], (3) multi-level CCA method (m-CCA) [5], and (4) 

auto-context CNN method [3]. The averaged PSNR are given in Fig. 2(a), from where we 

can see that our proposed method outperforms all the other competing methods, 

demonstrating its effectiveness and advantages. In Fig. 2(b), we show an example visual 

result of our method compared with two methods (m-CCA and auto-context CNN) which 

produce the top two results in the literature. As observed, the estimated images by the m-

CCA method are over-smoothed compared with the real F-PET images due to the averaging 

of the overlapping patches to construct the final output images. Compared with the auto-

context CNN network, our model tends to better preserve the detailed information in the 

estimated F-PET images, as indicated by the red arrows. We argue that this is because the 

adversarial training network used in our model constrains the synthesized images to be 

similar to the real ones.

Comparison with our method using single-modality or multi-channel strategy

To study the contribution of the anatomical information from MRI for PET synthesis and 

evaluate the effectiveness of the locality adaptive fusion network of our proposed model, we 

further conduct experiments to compare our method with its two variants: one using only 

single modality of L-PET [11], and the other using the common multichannel strategy [9] 

for multi-modality. The results are reported in Table 1. First, we can see that our method 

obtains higher PSNR than the single-modality L-PET variant (p-value in paired t-test: 

0.0092 for NC and 0.0036 for MCI), indicating that the anatomical information from MRI 

yields important cues for PET synthesis. Second, compared with the multi-channel variant, 
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our method boosts the averaged PSNR approximately 0.28 and 0.2 for NC and MCI groups, 

respectively. The standard deviation of our method is also smaller than that of the multi-

channel GANs while the median is higher. Also, the paired t-test indicates that our 

improvement from the multichannel one is statistically significant (p < 0.05). Moreover, it is 

found that the number of increased learning parameters induced by adding T1-MRI is 4096 

for our method and 8192 for the multi-channel GANs, suggesting that our model produces 

better performance with less parameters to learn.

We also provide a visual comparison in Fig. 3, where the two leftmost images are the input 

T1-MRI and L-PET images and the rightmost image is the ground-truth F-PET. We can 

clearly see that the synthesized F-PET image of our proposed model has less artifacts than 

those of the single-modality method and the multi-channel method, as indicated by the red 

arrows.

4 Conclusion

In this work, we proposed a 3D locality adaptive multi-modality GANs model for 

synthesizing high-quality PET images from the L-PET and T1-MRI images. Both qualitative 

and quantitative results demonstrate that our method significantly outperforms the traditional 

multi-modality fusion methods used in deep networks, as well as the state-of-the-art PET 

estimation approaches. Our model could also be applied to other related applications such as 

mapping one or two modalities to another modality. In the future, we will investigate the 

potential of our model for general synthesis tasks as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed pipeline for full-dose PET (F-PET) synthesis from low-dose 

counterpart (L-PET) and the accompanying T1-MRI image.
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Fig. 2. 
Comparison with the state-of-the-art PET estimation methods.
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Fig. 3. 
Visual comparison with single-modality and multi-channel GANs methods.
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Table 1.

Quantitative comparison with two variants of our method (single-modality GANs and multi-channel GANs) in 

terms of PSNR. Here, Med. means median.

Method NC subjects MCI subjects

Mean (std.) Med. p-value Mean (std.) Med. p-value

L-PET 19.88 (2.34) 20.68 7.7E–05 21.33 (2.53) 21.62 2.3E–−04

Single-modality 23.94 (2.04) 24.78 0.0092 24.37 (1.95) 24.85 0.0036

Multi-channel 24.31 (1.91) 24.59 0.0391 24.95 (2.01) 25.30 0.0071

Proposed 24.58 (1.78) 25.21 – 25.15 (1.97) 25.49 –
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