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Abstract

Human genetic studies have long been vastly Eurocentric, raising a key question about the 

generalizability of these study findings to other populations. Because humans originated in Africa, 

these populations retain more genetic diversity, and yet individuals of African descent have been 

tremendously underrepresented in genetic studies. The diversity in Africa affords ample 

opportunities to improve fine-mapping resolution for associated loci, discover novel genetic 

associations with phenotypes, build more generalizable genetic risk prediction models, and better 

understand the genetic architecture of complex traits and diseases subject to varying environmental 

pressures. Thus, it is both ethically and scientifically imperative that geneticists globally surmount 

challenges that have limited progress in African genetic studies to date while meaningfully 

including African investigators, as greater inclusivity and enhanced research capacity affords 

enormous opportunities to accelerate genomic discoveries that translate more effectively to all 

populations. We review the advantages, challenges, and examples of genetic architecture studies of 
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complex traits and diseases in Africa. For example, with greater genetic diversity comes greater 

ancestral heterogeneity; this higher level of understudied diversity can yield novel genetic 

findings, but some methods that assume homogeneous population structure and work well in 

European populations may work less well in the presence of greater heterogeneity in African 

populations. Consequently, we advocate for methodological development that will accelerate 

studies important for all populations, especially those currently underrepresented in genetics.
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Historical biases in genetic studies

Nearly a decade ago, 96% of participants in genome-wide association studies (GWAS) were 

of European descent [1]. While European individuals now account for 78% of GWAS 

participants [2], the non-European proportion has stagnated since 2014. African ancestry 

individuals constitute merely 2.4% of participants (although notably account for 7% of all 

associations) [2]. This participant bias results in interpretability gaps by ancestry with 

medically relevant consequences [3,4]. For example, while easily avoidable, African 

American patients were more likely than white Americans to be incorrectly told they have a 

genetic mutation that increases their risk of hypertrophic cardiomyopathy, an early-onset 

life-threatening heart disease, at leading genetic testing labs [5]. Additionally, drug 

metabolism genes such as CYP3A4 contain mutations that can alter dosage requirements, 

but pharmacogenetic variants are disproportionately uncatalogued among African 

populations [6], so genotype-based dosage guidelines are less useful. In the US, the National 

Human Genome Research Institute has prioritized increased diversity in genetic studies [7]. 

This prioritization is an important step that, if heeded, will aid interpretations in medical 

genomics for all ethnicities [8]. Greater inclusivity of African populations in medical 

genomics is important for accelerating genomic discoveries, enabling reconstruction of 

modern human origins, producing results that can be translated across populations more 

accurately, identifying genetic associations with traits for variants absent elsewhere, and 

building research capacity in Africa.

Genetic study biases have not happened in a vacuum, but have had widespread consequences 

for GWAS tools and resources in African populations. Genotyping arrays have traditionally 

been biased towards alleles most frequent and imputable in European populations [9,10], 

compounding biases in which GWAS identify variant associations most common in the 

study population [11,12]. In contrast, array backbones prioritizing SNPs that maximally tag 

variants across all populations improve imputation performance, providing more even 

genomic coverage [13]. Perhaps more importantly, imputation panels are vastly Eurocentric, 

shortchanging representation of the greater haplotypic diversity present in Africans from 

deeper recombination history [12,14,15]. The most widely available African sequencing 

resources have biased representation towards African Americans and West Africans [8,12], 

leaving huge swaths of African diversity uncatalogued.
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Existing challenges to surmount for African genetics studies

To empower African genetic studies and build capacity for research aiding biological 

understanding across a diverse swath of humanity, we review challenges that need to be 

confronted and continually addressed.

Historical

Africa has long been subjected to a violent and oppressive colonial history that has bred 

suspicion and an anticipation of resource exploitation. This understandable mistrust 

continues to strain ongoing relations, with new actors such as China in addition to European 

groups scrambling for African resources [16,17]. The impact on research collaborations is 

evident, with some authors discussing ‘neo-colonial science’ [18]. Such strained relations 

are more pronounced in collaborations involving genetic studies, especially when shipping 

samples out of Africa and the global south [19]. Some discuss ‘genomic sovereignty’ of 

Africans and ownership of African genetic material [20]. Proponents of international 

collaborations argue that working with high income countries will eventually ensure equity, 

justice, and benefit to Africans, with capacity building for genomic research providing 

immediate benefit for African institutions [21], although concerns have been raised about the 

sustainability of these efforts. Ongoing tensions weigh the benefit to Africans by including 

more African researchers and DNA in global research against the challenges of promoting 

African science while integrating and importing the best science around the world into 

Africa.

Infrastructural

Conducting genetic studies in Africa is not an easy task. Infrastructural problems can 

include unreliable or no electricity in clinics and laboratories that process samples, 

impassable roads in some areas, and crime or political instability making some areas 

dangerous and/or inaccessible for researchers. Many African countries do not have sufficient 

laboratory equipment or facilities for genomics research, and most require imported 

reagents. Importing is not only time-consuming, but also costly—reagents are often many 

times more expensive in Africa than Western countries in real terms, not including shipment 

costs. Biobanks are less abundant, partially due to power interruptions affecting storage and 

processing of samples. Some African institutions have experience in large-scale human 

genetic analyses; the H3ABionet consortium has developed core bioinformatics 

infrastructure in Africa [22]. However, high-speed internet connections and powerful 

computers are not always available to access large data files. Human resource issues can also 

be a challenge, namely high staff turnover due to inadequate pay, competing demands for 

time from qualified staff, and/or too few qualified staff. Relatedly, brain drain is a major 

issue, as many skilled African scientists leave the continent in search of greener pastures 

[23,24]. To be sensitive to these challenges, some major international research initiatives 

such as H3Africa have required a relatively long embargo period on publication for African 

researchers [25]. Connecting African researchers to adequate computing power (e.g., stable 

wireless connections to cloud computing) may offer more direct means to facilitate research. 

Compared with the relative ease of acquiring samples in the global north, the focus of 
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databanks on European/white populations is unsurprising, but it is nonetheless imperative 

that researchers rise to these challenges for the benefit of all.

Funding

Genetics research is expensive, and a lack of attention from African policy makers in 

resource-limited settings is primarily driven by competing priorities for more immediate 

public health concerns, including infectious diseases over inherited conditions [26,27]. Data 

generation is still the most expensive part of genomics, whereas data analysis is more 

affordable and therefore a viable option for capacity building [28]. Furthermore, journals 

from the developed world often exist behind expensive pay-walls that are inaccessible to 

some researchers and do not always encourage publication of work from the global south, 

often returning manuscripts without review citing a lack of “sufficient general interest.” 

Having fewer publications has a knock-on effect on future grant funding and attracting 

students.

Nearly all funding for genetics research comes from outside Africa, raising questions for 

African scientists about the utility of investigating disease genetics with less long-term 

funding security and intellectual freedom to prioritize their field of study. Incentives differ 

from the West, heavily favoring medicine over research training—clinical demands are 

heavier, PhD programs are scarce, and research often does not pay. However, some external 

research funding in genomics, most notably by the Human Heredity and Health in Africa 

(H3Africa) Initiative, are being led by African scientists. H3Africa funding by the NIH 

(USA) and Wellcome Trust (UK) totals more than $216 million in 2015 for 185 projects in 

28 African countries [29]. Its aim is to build the capacity for African scientists to conduct 

genomic research on heritable diseases afflicting Africans [30,31]. This international support 

is essential for African geneticists to continue their research [21].

Ethical

Ethics review boards may lack familiarity with genomics research, which creates challenges 

for advising long-term, large-scale collaborative genetic studies that can in turn delay funded 

projects [28]. These challenges are partially driven by restrictive ethical guidelines and 

uncertainty about the benefits of such studies to African populations [28]. Unlike in the US, 

genetics projects are subject to ethics review both at the provincial and national levels as a 

legacy of colonialism, which can lead to year-long delays. Ethics approval by regulatory 

bodies in Africa is mostly restricted to project-specific research questions, often raising 

questions around ‘broad consent’ and ‘indefinite storage’ of samples that are not easy to 

answer. A primary concern about loss of control and ownership over the DNA samples 

arises when they are shipped abroad [32]. Burgeoning interest in building large-scale 

genomics collaborations in Africa has resulted in a recent best practices ethical framework 

for genomics research and biobanking in Africa [25].

Some communities have set up local councils to oversee research projects and publication of 

results allowed from the research [33]. While these are excellent in theory, in practice there 

can be long delays, misunderstanding due to unfamiliarity of lay people with jargon, and a 

lack of continuity in leadership. Consequently, even when extensive consultation on planned 
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or existing research projects has taken place, this often needs to be repeated at each 

subsequent visit. New council leaders sometimes try to enforce sample destruction before 

allowing further sampling, even when consent forms specify long sample storage. A middle 

ground of continuous community leadership from members more familiar with research 

methodology and terminology that is acceptable to the council would be ideal, but is often 

infeasible. Furthermore, while returning scientific discoveries to communities or participants 

should be the norm, re-contacting study participants in communities can be challenging as 

people lose cell phones or move for employment opportunities.

Respect and consent

To ensure mutual respect in collaborative African genetics studies, it is important to avoid 

generalizing “African-ness” in such a vast continent, comprising not only more genetic 

diversity than the rest of the world, but also many cultures, language groups, and world 

views, some of which are marginalized or discriminated against. Thus, it is important to 

obtain perspectives from diverse continental Africans when communicating science broadly. 

Furthermore, meaningful engagement with African colleagues is vital to healthy 

collaborations and to avoid tokenism. Additionally, obtaining informed consent for 

genomics research can be complex in any setting, but poses more challenges where there are 

lower income and literacy levels or language barriers. Furthermore, some diseases such as 

mental illness are subject to greater stigma in some African communities, requiring cultural 

awareness and sensitivity to differences. Participants may misunderstand the study purpose 

or expect benefits that are not included, such as better disease treatment [34] or individual-

level ancestry results useful for land claims. Additionally, in some African societies, 

decisions to participate in research studies are made collectively as well as at the individual 

level [35], necessitating consultation with community leaders.

Communicating science respectfully can be challenging when nomenclature is subject to 

sociopolitical debate, as with the descendants of the original hunter-gatherers of Southern 

Africa. In an attempt to be politically correct, many population geneticists use “KhoeSan” to 

refer to the Khoe and San groups collectively. However, the San Council of Southern Africa 

prefers to keep these terms separate (i.e., San and Khoe or Nama) to denote different 

cultures. Many “San” individuals prefer being called “Bushmen,” while others consider the 

word to be pejorative. Labels are only useful insofar as they are universally informative, and 

respect is imperative. Wide pre-publication consultation is obviously necessary [36], but 

complete consensus is unlikely.

GWAS design challenges in Africa

Unlike most of the GWAS and complex trait studies that have been conducted in Europe, 

assumptions of homogeneous population structure are more likely to be violated in Africa, 

as few populations have remained isolated and unchanged over the past 4000 years [37]. 

This higher level of diversity across African populations relative to others [38,39] creates 

greater challenges when attempting to balance case/control collections at the outset of many 

studies due to greater complexities in population structure, including variable LD patterns 

between study sites. Consequently, false positives are more likely to arise from confounding 
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due to unaccounted population stratification, especially for rare variants, which are 

challenging to analyze [40,41]. Higher rates of genetic diversity also result in a larger 

number of effective tests, meaning that the standard multiple testing threshold of p < 5e-8 

needs to be roughly twice as stringent in African GWAS (p < ~2.5e-8) [42]. Additional 

challenges arise from a dearth of large, easily accessible reference panels in Africa. While 

the African Genome Variation Project and related projects have worked to ameliorate this 

gap, data access is somewhat more challenging and slower than the publicly available 1000 

Genomes Project [15].

Because some complex trait genetics methods assume homogeneity that is more often 

violated in African populations with higher diversity, methodological advancements that 

explicitly account for structure over a range of time periods will be especially useful [43]. 

For example, heritability estimates in the presence of admixture can be biased and inflated 

[44]. Alternatively, higher heritability estimates may be driven by higher relatedness among 

geographically proximal individuals. The presence of structure can create challenges 

disentangling the heritable component due to genetics versus similar environments [44]. 

Other methods for inferring heritability (e.g. LD score regression) are suboptimal in the 

presence of admixture, as LD from these populations are often not reflective of the study 

cohort and vary locally [45,46]. Other methods for inferring genetic architecture, including 

Bayesian linear mixed models (LMMs) such as the Bayesian sparse LMM (BSLMM), Bayes 

R, and BOLT-LMM, have been shown to be effective at controlling population stratification, 

cryptic relatedness, and also increase power in structured populations [47-50]. These studies 

demonstrate that more advanced GWAS methods may be more fruitful generally, but 

especially in Africa where higher rates of substructure are typical.

Successful GWAS strategies in African and African descent populations

Despite these challenges, many successful examples illuminate paths forward. Due to high 

prioritization of infectious disease studies, most positive examples exist for genetic 

susceptibility studies, including of tuberculosis [51-53], malaria [54], sickle cell disease 

modifiers [55], HIV [56-59], nontyphoidal Salmonella [60], and trypanosomes [61]. 

Significant findings were aided by simpler genetic architectures and higher genetic risk 

divergence between endemic cases vs high-risk controls due to natural selection. Some 

challenges of studying these evolutionarily important traits, however, are high levels of 

genetic diversity in the parasite and variable LD patterns among populations, sometimes 

necessitating specialized association approaches that allow for multiple independent origins 

of resistance loci and/or allelic heterogeneity [54]. Some anthropometric studies have faced 

similar challenges and advantages due to high divergence, natural selection, and genetic 

architectures, such as in skin pigmentation [62,63]. In smaller cohorts that are underpowered 

for discovering individual loci, gene-based associations can sometimes be useful in 

conjunction with functional follow up [64]. Studies of traits with elevated prevalence in 

African Americans, such as BMI, prostate cancer, and low birth weight [65-67] have 

analyzed genome-wide significant loci by local ancestry or more easily fine-mapped variants 

with narrower LD.

Martin et al. Page 6

Curr Opin Genet Dev. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, multiethnic studies including African Americans have demonstrated the utility 

of integrative genomics approaches for fine-mapping, e.g. with pulmonary function variants 

[68]. Several recent GWAS reviewed here have used linear mixed models, with a random 

effect to account for genetic relatedness. These models are useful but can produce inflated 

heritability estimates, which can be corrected using a second random effect to measure 

spatial distance as a proxy for environmental effects [69].

Advantages and opportunities for genetic architecture studies in Africa

The opportunities for large-scale genetic studies in Africa are ample. Growing inclusion of 

African Americans in medical genomics studies is crucial, but still leaves behind many 

populations and large swaths of sub-Saharan African genetic diversity, which may greatly 

increase our understanding of complex trait genetic architecture [70]. There is more genetic 

and often phenotypic diversity in Africa that has been understudied, meaning there is 

considerable low-hanging fruit for novel findings and insights into the genetic architectures 

and etiologies of complex traits. More rapid LD decay in Africa also means there is greater 

fine-mapping resolution to pinpoint causal variants influencing traits than will be discovered 

in any other global population [71], as reviewed recently [72]. For example, several variants 

in TCF7L2 were associated with type 2 diabetes in European and East Asian populations in 

the early GWAS era, but candidate loci were narrowed considerably via comparison with 

more diverse West African cohorts, even with smaller cohort sizes [73].

Major opportunities also present themselves in precision medicine. For example, polygenic 

risk scores have been of growing interest as large-scale GWAS now offer low-cost tests that 

can outpace the clinical status quo [74,75]. However, these scores generalize poorly across 

diverse populations [11]. European GWAS results consistently predict genetic risk several-

fold less accurately in non-Europeans, performing the worst in African Americans (and by 

extension, likely even worse in eastern, central, and southern African populations) [76-79]. 

A typical but somewhat misguided argument in favor of immediate translational 

implementation of polygenic risk scores is that standard clinical lab tests from blood panels 

are often differentially informative across ethnicities and more reliable in European descent 

populations. However, interpretability gaps for current clinical tests are less acutely and 

consistently worse in non-European populations than genetic risk prediction; the underlying 

biology remains the same, such that for all diseases, drugs do not routinely work many-fold 

better in European than African-descent populations. Further, new population-specific 

interpretation of common clinical lab tests enables better prognostic value than existing 

reference intervals [80]. In contrast, the most significant and highest frequency genetic 

variants from GWAS used to predict genetic risk are not likely to be the same across 

populations, even when the underlying causal variants are the same. This is due to GWAS 

discovery biases, as variants used to predict risk tend to explain more phenotypic variation in 

the study population. While improved analytical methods hold promise, the only way 

genetic prediction power of inherited diseases in non-Europeans can truly be made equal is 

with massive investments to produce similar-sized GWAS of these phenotypes in non-

European populations. Additionally, discoveries based on African genetics contribute to 

global knowledge, but many African population groups are sufficiently different [37] that 
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insights made from trans-ethnic studies can similarly be gained by analyzing multiple 

GWAS of different African populations.

As a major genetics mission is to understand the biological basis and evolutionary origins of 

diseases and traits and use this knowledge to perform biologically-informed drug discovery, 

human evolution tells us that Africa has a huge role to play. Progress so far has been slower 

due to a need for increased capacity and collaborative engagement with African 

investigators. Several outstanding examples of this potential already exist, such as the 

Southern African Human Genome Programme (SAHGP), one of the first genetic 

architecture studies of African participants fully funded and analyzed by Africans [81]. 

International collaborations have also blazed the trail for meaningful collaborations with 

deep investments in building research capacity in human genomics, such as MalariaGEN, 

partnerships by the African Center of Excellence for Genomics of Infectious Diseases 

(ACEGID), as well as the Global Initiative for Neuropsychiatric Genetics Education in 

Research (GINGER) program. Calls from African researchers for funding and building 

research capacity in genetics [70,82] should be thoughtfully heeded to ensure that those with 

the greatest public health needs are not the last to benefit.
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Figure 1 –. Map of publicly available African samples and corresponding language families from 
previous studies.
Reference data comes from several previous studies [12,15,38,39,83-87]
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