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Abstract

The cell microenvironment has emerged as a key determinant of cell behavior and function in 

development, physiology, and pathophysiology. Extracellular matrix (ECM) within the cell 

microenvironment serves not only as a structural foundation for cells, but also as a source of three-

dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. 

Increasing evidence suggests that the 3D character of the microenvironment is required for 

development of many critical cell responses observed in vivo, fueling a surge in the development 

of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in 

the design of such materials has improved control of cell behaviors in 3D and advanced the fields 

of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and 

gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-

microenvironment interactions continue to overturn much early progress in the field. Key 

challenges continue to be dissecting the roles of chemistry, structure, mechanics, and 

electrophysiology in the cell microenvironment, and understanding and harnessing the roles of 

*Corresponding author: fengxu@mail.xjtu.edu.cn.
#These authors contributed equally to this work

Notes
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Chem Rev. Author manuscript; available in PMC 2019 May 01.

Published in final edited form as:
Chem Rev. 2017 October 25; 117(20): 12764–12850. doi:10.1021/acs.chemrev.7b00094.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



periodicity and drift in these factors. This review encapsulates where recent advances appear to 

leave the ever-shifting state of the art, and highlights areas in which substantial potential and 

uncertainty remain.

Graphical Abstract

The cell microenvironment has emerged as a key determinant of cell behavior and function in 

development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell 

microenvironment serves not only as a structural foundation for cells but also as a source of three-

dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. 

Increasing evidence suggests that the 3D character of the microenvironment is required for 

development of many critical cell responses observed in vivo, fueling a surge in the development 

of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in 

the design of such materials has improved control of cell behaviors in 3D and advanced the fields 

of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and 

gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell–

microenvironment interactions continue to overturn much early progress in the field. Key 

challenges continue to be dissecting the roles of chemistry, structure, mechanics, and 

electrophysiology in the cell microenvironment, and understanding and harnessing the roles of 

periodicity and drift in these factors. This review encapsulates where recent advances appear to 

leave the ever-shifting state of the art, and it highlights areas in which substantial potential and 

uncertainty remain.

1. Introduction

Cells, studied on two-dimensional (2D) substrata for centuries, are now recognized to be 

controlled strongly by the highly structured and heterogeneous mix of neighboring cells, 

soluble factors, extracellular matrix (ECM), and biophysical fields that comprise their three-

dimensional (3D) microenvironment.1–3 This microenvironment not only serves as structural 

support for cells to reside within but also provides diverse biochemical and biophysical cues, 

such as adhesion ligands, topological features, mechanical resistance, and an adaptable and 

degradable scaffold for regulating such cell behaviors as spreading, proliferation, migration, 

differentiation, and apoptosis.4–5 In addition, the ECM regulates the distribution, availability, 

and mobility of soluble factors and mediates mechanical and electrical fields. Therefore, an 

important focus has been the development of materials that mimic the structures, properties 

and functions of native ECM and enable the study of cells in vitro in a realistic and 

adaptable cell microenvironment.6–7 Through functional and biomimetic material designs, 

progress in engineering the cell microenvironment has found wide applications in tissue 

regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and 

gene therapy.8–13 New materials and fabrication technologies are emerging rapidly.14–15

However, many central mysteries remain. Following the development of 3D cell culture in 

the 1980s and 1990s,16–18 a recognition emerged that 2D cell culture fails to produce many 

cell response observed in vivo.19–20 A challenge in the field that persists to this day is that 

much of the field’s view of the cell microenvironment, and indeed of cell biology, is based 

upon observations of cells plated on 2D substrata. Although data are limited, emerging 
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studies of the 3D cell microenvironment have provided a picture of cells and their 

microenvironments that differs substantially from the prevailing views in the literature. A 

key example to serve as an introduction is the role of the glycocalyx. This layer of 

glycoproteins is not known to develop fully in 2D cell culture, but might be critical to 

mechanotransduction by epithelial cells that line the vasculature.21–22 Are endothelial cells 

(ECs) that maintain their 2D endothelial phenotype when cultured in 3D representative of 

ECs in vivo, or must further adjustments be made to the materials in their 

microenvironment? In the case of chondrocytes, 30-year-old quick-freeze/deep etch electron 

micrographs have shown the existence of nano-structured proteins at the cell periphery, in 

place of a disordered endothelial-like glycocalyx.23 What are these structures in the cell 

microenvironment, and how do we regenerate them? A challenge throughout the field of cell 

microenvironment engineering is that idealized systems are needed not only to reproduce, 

but also to identify and characterize structures such as these and their roles in tissue 

function. Related challenges are a theme for critical re-evaluation of the field throughout this 

review.

Despite these challenges in understanding the details of the cell microenvironment, 

biomimetic materials replicating bulk ECM macro-environment have become widely 

available, and have been used effectively to foster development of engineered tissues.13 

These are typically based on 3D polymer scaffolds and hydrogels, which could afford 

nutrient transport, biocompatibility, structures similar to native bulk ECM, and tunable 

biochemical and biophysical properties.24–27 In the following sections, we describe 

applications of the 3D polymer scaffolds and the three common categories of hydrogels: (1) 

naturally derived hydrogels based upon decellularized ECM, reconstituted proteins, and 

polysaccharides; (2) synthetic hydrogels including supramolecular hydrogels; and (3) hybrid 

hydrogels including polymer hybrid and nanocomposite hydrogels. However, we reiterate a 

primary limitation of the field: although the bulk properties of ECM have been well 

characterized, the nature of the local cell environment is largely unknown, including 

variations amongst cell types and developmental stages. We believe that design for cell 

microenvironmental properties rather than just bulk ECM properties represents a substantial 

opportunity in the field of tissue engineering.

Further sources of uncertainty in the field, highlighted throughout the article, are the much-

debated and likely interacting roles of biochemical and biophysical factors in design of 

materials for the cell microenvironment.28–30 Because even the definitions of these factors 

are overlapping, we list our working definitions up front and note that the field is not clear 

on which factors best belong in which category. In the category of biochemical design 

factors, we include cell adhesion ligands, soluble factor immobilization and chemical 

functional groups. Cell adhesion ligands can be provided inherently by the biochemistry and 

by the biophysical structure of naturally derived proteins that compose biomimetic materials, 

or by cell adhesion peptides incorporated into polymer networks via chemical modification.
31 Soluble factor immobilization involves the biochemistry and biophysics of physical (non-

covalent) and chemical (covalent) interactions between soluble factors and hydrogel 

networks,32 with bioactivity of the soluble factors strongly affected by different 

immobilization strategies, spatial distributions, and bound/released states. Chemical 

functional groups on the surfaces of hydrogel networks dominate properties of biomimetic 
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materials such as the hydrophilicity and charge, and can be modified to control protein 

adsorption, cell adhesion, cell function and cell fate.33

Under the heading of biophysical design, we include structural features, mechanical 

properties, degradability, and electrical conductivity.34 Cell behavior can be impacted by the 

sensing of hierarchical structural features ranging from the macroscale to the micro- and 

nanoscales, and a range of biomimetic materials exist to exploit this, typically porous and 

fibrous structures.35 Mechanical properties of the ECM, including nonlinearity, 

viscoelasticity,36–37 and the ECM’s fibrous nature,38–41 significantly affect certain cell 

behaviors42 and the complicated and dynamic feedback between the ECM and cell 

mechanics.43–46 Spatiotemporal modulation of material mechanical properties has also been 

performed to mimic heterogeneous and dynamic native cell mechanical microenvironments.
47 The ECM that is degradable by technologies including enzymatic, hydrolytic, and 

photolytic degradation exhibits a range of biochemical and biophysical effects on cells.48 

Finally, development of electrical conductivity by pacing of cells and by use of biomimetic 

materials with conductive polymers or oligomers, gold nanoparticles (AuNPs), carbon 

nanotubes (CNTs) and graphene have found utility in cardiac and neural tissue enigneeirng.
49–50

The aforementioned coupling of these biochemical and biophysical properties is both a 

challenge and an opportunity for development of materials for control of cells by 

manipulation of the microenvironment. As this review will expand upon, materials are 

needed for fundamental research to independently control their properties and identify the 

effects of individual biochemical and biophysical cues on cell behaviors.14–15

This review aims to evaluate the state of the field of functional and biomimetic materials for 

engineering the 3D cell microenvironment in the context of several challenges outlined 

below. This review is broad in scope by design, and reviews only a tiny fraction of the 

massive literature that was selected to describe a few important areas of progress and 

challenge. We apologize in advance for having to omit a very large number of excellent 

contributions. The review continues in Section 2 with descriptions of some key known 

components of the cell microenvironment, and highlights some open frontiers. Section 3 

then describes the strengths, weaknesses, and uncertainties of biomimetic material systems 

designed to control biochemical and biophysical aspects of the 3D cell microenvironment. 

Section 4 reviews these materials from the perspectives of tissue regeneration, in vitro tissue 

models, cell manufacturing, immunotherapy, and gene therapy. We finally conclude with 

some thoughts on open challenges and future perspectives.

2. The Cell Microenvironment

Cells reside in a complex, heterotypic and dynamic set of biochemical and biophysical cues, 

termed the “cell microenvironment”. For stem cells, a widely used alternative term is 

“niche,”51–54 originally coined by Schofield55 in 1978 to describe the hematopoietic 

microenvironment. While cell microenvironments are highly varied, the microenvironments 

of multicellular animals all share some common features of composition and function. 

Broadly, the four key components of the cell microenvironment include neighboring cells, 
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soluble factors, the surrounding ECM, and biophysical fields, which provide diverse 

biochemical and biophysical cues to synergistically and antagonistically regulate cell 

behaviors and functions such as spreading, migration, self-renewal, differentiation, and 

apoptosis (Figure 1).

Two central challenges in understanding the cell microenvironment in vivo are that it is 

dynamic and that feedback from the cell itself is an important factor in these dynamics. In a 

healthy organism, cues present themselves in a well-orchestrated manner.56–57 

Understanding the implications of these dynamics in regulating cell behaviors is essential for 

improving the development of biomimetic materials for both engineering the cell 

microenvironment and furthering many biomedical applications.58–60 In this section, we 

introduce the four abovementioned key components of the cell microenvironment, and 

highlight how resolving uncertainties in their biochemistry, physics, and dynamics 

represents an important frontier that has the potential to be blazed through development of 

new biomaterials systems for engineering cell microenvironments.

2.1. Neighboring Cells

Cells in the human body do not live in isolation but rather interact with a range of both 

similar and different types of cells, and form diverse cell-cell communications and 

interactions that play crucial roles in cell and tissue morphogenesis and function.61–64 

However, what is not known in general is which cells are important to a specific cell type 

over the course of its lifecycle. This forms a key challenge in the field, and is a focus of 

ongoing studies using integrated organ-on-a-chip and co-culture models described below.

The pathways by which cells can interact with their neighboring cells include both direct 

(i.e., cell-cell contact) and indirect (e.g., mediated by soluble factors, as discussed in the next 

subsection) mechanisms. Direct cell-cell interactions include physical contact from junctions 

such as tight junctions, anchoring junctions, and gap junctions, and distant cell-cell 

interactions that take advantage of the long-distance nature of mechanical communication 

through fibrous ECM.38,40,65 We discuss the former in this section, and the latter below in 

the section on ECM.

Tight junctions, or occluding junctions, are the closest cell-cell contacts that consist of 

multi-protein complexes (mainly claudins and occludins), which join together to link the 

membranes and cytoskeletons of adjacent cells, especially epithelial cells. Tight junctions 

can hold cells together, prevent the transport of water and soluble factors through the gaps 

between cells, and separate tissues and body cavities from their surroundings. Anchoring 

junctions direct the cell-cell and cell-ECM adhesions. Three types of anchoring junctions 

have been identified: adherens junctions, desmosomes and hemidesmosomes. The first two 

types can be involved in cell junctions and are usually mediated by cell adhesion proteins, 

such as cadherins (a family of calcium-dependent adhesion molecules) or related proteins 

(e.g., desmogleins and desmocollins).66 Such junctions play important roles in maintaining 

the shape and tension of cells and tissues, as well as in cell-cell signaling.67 Gap junctions, 

or communicating junctions, are mainly composed of connexin proteins that form open 

pores or channels across the plasma membrane through which small molecules and ions 

(e.g., Ca2+) can pass freely. Consequently, gap junctions play a crucial role in coupling the 
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metabolic activities of adjacent cells and synchronizing the contractions of electrically 

excitable cells, such as cardiomyocytes.68 In addition to the above cell junctions, there also 

exist direct cell-cell interactions mediated by the selectin and immunoglobulin (Ig) 

superfamilies, which are commonly found in the immune system. These are considered 

transient interactions because they do not involve the linking of cytoskeletons between 

adjacent cells.

Direct cell-cell interactions are tightly regulated by a range of microenvironmental cues and 

signaling pathways.69–70 Dysregulation of direct cell-cell interactions in vivo can cause 

aberrant cell behaviors and pathologies, such as metastatic cancer.71–74 Numerous in vitro 
cell co-culture studies have been reported and demonstrated the important roles of direct 

cell-cell interactions in regulating cell behaviors and tissue functions.75–77 For instance, the 

co-culture of MCF-7 cancer cells with fibroblasts in alginate microparticles has been shown 

to induce the formation of a pro-inflammatory environment and increase both the tumor 

progression and angiogenic potential of MCF-7 cells.78 The co-culture of hepatocytes and 

nonparenchymal fibroblasts has shown that maximizing heterotypic cell-cell contact leads to 

the increased synthesis of urea and albumin and enhanced hepatocyte function.79 An 

increase in homotypic cell-cell contact area has also been shown to enhance both the 

osteogenic and adipogenic differentiation of human mesenchymal stem cells (hMSCs).80 

Another key example is the synthesis of engineered heart tissue, in which myofibroblasts are 

required to bring cardiomyocytes into sufficiently close proximity to one another to promote 

the formation of myofibrils.81–82

We note that the direct cell-cell interactions are relatively well understood not only owing to 

immunofluorescence imaging, but also owing to materials breakthroughs, including 

microfluidic co-culture platforms that were developed specifically to examine these 

interactions.83–84 The characteristics of microfluidic technologies, such as miniaturization, 

automatization and integration, endow researchers with the ability to mimic complex, 

physiologically relevant microenvironments for culturing different cell types, such as 

immune cells, stem cells, cancer cells and stromal cells.85–87 Moreover, microfluidic co-

culture systems, including those based on valved microfluidics,88 microfluidic cell trap 

arrays,89 and droplet microfluidics,90–91 have the ability to control cell-cell interactions at a 

single-cell resolution in a high-throughput manner by generating and manipulating cell pairs 

with hydrodynamic forces and/or other physical forces.92–93 Such high-throughput, single-

cell-level co-culture systems can simplify the complexity of cell-cell interactions and 

provide a wealth of information related to cell heterogeneity.

With this wealth of information available about how cell interact with one another through 

direct interactions in a steady state, the field has clearly advanced substantially. However, as 

alluded to above, the dynamics of these interactions and the ways that these dynamics are 

affected by cell-cell feedback represent important frontiers.

2.2. Soluble Factors

Although there is broad recognition throughout the field that cell-cell interactions are 

important, there are relatively few culture systems in which detailed knowledge of the 
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sources and roles of soluble factors over the cell lifecycle are known well. We summarize a 

few of these in this section.

In vivo, cells encounter numerous soluble factors from their aqueous microenvironment, 

including basic nutrients (e.g., oxygen, glucose and amino acids) and soluble signaling 

molecules (e.g., growth factors, cytokines, hormones and other small molecules). Among 

basic nutrients, oxygen has relatively low solubility in aqueous media and is considered the 

most readily depleted.94 The inefficient supply of oxygen has been a major obstacle that has 

restricted the successful engineering of thick and complex tissue constructs. The need to 

overcome this limitation has led to the development of vascularization tissue engineering 

and oxygen-generating biomaterials.95 The oxygen concentration (usually described by 

oxygen tension) can have significant effects on cell behaviors that vary with cell type. For 

instance, low oxygen tension (i.e., hypoxia) has been demonstrated to benefit the 

maintenance of stem cell pluripotency,96–97 promote the proliferation of cardiomyocytes for 

heart regeneration,98 and enhance tumor angiogenic responses and progression.99–102

Among soluble signaling molecules, growth factors are the most widely investigated cues 

for engineering the biomimetic cell microenvironment.2,103–104 During development, each 

cell has its own specific growth factor microenvironment, in which growth factors can be 

generated from the same cell (autocrine signaling), nearby cells (paracrine signaling), and/or 

the circulatory system (endocrine signaling). Many growth factor classes have been 

identified since the first identification of nerve growth factors (NGFs). Those studied 

extensively in the context of developing 3D cell culture systems include bone morphogenetic 

proteins (BMPs), epidermal growth factors (EGFs), fibroblast growth factors (FGFs), 

vascular endothelial growth factors (VEGFs), transforming growth factors (TGFs), 

hepatocyte growth factors (HGFs), and platelet-derived growth factors (PDGFs). These 

growth factors, either freely diffusing in aqueous media or immobilized within the ECM, are 

usually present in the form of concentration gradients and are tightly regulated in space and 

time. The local concentration, spatial distribution and bioactivity of growth factors can play 

critical roles in regulating different cell behaviors.105 For example, VEGFs have been shown 

to promote the proliferation of ECs and neuronal precursors, while VEGF concentration 

gradients have been shown to direct the growth of vessels toward hypoxic regions.106–107 In 

addition, many cell types can secrete TGF-β1, which can be immobilized and stored in the 

ECM in an inactive state. The increased secretion of TGF-β1 or an increased level of active 

TGF-β1 has been demonstrated to stimulate the differentiation of fibroblasts into 

myofibroblasts, which is an essential cellular event in both wound healing and fibrosis 

development.108–109 Numerous similar examples can be found for other growth factors. 

Moreover, different growth factors may have crosstalk effects that further regulate cell 

behaviors.110 Considering these and other important roles, the controlled secretion, delivery 

and release of growth factors in the cell microenvironment continue to be areas of intense 

research focus.111

2.3. The ECM

The niche-specific ECM is well-known to be a critical determinant of the physiology and 

fate of living cells. The observation that certain lineage-specific traits arise in MSCs from 
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the elastic stiffness of the substratum on which they are cultured helped launch 

mechanobiology as a modern field.112 However, subsequent work has raised more questions 

than it has answered, especially about the local cell microenvironment. As we emphasize 

throughout this review, the local microenvironment differs in substantial ways from the bulk 

ECM. Amongst the most pressing needs of the entire field are understanding the biophysics, 

biochemistry, and cell-environmental feedback dynamics in the local microenvironment. 

This is largely unknown outside of the context of 2D cell culture, and is largely an open 

frontier in 3D cell culture.

The distinction between the bulk ECM and the ECM within a cell’s local microenvironment 

represents one of the most important open directions both in biological characterization of 

tissues and in development of functional biomimetic materials for engineering the 3D cell 

microenvironment. The standard paradigm of tissue engineering is to provide cells a bulk 

ECM with properties that guide cells to develop or sustain a desired phenotype, and, 

implicitly, to rely upon the cells themselves to create a local 3D microenvironment that 

mimics the microenvironment that would exist in vivo. This in vivo microenvironment is in 

general poorly understood and substantially different from the bulk ECM. An example is the 

glycocalyx, a layer of predominantly proteoglycans that resides on the surface of a great 

many cells. The glycocalyx is typically not represented in 2D cell culture, but is the major 

component of the ventral microenvironment for ECs in vivo (Figure 2).21–22 For 

chondrocytes that are found within articular cartilage, a highly ordered, glycocalyx-like 

structure dominates the cell microenvironment over a scale of tens of nanometers,23 but, 

despite being observed nearly 30 years ago, this structure has not been fully characterized. 

Cartilage tissue engineering, especially in the context of the role of physical factors, is quite 

advanced,113–116 and the important aspects of the cell microenvironment such as mechanical 

and structural cues are clearly established as critical to prevent the “de-differentiation” from 

the chondrocytic phenotype.117–119 However, this has been achieved by providing 

chondrocytes with bulk ECM rather than by explicitly replicating the exquisite 

nanostructured microenvironment. A major opportunity exists for new materials that 

explicitly reconstitute a cell’s local microenvironment rather than just the bulk ECM distal to 

the microenvironment.

In this section, we describe key factors in bulk ECM composition and design, again 

recognizing that a critical rethinking is required when extending from 2D to 3D, when 

comparing the local cell microenvironment to bulk ECM, and when considering 

development of cells over time. We define bulk ECM for this purpose to be a non-cellular 

3D entity composed of insoluble and interlocked macromolecules secreted by cells, and, 

from here out, follow the convention of the rest of the field and refer to this simply as ECM. 

For many cell types, and for the cells of interest in this review, the ECM takes the form of a 

hydrogel. As a major component of the cell microenvironment, this hydrogel not only 

provides structural support for cells to reside within but also provides diverse biochemical 

(e.g., cell adhesion sites and growth factor immobilization) and biophysical (e.g., structural 

features, mechanical stiffness and degradation) cues for regulating cell behaviors (Figure 3).
104,120–123 The composition, biochemical and biophysical properties of the ECM exist in a 

dynamic state that is regulated by cells and their neighbors. ECM homeostasis has been 

widely accepted to be essential for maintaining normal cell behaviors and tissue functions, 
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while destruction of ECM homeostasis can be accompanied by aberrant cell behaviors and 

the occurrence of such diseases as fibrosis and cancer.124–126 A major task for engineering 

the cell microenvironment is to mimic or recapitulate the in vivo forms and functions of the 

native ECM within biomimetic materials. Although the compositions and properties of the 

ECM can be highly varied in space and time, understanding their general characteristics will 

be beneficial to the design of biomimetic materials for engineering the cell 

microenvironment.

2.3.1. Compositions—Generally, the molecular components of natural, gel-like ECM 

can be categorized into two classes: proteins and glycosaminoglycans (GAGs).127 ECM 

proteins mainly include collagen, elastin, laminin and fibronectin. Collagen is the most 

abundant protein in mammals. Over 28 types of collagens have been identified, of which the 

most common types are fibrillar type I, II, III and V collagens and non-fibrillar type IV 

collagens. The distribution of different collagen types varies with tissue type. For example, 

type I collagen is mainly present in skin, tendon, ligament, endomysium and bone, type II 

collagen in cartilage, and type IV collagen in basement membrane. Collagen is a main 

contributor that endows tissues with tensile stiffness and strength, especially at high strain 

levels. Elastin is distributed in skin, arteries, veins, and lungs. It is a highly elastic protein 

that is usually co-localized with microfibrils, such as fibrillin or fibulin, forming elastic 

fibers to endow tissues with stiffness at low strain levels; in addition, elastin promotes the 

elastic recoil of tissues.128 Laminin and fibronectin are important nanoscale adhesion 

proteins that bind cells and other ECM proteins to initiate a variety of intracellular signaling 

pathways.129 GAGs are negatively charged, linear polysaccharides that are swollen with 

water to fill the interstitial space of ECM protein fiber networks.130 Most GAGs are attached 

to protein cores to form proteoglycans (PGs), including sulfated heparin, chondroitin and 

keratin. The main functions of GAGs are to provide compressive resistance for tissues and to 

sequester soluble signaling molecules for controlling cell-soluble factor interactions. In 

addition, non-sulfated GAGs (e.g., hyaluronic acid (HA)) can also interact with cell surface 

receptors, such as CD44, to direct cell behaviors. Through the combination and 

spatiotemporal regulation of the compositions and organizations of proteins and GAGs, the 

ECM needs to provide the cell microenvironment with a full spectrum of biochemical and 

biophysical cues. These cues must guide the cell to produce its own microenvironment that 

reconstitutes the essential elements of what exists in vivo.

2.3.2. Biochemical Cues—The biochemical cues needed to guide cells to reconstitute 

their microenvironment, are only partially known. Substantial effort has been devoted to one 

specific role of the ECM, which is to provide diverse cell adhesion ligands to specifically 

bind cell surface receptors (typically integrins), forming focal adhesions or 

hemidesmosomes.131 Such cell-ECM adhesions are essential for the cellular transduction of 

microenvironmental cues from or mediated by the ECM, thus playing important roles in cell 

survival, spreading, proliferation, migration and differentiation.132–133 Many ECM 

components possess cell adhesion ligands, including proteins (e.g., collagen, fibronectin, 

vitronectin and laminin) and GAGs (e.g., HA). The absence of cell adhesion cues in in vitro 
cell culture systems may cause cell loss and other undesired cell behaviors. Various 

micropatterning and microfabrication techniques, including microcontact printing,134–135 
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photopatterning,136 dip-pen lithography,137 and microfluidics-assisted patterning,138 have 

been developed to control the density and organization of cell adhesion sites on substrates in 
vitro. Moreover, a range of studies have demonstrated the important role of cell adhesion 

sites in spatiotemporally regulating cell such behaviors as cell morphology, migration and 

differentiation.139–141 These technologies have harnessed our mature understanding of what 

chemicals need to be present in the cell microenvironment. As discussed at the end of this 

section, ongoing challenges are identifying the temporal sequence of the presentation and 

appearance of these substances in 3D, and producing materials that present these.47

Another important biochemical role of the ECM, as has been mentioned for GAGs, is to 

serve as a reservoir for sequestering and storing soluble signaling molecules (e.g., growth 

factors), regulating their spatial localization, stability and bioactivity. Such sequestration is 

usually mediated by non-covalent interactions between ECM macromolecules and soluble 

signaling molecules such as electrostatic and hydrogen bond interactions. Examples include 

the binding of TGF-β1 and BMP-2 to collagen II, VEGFs and PDGFs to fibronectin, and 

VEGFs, FGFs and PDGFs to heparin/heparin sulfate.142–144 In addition to presenting cell 

adhesion ligands and immobilizing growth factors, the ECM can also provide diverse 

chemical functional groups, such as carboxyl (–COOH), amino (–NH2) and methyl (–CH3) 

groups on the surface of macromolecular backbones that can directly interact with cells and 

affect cell behaviors. As described below, controlling the time variations of this 

sequestration, storage, and release represent important challenges in the design of materials 

to serve as 3D microenvironments.

2.3.3. Biophysical Cues—From the biophysical perspective, the ECM provides cells 

with cues including the structural presentation of macromolecules, the mechanical stiffness 

of the network of these molecules, and the spatiotemporal variations of these. The ECM of 

most tissues present hierarchically organized, anisotropic structures that can differ 

tremendously from tissue to tissue.145

Structural features of the ECM can have profound effects on cell behaviors across broad 

length scales and are closely related to the performances and functions of tissues. A 

particularly important aspect is the hierarchical structure and organization of ECM fibers 

such as type I collagen fibers. For instance, fiber orientation and alignment can direct the 

orientation/migration of many cell types146–147 through mechanisms including contact 

guidance and the structure-associated organization of cell adhesion ligands.148–149 In 

addition, fiber diameter and density can also affect various cell behaviors, although they are 

usually associated with changes in ECM mechanical properties and biochemical cues.150–152

A second important structural feature is the presentation of pores formed in the interstitial 

space of ECM networks. Pore size and density determine the available space and provide a 

physically confined microenvironment for cell growth. For example, human cervical 

carcinoma (HeLa) cells cultured in a microfluidic cell confinement device show enhanced 

asymmetric and multi-daughter cell division with increased levels of uniaxial confinement.
153 Well-plate mechanical confinement platforms enable culture of massive arrays of cells in 

custom-confined microenvironments.154 Cancer cells of varying origin (e.g., HeLa, A549, 

and A375 cells) displayed uniquely increased abnormal divisions in response to 
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confinement. Organized porous structures (e.g., unidirectionally aligned pores and gradient-

distributed pores) have been widely demonstrated to provide guidance cues for cell growth.
155–156 Considering the important role of structural cues in regulating cell behaviors, 

substrates of varying spatiotemporally controlled topographic structures have been 

fabricated, including pillars,157 pits,158–159 grooves,160–162 tubes,163 wrinkles,164 and 

cracks.165 Studies of cells on these 2D substrates have made remarkable progresses in 

understanding cell-topography interactions, and many excellent relevant reviews already 

exist.166–174 Studies on structural design for engineering the 3D cell microenvironment will 

be reviewed in Subsection 3.3.1.

Native tissues have mechanical properties spanning orders of magnitude, from very 

compliant (“soft,” in the terminology of biomechanics) neural tissues with effective elastic 

moduli of 0.1–1 kPa, to stiff (“hard”) bony tissues, in which portions of mineralized fibers 

can reach effective elastic moduli of over 20 million times higher.175–177 These spatially-

varying mechanical properties, along with associated mechanical cues such as the stress and 

strain fields that are the subject of the next subsection, constitute the mechanical component 

of the cell microenvironment, and their effects on regulating growth, development, and 

sustenance of different cell types are an area of intense research focus.178–179

The first set of results we mention in this context are the classic works of Adam Engler and 

co-workers that effectively launched the modern field of mechanobiology, including the 

discovery that substratum stiffness could direct the lineage specification of MSCs112 and 

that a substratum with a myocardium-mimicking stiffness could promote embryonic 

cardiomyocyte beating.180 Since then, many studies have revealed that matrix stiffness plays 

a significant role in regulating almost all aspects of cell behavior, including behaviors 

involved in tissue and organ development, tissue repair and disease progression. For 

example, matrix stiffness has been shown to direct the growth and differentiation of 

embryonic stem cells (ESCs), leading to organ morphogenesis and maturation.181 In 

addition, when subjected to a matrix stiffness gradient, fibroblasts and MSCs usually show 

directed migration behavior towards stiffer substrata, a behavior termed durotaxis 182–184 

that is believed to contribute to tissue repair.182 Moreover, matrix stiffening is associated 

with many cancers and pathological fibrosis, with abnormal dynamic changes in matrix 

mechanical properties promoting tumor cell invasion and myofibroblast differentiation.
185–189

However, a challenge for engineering artificial cell mechanical microenvironments is that 

mechanical properties vary over time in a manner that involves feedback between the cells 

and the ECM. The idea that a single mechanical set point for cells exists is often termed 

“tensional homeostasis” and is believed by many to be essential for maintaining normal cell 

and tissue functions.4,190–191 This concept is slowly giving way to a more dynamic picture 

of cell and tissues, with the nonlinear viscoelastic mechanical properties of the ECM and 

their effects on cell mechanical responses constituting an area of intense research activity.
192–195 In vitro studies performed to explore underlying mechanisms of 

mechanotransduction (i.e., how cells sense and convert mechanical cues into 

bioelectrochemical activities) are enriching our knowledge of how to design bulk ECM for 
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engineering the cell microenvironment and providing potential molecular targets for 

mechanotherapy.196

Many ECM components, typically the protein components, including collagen, elastin, 

fibrin, fibronectin and laminin, have cleavage sites that are specifically sensitive to cell-

secreted enzymes, such as matrix metalloproteinases (MMPs), plasmin and elastase, 

showing cell-mediated degradation properties. These can generate forces through a 

Brownian ratchet mechanism.197 Such cell-mediated ECM degradation is a common process 

in ECM remodeling and plays a crucial role in cell migration, proliferation and 

differentiation. For example, EC and tumor cell invasion in collagen have been shown to 

require the activation of collagenases (e.g., MMP-1 and MMP-8).198–199 MSC 

differentiation has been found to be directed by degradation-mediated cell contraction.200 As 

an important parameter for characterizing degradation, the ECM degradation rate is tightly 

regulated by cells through the controlled secretion of MMPs and tissue inhibitors of MMPs 

(TIMPs), which is particularly important for maintaining ECM hemostasis.201 Abnormal 

changes in MMP and TIMP activity might be related to aberrant ECM degradation and 

remodeling, and pathological breakdown of connective tissues.124

We note that processes like those described above arise from closely coupled biochemical 

and biophysical ECM cues. These are in most cases closely interconnected, and the 

alteration of one is usually accompanied by the alteration of the other. For instance, ECM 

degradation is typically accompanied by structural reorganization and decreasing 

mechanical stiffness. Understanding this coupling and its effects on cell function is an 

important goal of in vitro studies based on biomimetic materials with independently 

controlled properties.

Despite the progress listed in this section, much of our understanding of the biophysical cues 

within the cell microenvironment is in a state of flux. Recent mechanical modeling has 

shown that the fibrous nature of ECM proteins provides for a mechanical environment that 

differs strongly from that presented by a continuous polymer.38–39,44 The fibrous nature of 

tissues has long been known to dominate the properties of the bulk ECM, and this has 

motivated a large literature on hyperelastic, transversely isotropic constitutive models for 

tissues. However, what has been identified more recently is that the fibrous nature of the 

ECM creates the possibility of long-distance communication between cells and their 

neighbors, and can enable cells to remodel the mechanical properties of their local 

environment through cyclical loading.38,40,65 The latter can be achieved by both plasticity of 

crosslinks between fibers and by physical re-arrangement of fibers. The “molecular clutch” 

type relationships that describe how cells interact with the materials around them through 

dynamically cycling focal adhesions202–204 are fundamentally altered when cells are 

cultured upon a nonwoven mesh of nanofibers.16,205 This emerging understanding of how 

cells respond to bulk versus fibrous materials has critical implications for the development 

of tissue engineered materials, and must be incorporated into the new generation of fibrous-

based biomaterials for engineering the cell microenvironment in 3D.206–207
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2.4. Physical Fields

In addition to the biochemical and biophysical cues described above, cells in vivo 
experience, sense, and respond to a range of physical stimuli including strain and stress, 

electrical, magnetic, acoustic and thermal fields. Here, we group these physical cues under 

the heading of physical fields to distinguish their effects from those that arise from the 

inherent biophysical properties of the ECM. These physical cues, especially the first two, 

usually require mediation of the ECM to act on cells. The distinction between mechanical 

fields and mechanical properties has been critical since the earliest days of mechanobiology, 

and was the focus of foundational work from the Kaplan lab wherein mechanical stress was 

identified as a determinant of cell differentiation.208

Depending on their sources and locations, cells may experience a vast range of different 

stress and strain fields in vivo. These fields are modulated by their direct mechanical 

microenvironment.209 In the vasculature, blood cells experience shear stress and shear strain 

from blood flow. In the heart and lungs, cells mainly experience cyclical tensile stress and 

strain fields. In cartilage and bone, cells mainly experience compressive stress and strain 

during body movement, with additional shear stresses arising from fluid flow.

The study of the effects of mechanical fields on cells has been advanced substantially by 

progress in materials science, both by materials and devices. Pivotal advances include 

technologies to produce physiologically relevant stress and strain fields for in vitro 
mechanotransduction investigations and for mechanically conditioning engineered tissue 

constructs to promote tissue maturation and regeneration.210–211 These mechanical fields 

affect cell behaviors differently depending on cell type, loading method and loading 

parameters (e.g., amplitude, waveform, frequency, and duration). For example, microfluidic 

technologies have been widely employed to fabricate vascular tissue models with 

endothelialized microchannels mimicking the structure and function of blood vessels. Under 

perfusion culture, adhered cells experience shear stress, whose amplitude can be simply 

adjusted by regulating the flow rate and whose patterns can be well controlled by designing 

the configuration of the microfluidic channels. Using these technologies, shear stress has 

been shown to modulate EC cytoskeletal remodeling and adhesion212 and EC-smooth 

muscle cell (SMC) interaction,213–214 and furthermore to promote cancer cell migration by 

activating yes-associated protein 1 (YAP-1).215 In addition to shear stress, certain regimes of 

tensile stressing and straining have been shown to promote the spreading, proliferation and 

alignment of fibroblasts216 and ECs,217–219 the maturation of neonatal cardiomyocytes,220 

the myotube differentiation of myoblasts,221 and the differentiation of MSCs toward the 

SMC lineage.222 Dynamic compressive stress and strain have been shown to modulate 

chondrocyte biosynthesis depending on the loading amplitude, waveform and frequency.223 

Many similar examples can be listed.

In the context of tissue engineering, a broad direction for the application of mechanical 

fields is the guidance of cell migration, often for the purpose of seeding scaffolds. Strain and 

mechanical restraints are critical for determining cytoskeletal dynamics and for cell polarity.
224–226 Factors such as actin stress fiber dynamics, focal contact dynamics, and filopodial 

dynamics determine whether cells fluidize, reinforce, migrate, or undergo apoptosis in 

response to a mechanical field.202,227 Tailoring the surface energy of tissue-engineered 
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scaffolds has been used to direct the mechanically induced migration of cells deep into a 

tissue construct.228–229 Stress and strain fields can also guide cell distribution and invasion. 

Provided that stress fibers within cells do not depolymerize in response to a mechanical 

load,230–231 the mechanical guidance of cells via applied stretching can be used to guide the 

outcome of wound healing situations and optimize the disposition and function of scar 

tissues.232–233 Although the principles underlying the responses to these mechanobiological 

cues are still under debate,217–219,234 and the differences between contact guidance and the 

effects of mechanical fields remain an open area of research,149–150 guiding cells during 

tissue remodeling by controlling mechanical fields in the cell microenvironment is a 

promising direction.

In addition to stress and strain fields, cells may also experience physical fields such as 

electrical, magnetic, acoustic and thermal fields. Electrical fields can regulate cell migration, 

organization, proliferation, and differentiation.235–236 In cases including cardiac tissue 

engineering, the electrical fields and their spatiotemporal modulation constitute a desired 

output rather than just an input to define composition.50,237 From the perspective of tissue 

engineering, electrical fields have emerged as an effective tool to facilitate cell and tissue 

maturation in cardiac,238–239 skeletal muscle,240 neural,241–242 and bone243 tissue 

engineering. For instance, in cardiac tissue engineering, externally applied, pulsed electrical 

stimulation has been found to enhance the electrical communication between 

cardiomyocytes, synchronize their beating, and promote their maturation and mechanical 

output.244–245 Although electrical and mechanical conditioning protocols are both 

widespread for promoting the maturation of cardiac tissue constructs, much is still unknown 

about how best to provide such tissue constructs with the most realistic microenvironment; 

about how electrical, mechanical, and material factors interact; and about how cell-cell 

interactions modulate the effects of these physical fields.

Magnetic, acoustic and thermal fields are not widely used for engineering the cell 

microenvironment, but nevertheless have potential. Although magnetic fields arising in 

clinical scanning such as the magnetic resonance imaging (MRI) are known to be safe for 

humans, and adverse effects on cultured cells in 3D have not been observed, high magnetic 

fields are known to align the mitotic spindle during mitosis and to align collagen and 

fibronectin during polymerization. Magnetic fields are thus a potential tool for engineering 

the cell microenvironment. Acoustic fields may induce deformation of soft materials, 

including cells and tissues, through generating acoustic radiation force.246–247 Xin and Lu 

recently developed a novel acoustomechanical field theory248–250 to describe how soft 

materials respond to ultrasonic waves, enlightening the potential application of acoustic 

fields in engineering the cell mechanical microenvironment. Regarding thermal fields, 

although the human body is often considered an isothermal system, cell activity across 

temperature ranges is important in both physiology and pathophysiology, with temperature 

varying over the body and over the course of a day. The enzyme-catalyzed biochemical 

reactions central to metabolism are sensitive to temperature variation,251 and temperature 

changes in the cell microenvironment is well known to impact cell behavior in thermal pain, 

in fever from viral and bacterial infections, and in autoimmune disorders and certain 

cancers.252–253 Thermal interventions are widely used in cancer therapy254 and Chinese 

traditional moxibustion. Despite progress in engineering the thermal cell microenvironment 
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through theranostic-type nanoparticles that both generate heat and sense temperature,255–259 

little is known about how to employ this to engineer the cell microenvironment.

2.5. Dimensionality: From 2D to 3D and 4D

A central theme in our discussion is the need to understand and emulate how the cell 

microenvironment evolves over time. This has been termed engineering of the 4D cell 

microenvironment (Figure 4),260 and we note it as a critical need for development in tissue 

engineering. Most of what is known about engineering the cell microenvironment has come 

from 2D monolayer cell culture models. However, reductionist 2D models oversimplify the 

3D in vivo cell microenvironment. For instance, cells cultured in 2D can only have cell-

ECM adhesions on the substrate side and cell-cell adhesions in the horizontal plane, while in 

3D, cells can generate adhesions on all sides. The extreme asymmetry of the adhesion 

distribution may result in unnatural apical-basal cell polarity and corresponding changes in 

different cell functions.261 In addition, cells cultured in 2D can spread and migrate freely 

without physical constraints, whereas cells cultured in 3D are usually constrained by a 

surrounding matrix and must fit through matrix pores and even degrade the matrix for 

spreading and migrating.262 Consequently, cell migration speed and its responses to stiffness 

changes in 2D and 3D can be dramatically different.263 Moreover, soluble factors in 2D cell 

culture systems can undergo free diffusion and rapid convective transport in an aqueous 

medium, whereas in 3D matrices, the transport and distribution of soluble factors are usually 

affected by barrier and immobilization effects of the matrix components, leading to spatially 

graded cell responses.264–268

Cells cultured in 3D exhibit behaviors more relevant to in vivo conditions than do cells 

cultured on 2D substrata, including adhesion, spreading, mechanics, cytoskeletal 

organization, proliferation, migration, differentiation, apoptosis, and responses to signaling 

molecules and drugs.269–273 A classical example, mentioned above, is de-differentiation of 

chondrocytes away from their physiological phenotype when cultured in 2D.117 Benya and 

Shaffer274 showed these de-differentiated chondrocytes could recover their physiological 

phenotype via 3D culture. Bissell and colleagues275 showed that normal human breast 

epithelial cells exhibit a tumorigenic phenotype in 2D culture, but maintain a normal 

phenotype in 3D culture. Significant ongoing efforts directed toward engineering 3D tumor 

models and recapitulating the associated tumor microenvironment276–279 demonstrate that 

3D tumor models better represent both in vivo tumor cell growth and in vivo responses to 

drugs than can traditional 2D monolayer models, including Ewing sarcoma cells,280 breast 

cancer cells,281 and prostate cancer cells.282

On account of the above findings, numerous 3D biomimetic materials (typically hydrogels) 

and fabrication approaches have been developed for constructing 3D cell culture models and 

engineering the 3D cell microenvironment.283–284 However, as discussed throughout this 

section, nearly all components of both the cell and the bulk ECM change over time, leading 

to dynamic variation or continuous remodeling of the 3D cell microenvironment (Figure 4). 

In cases of cancer cell models, understanding and modeling this 4D evolution is critical to 

producing realistic in vitro culture models. In cases of engineered tissues for surgical use, 
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drug screening, or basic science, controlling the 4D evolution of the cell microenvironment 

is of critical importance for replicating physiological tissues.

An example of engineering the 4D cell microenvironment is using biomimetic materials 

with time-modulated properties (i.e., 4D biomimetic materials) that respond to external 

stimuli, such as light, temperature, and magnetic fields.285–286 In particular, the development 

of photoclick chemistry has enabled the development of many types of photosensitive 

hydrogels that provide cells with well-controlled spatiotemporal biochemical and 

biophysical cues.47 Another example involves exploiting the active remodeling of the 

microenvironment by cells themselves, including soluble factor secretion and matrix 

deposition, degradation, and reorganization. For instance, the pathological transition of 

cardiac fibroblasts to myofibroblasts can lead to significant collagen secretion and 

accumulation and ultimately result in matrix stiffening, which can in turn further promote 

the generation of myofibroblasts.287–288

A more recent direction is 4D bioprinting technologies that aim to fabricate engineered 

tissue constructs, taking into account 4D biomimetic materials and cell-induced matrix 

remodeling.289–291 Accordingly, 4D characterization technologies that enable the real-time 

and in situ monitoring of cell microenvironment changes have also drawn much research 

attention.292–293 These technologies offer much promise, and represent an important 

direction for future development in this area.

3. Functional and Biomimetic Material Designs

Having laid out the key challenges in understanding the cell microenvironment in Section 2, 

we now describe the state of the art in designing functional and biomimetic materials to 

engineer the cell microenvironment. A central challenge is providing both bulk ECM and 

local environmental properties to a cell, and because this challenge cannot usually be met, 

one must often choose between the two. However, this is not in vain: the technological need 

for such materials is not only to recapitulate in vivo ECM and cell-microenvironment 

interactions, but also to construct synthetic microenvironments that are not usually 

encountered by cells in vivo for fundamental studies.294–296 Large numbers of studies over 

the past decade297–299 have generated material systems that enabled the development of our 

understanding of how biochemical (e.g., cell adhesion ligands, soluble factor 

immobilization, and chemical functional groups) and biophysical (e.g., structural properties, 

mechanical properties, degradability, and electrical conductivity) cues affect cells (Figure 5).
300–303 However, the ways that these cues vary in space and time and can act independently 

or synergistically on cells to form complex microenvironmental networks are still uncertain.
285 We describe in this section the broad classes of state of the art approaches to 

synthesizing materials that can both guide development of the cell microenvironment and 

serve as tools for understanding it.

3.1. Classification of Biomimetic Materials

We begin by defining biomimetic materials as materials with structures, properties or 

functions mimicking those of natural or living matter.304–308 From the materials perspective, 

biomimetic materials can be generally classified as metallic, ceramic, or polymeric 
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materials. Traditional metallic and ceramic materials have been extensively investigated and 

engineered into hard tissue implants for clinical applications, while polymeric materials, 

especially 3D polymer scaffolds and hydrogels, have attracted much more interest in soft 

tissue engineering.304,309–310 Most biomimetic materials used for engineering the 3D cell 

microenvironment are based on hydrogels,302 and our focus therefore lies on these.

Hydrogels are water-swollen networks of polymeric materials. The main advantages of 

hydrogels for engineering the cell microenvironment include their high water content, their 

biocompatibility, their structural similarity to native ECM, their easy handling and 

processing, and their tunable biochemical and biophysical properties.311–312 The various 

types of hydrogels that have been developed can be classified in many ways, as follows: 

physically or chemically crosslinked hydrogels, according to their crosslinking strategies; 

neutral, anionic, or cationic hydrogels, according to their electrical properties; and 

magnetically responsive, electrically conductive, temperature-sensitive or photosensitive 

hydrogels, according to their physical performances. Here, we first briefly present 3D 

polymer scaffolds, and then introduce hydrogels by classifying them as naturally derived, 

synthetic or hybrid hydrogels, according to their origins and compositions (Figure 6).

3.1.1. 3D Polymer Scaffolds—3D polymer scaffolds discussed in this section, as a 

wide class of traditional biomimetic material platforms used for 3D cell culture, mainly refer 

to water-insoluble polymer scaffolds with porous structures that allow the ingrowth of 

surface-seeded cells. These have enjoyed widespread application, but are in general highly 

limited both because of the constraints that they impose upon cells and because they fail to 

recapitulate the fibrous character of native ECM proteins.

Polymers used for fabricating scaffolds are usually dissolved in organic solvents and 

engineered into 3D porous forms after the organic solvents are removed or substituted. The 

most commonly used degradable synthetic polymers are poly(α-esters), typically including 

poly(glycolic acid) (PGA), poly(lactic acid) (PLA), polycaprolactone (PCL) and their 

copolymers such as poly(lactide-co-glycolide) (PLGA, random copolymerization of PGA 

and PLA). Poly(α-esters) are thermoplastic polymers that contain aliphatic ester linkages in 

the backbone and therefore are usually hydrolytically degradable. The degradation rate and 

mechanical property of different types of poly(α-esters) can be significantly different. For 

example, PGA normally exhibits a rapid degradation rate, resulting in rapid loss of 

mechanical strength of the polymer scaffolds and local accumulation of glycolic acid that 

may induce intense inflammatory response. Compared to PGA, PLA exhibits a much slower 

degradation rate and is mechanically stiffer and much more stable in aqueous environment. 

Accordingly, as a copolymer of PGA and PLA, PLGA integrates the advantages of both 

PGA and PLA and shows well-controllable degradation rates and mechanical properties. 

The above poly(α-esters) have been approved by the US Food and Drug Administration 

(FDA) for biomedical applications and widely used in absorbable sutures, stents, drug 

delivery vehicles, wound dressings, and 3D polymer scaffolds for hard tissue engineering.
313–314 However, the 3D polymer scaffolds derived from poly(α-esters) typically present 

high rigidity and low ductility, which has limited their broad application in soft tissue 

engineering.315 In addition, poly(α-esters) are often hydrophobic with poor wetting and cell 

adhesion capacity. Moreover, poly(α-esters) often undergo bulk erosion (i.e., degradation 
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occurs both on the surface and within the interior) with non-linear degradation kinetics, 

which can be disadvantageous in controlled release applications. In this regard, surface 

eroding (i.e., degradation occurs only on the surface) polymers such as polycarbonates and 

polyanhydrides can be preferred.316–319

3D polymer scaffolds normally work as temporary structures for supporting cell growth and 

implantation. The objective is for the scaffold materials to degrade and be gradually replaced 

by cell-secreted ECM. Therefore, the compatibility of the scaffold materials and their 

degradation byproducts should be ensured, and the degradation rate should match the 

generation rate of new ECM.320 Since cells are often seeded post fabrication, the geometries 

and porous structures of the 3D polymer scaffolds can be well controlled by employing 

various microfabrication technologies, although many of these are toxic to cells.319

However, many important and persistent challenges exist for using such materials for 

engineering the cell microenvironment. The distribution and organization of cells in the 

scaffolds are usually poorly controlled because cells are often locked into their positions 

(usually on the surface) after setting of the polymer, and in 3D polymer scaffolds these 

positions are typically a result of random motion during mixing. In addition, as described in 

Section 2, the absence of a fibrous character can obstruct the development of normal cell-

cell communication and disrupt normal cell-ECM mechanobiology including cycling of 

molecular clutches. In contrast, the hydrogels introduced below allow 3D cell encapsulation 

during hydrogel formation and thus hold the potential to precisely control the distribution 

and organization of cells in 3D. Moreover, hydrogels can be engineered to have stiffness 

spanning a wide range (from Pa level to GPa level) and be highly stretchable, thus showing 

great promises in engineering the 3D cell microenvironment for both soft and hard tissues. 

Finally, hydrogels can be readily functionalized in ways that enable them to vary over time, 

thereby serving as platforms for 4D cell culture.

3.1.2. Naturally Derived Hydrogels—Naturally derived hydrogels are extracted or 

reconstituted from natural sources, including both mammalian and non-mammalian sources. 

One type of commonly used naturally derived hydrogel from mammalian sources is based 

on decellularized ECM, which can be harvested by removing cells and antigens from tissues 

with detergents.321–322 Many types of decellularized ECM have been developed from 

different organs or tissues, such as the heart,323–324 liver,325 lung,326 kidney,327 skeletal 

muscle,328 tendon,329 cartilage,330 dermis,331 bladder,332 and adipose tissue,333 as well as 

the central nervous system (CNS).334 Such decellularized ECM can retain a close-to-native 

tissue or organ architecture (e.g., vascular networks) and composition containing multiple 

native proteins, specific cell adhesion ligands and soluble factors such as angiogenic factors.
335–336 In one example, the Taylor group337 decellularized a whole rat heart and repopulated 

it with neonatal cardiac cells and aortic ECs. These cells were found to form a native-like 

organization in the decellularized heart ECM. After perfusion culture under simulated 

cardiac physiological conditions, an artificial heart with macroscopic contraction and 

nascent pumping function was obtained. Similar studies have also been reported for 

engineering other tissues/organs such as the liver,325 lung,326 bone,338 and blood vessel.339 

This progress shows promise, but, as described below, challenges remain.
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Decellularized ECM can be processed into hydrogel forms with different shapes for cell 

culture or for injection into the body for in situ tissue regeneration.327,340 For example, a 

decellularized myocardial ECM-based hydrogel has been shown to enhance the 

cardiogenesis of cardiac progenitor cells in 3D in vitro culture.323 A decellularized kidney 

ECM-based hydrogel has been shown to effectively regulate the growth and metabolism of 

kidney stem cells in a manner with regional specificity.327 An injectable hydrogel derived 

from decellularized skeletal muscle ECM has been found to support the proliferation and 

infiltration of muscle cells, promote neovascularization and recruit progenitor cells in vivo.
328

The technologies described in the previous two paragraphs are, however, largely pre-clinical. 

Despite the long history of and the striking advancements in the preparation and biomedical 

applications of decellularized ECM, the composition of decellularized ECM varies across 

donors and remains poorly understood.341 It is therefore difficult to identify effective 

components and control their relevant properties for engineering the cell microenvironment 

for universal applications. Important areas of future inquiry are developing an understanding 

of the hierarchical structure and fiber-fiber crosslinking that is typical of the ECM from 

different organs, and developing a toolset to re-engineer these reliably and robustly for organ 

replacement.

In contrast with decellularized ECM-based hydrogels, purified naturally derived hydrogels 

have better-defined compositions and improved controllability of their biochemical and 

biophysical properties. Such hydrogels can be divided into two categories: protein-based 

hydrogels, and polysaccharide-based hydrogels. Protein-based hydrogels can be fabricated 

from individual protein components, such as collagen, gelatin, elastin, fibrin, fibronectin, 

and silk fibroin, or from protein mixtures, such as cell-derived Matrigel. These hydrogels are 

usually generated through the crosslinking or self-assembly of biomacromolecules 

composed of natural amino acid sequences under physiological conditions. They are the 

most commonly used biomimetic materials in 3D cell culture and microenvironment 

engineering, mainly due to their inherent advantageous properties, including 

biocompatibility, conduciveness to cell adhesion, and susceptibility to cell-secreted enzymes 

and cell-mediated remodeling.342–343 In addition, many types of protein-based hydrogels 

(e.g., those based on type I collagen, elastin, fibrin, fibronectin, or silk fibroin) have 

characteristics of controlled fibrous and hierarchical structures, which provide additional 

topographic and mechanical cues for guiding cell behaviors.344–346 Nevertheless, protein-

based hydrogels also have shortcomings that need to be overcome.

Foremost amongst the shortcomings of protein-based hydrogels is batch‑to‑batch 

variability. One central challenge is that, possibly because physiological heterogeneity of 

collagen crosslinking is not well understood.[REF 671] collagenous tissue constructs 

synthesized under nominally identical conditions can have stiffnesses that can differ by more 

than a factor of two.347 Furthermore, the stiffness of reconstituted collagen hydrogels is 

typically orders of magnitude lower than that of native tissues.348 Poorly controlled 

degradation, unquantified impurities and undesired immunogenicity are additional 

challenges.349 Moreover, the materials are inherently complicated because they are rich in 

bioactive cues, many of which are not understood. These numerous interactions with cells 
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make it challenging to independently study the effects of individual material cues on cell 

behaviors. In the specific context of the cell microenvironment, the specific compositions 

and spatial disposition of protein fibers are not known for most cell types, and one cannot be 

certain from behavior at the level of the tissue construct whether the local microenvironment 

is representative of that which might exist in vivo. Finally, the ability to enable true 4D 

control of the cell microenvironment is limited when using protein-based hydrogels.

Compared with protein-based hydrogels, polysaccharide-based hydrogels (e.g., those based 

on chitosan, alginate, agarose, dextran, or HA) are also biocompatible and gellable under 

mild conditions, but they can be less immunogenic and have more widely tunable 

mechanical properties.350 However, some important polysaccharide-based hydrogels, such 

as those based on chitosan or alginate, cannot support cell adhesion and are not 

biodegradable. Therefore, chemical modification is usually required to incorporate cell 

adhesion and/or degradable sites into such hydrogels.351–352 While many protein- and 

polysaccharide-based hydrogels (e.g., those based on collagen, gelatin, chitosan, alginate, or 

HA) can be physically crosslinked by varying the temperature, pH or ion concentrations, 

they may lack sufficient mechanical strength and stability for long-term cell culture and in 
vivo tissue regeneration applications. For this reason, chemical crosslinking via 

glutaraldehyde, genipin, or microbial transglutaminase is often applied; however, these 

methods may generate toxic byproducts or require long reaction times that restrict their 

application in 3D cell culture or the rapid prototyping-based fabrication of complex tissue 

constructs.353

To overcome these limitations, chemical approaches, typically acrylate and thiol 

modifications, have been developed to modify macromers of the above naturally derived 

hydrogels to render them rapidly crosslinkable under cytocompatible conditions.354–355 It 

should be noted that the chemical modification of collagen and gelatin is usually 

accompanied by a decrease in bioactivity. Although these materials have already shown 

potential in engineering the 3D cell microenvironment and been implemented in a variety of 

biomedical applications, substantial work in both characterization and synthesis is needed to 

overcome the above many persistent challenges.354,356

3.1.3. Synthetic Hydrogels—Synthetic hydrogels are hydrogels fabricated using 

synthetic chemistry strategies, typically the crosslinking of bioinert chemical monomers or 

macromers. As an alternative to naturally derived hydrogels, synthetic hydrogels have their 

own specific advantages. For example, the composition and chemistry of synthetic hydrogels 

can often be custom-designed and precisely controlled, significantly improving their 

reproducibility and physicochemical tailorability.357–358 Although synthetic hydrogels are 

usually bioinert and nondegradable, they can be readily modified to have user-desired 

biological functionality.312,359–360

Numerous synthetic hydrogels, including those based on poly(acrylamide) (PA), 

poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), poly(2-hydroxyethyl methacrylate) 

(PHEMA), poly(N-isopropylacrylamide) (PNIPAAm), and their derivatives, have been 

developed to engineer the cell microenvironment for biomedical applications.317 While PA 

hydrogel substrates coated with such biological proteins as collagen and fibronectin have 
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been widely used for engineering the 2D cell microenvironment, PEG-based hydrogels are 

perhaps the most commonly explored synthetic hydrogels for engineering the 3D cell 

microenvironment. PEG-based hydrogels can be formed under cytocompatible conditions 

via numerous crosslinking strategies, such as chain-growth polymerization, Michael-type 

addition, thiol-ene addition, Diels-Alder chemistry, and strain-promoted azide-alkyne 

cycloaddition (SPAAC).361 These hydrogels exhibit unique properties, such as high 

hydrophilicity and low protein adsorption, and they are usually considered “blank state” 

materials that enable the user-defined incorporation of a wealth of bioactive molecules.
360,362 Moreover, PEG-based hydrogels that are sensitive to light are particularly useful for 

engineering the 3D cell microenvironment in a spatiotemporally controlled manner. As 

described at the end of this section, these strengths are tempered by a range of limitations.

In addition to the above traditional synthetic hydrogels, hydrogels synthesized using 

supramolecular chemistry (i.e., supramolecular hydrogels) have attracted great research 

interest in the past decade for applications in tissue engineering and regenerative medicine.
363–365 Supramolecular hydrogels are rationally designed hydrogels that exploit the specific, 

tunable, reversible and non-covalent supramolecular interactions between molecular 

recognition motifs, which are typically custom-designed peptides. Reversible 

supramolecular interactions are particularly useful in creating stimuli-responsive 

supramolecular hydrogels that can be remodeled by cells for dynamically engineering the 

cell microenvironment.366 Moreover, such supramolecular interactions give rise to 

supramolecular hydrogels (especially peptide- or recombinant protein-based supramolecular 

hydrogels) with unique biochemical and biophysical properties that are difficult to achieve 

using traditional synthetic hydrogels.367–368 For instance, by custom-designing the 

sequences of peptide building blocks and controlling their self-assembly process, it is 

possible to generate supramolecular hydrogels that can replicate hierarchically organized 

structural features of the native ECM from the nano- to the macroscale and replicate the cell 

adhesion cues, biodegradability and growth factor-binding affinity of naturally derived 

hydrogels.369–372 These are highly amenable to photodegradable crosslinks that can enable 

changes in material properties over time and help implement 4D control of the cell 

microenvironment. However, despite these advantages, supramolecular hydrogels are far 

from perfect for engineering the cell microenvironment.

Supramolecular hydrogel chemistry has several limitations in the context of engineering the 

cell microenvironment. Foremost amongst these limitations is the relatively weak 

mechanical strength and stiffness of supramolecular hydrogels compared with those of 

naturally derived and traditional synthetic hydrogels.373 In addition, the self-assembly 

process of peptide building blocks and thus the structural and mechanical properties of the 

generated hydrogels are susceptible to bioactive peptide modifications. Furthermore, it is 

currently not cost-effective to use peptide-based supramolecular hydrogels for large-scale 

biomedical applications. Important directions for future inquiry with these materials include 

development of peptide chemistry that can enable mass production of peptide-based 

supramolecular hydrogels,374–375 and improvement in their mechanical properties.

3.1.4. Hybrid Hydrogels—The development of hybrid hydrogels is motivated by the 

limitations of the aforementioned technologies. The individual components of neither 
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naturally derived nor synthetic hydrogels are capable of meeting all of the requirements for 

3D and 4D cell culture and corresponding biomedical applications. Although chemical 

modifications can be used to enhance the biochemical and biophysical performances of 

single-component hydrogels, the modification process can be harmful to cells, time 

consuming, expensive, and too complex to be widely adopted. In contrast, hybrid approaches 

enable the simple and rapid generation of hydrogels that integrate the advantages of each 

component and potentially exhibit novel attractive properties.376

Hybrid approaches that have met with success largely involve blending, copolymerization 

and interpenetration. Blending and copolymerization are representative physical and 

chemical approaches, respectively, to generate hybrid hydrogels from two or more 

components. Although easy to perform, they are limited, in part because one cannot in 

general retain the full advantages of each individual component, and in part because only 

certain combinations of hydrogels can be copolymerized. By comparison, interpenetration is 

an interesting approach to fabricate interpenetrating polymer network (IPN) hybrid 

hydrogels, which are characterized by partially or fully interlaced polymer networks and 

may exhibit surprising properties that cannot be achieved by using single network.377–379 

For instance, collagen has been combined with alginate380–381 or PEG382–383 to fabricate 

IPN hybrid hydrogels in which the bioactivity of collagen is retained and the mechanical 

properties of the hybrid hydrogels are tuned by adjusting the alginate (or PEG) concentration 

or crosslinking density. Alginate has also been combined with PEG,384–385 PVA,386 

PNIPAAm387 or PA388–390 to generate IPN hybrid hydrogels with exceptional mechanical 

properties such as high stiffness, ductility, strength or toughness. These hybrid hydrogels 

have properties that are often difficult to predict using homogenization theory, and can have 

properties such as stiffness or toughness that are greater than the stiffness or toughness of 

either of the constituents. A limitation of approaches is that, because no universal framework 

exists for predicting the properties of a hybrid hydrogel from the properties and volume 

fractions of its constituents, the concentration of each component and the ratios of the 

different components must be carefully optimized in an ad hoc fashion for each practical 

application, and the approach is therefore somewhat limited. Mathematical homogenization 

theories to predict how the properties of such hydrogels emerge from the properties of their 

constituents represent a pressing need.

Alternatively, hybrid hydrogels can also be generated by incorporating nanoparticles into 

hydrogels. We term these nanocomposite hydrogels.391 The generation of nanocomposite 

hydrogels was initially inspired by the compositions and structures of nano-reinforced native 

bone tissues, which are mainly composed of collagen, water, and hydroxylapatite 

nanocrystals.304 Nanoparticles can be physically entrapped within hydrogel networks or 

chemically used as crosslinkers to crosslink hydrogels. Mobility of crosslinking 

nanoparticles is hypothesized to endow networks with enhanced toughness.392–394 Several 

successful classes of hybrid hydrogels containing nanoparticles or nanostructures have been 

developed. These include inorganic and non-metallic nanoparticles (e.g., hydroxyapatite, 

calcium phosphate, silica and silicate nanoparticles),395–398 metal/metal-oxide nanoparticles 

(e.g., gold, silver, and iron-oxide nanoparticles),399–404 polymeric nanoparticles (e.g., 
cyclodextrin and hyper-branched polyester nanoparticles),405–406 and carbon-based 

nanostructures (e.g., CNTs and graphene).407–409 These nanocomposite hydrogels can 
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exhibit enhanced properties such as improved mechanical stiffness and strength and 

enhanced magnetic responsiveness, electrical conductivity, and optical and thermal 

properties.410–411 They may provide well-controlled biophysical cues for engineering the 

cell microenvironment and have been implemented in a wide variety of applications in drug 

delivery and hyperthermia therapies, as well as proposed theranostic procedures.412–413 

However, as described below, these materials are fundamentally limited at present for tissue 

engineering applications.

A major issue associated with nanoparticle-containing hydrogels is biocompatibility: 

nanoparticles are in general questionable for use in vivo due to uncertainties about their 

long-term toxicity. Because the nanometer scale of these particles is needed for successful 

doping of the polymer backbone of the hydrogel, substantially more must be known about 

the long-term toxicity of nanoparticles before these materials can reach widespread in vivo 
application.

3.2. Biochemical Designs

The biochemical properties of biomimetic materials can exert important influences on cell 

behaviors including cell adhesion, spreading, migration, proliferation, alignment and 

differentiation.414–415 Subtle variations in a material’s biochemical properties may lead to 

significant changes in cell behaviors. Therefore, biomimetic materials and their chemical 

modifications offer broad potential for designing a bulk ECM that enables cells to 

reconstitute their own local microenvironment, or that mimics the biochemical aspects of the 

native microenvironment itself. We critique the state of this effort below.

3.2.1. Cell Adhesion Ligands—Cells in solid tissues rely on adhesion to their 

microenvironment and the ECM to maintain their activity and perform many of their 

biological functions. Therefore, cell adhesivity is a critical component that should be 

considered in biomimetic material design.

Naturally derived proteins (e.g., collagen, gelatin, laminin, vitronectin, and fibronectin) 

retain many cell adhesion ligands that can be recognized by heterodimeric cell surface 

integrin receptors. In contrast, some polysaccharide-based natural materials (e.g., alginate 

and agarose) and most synthetic materials (e.g., PEG) are non-adhesive to cells due to a lack 

of adhesion ligands and therefore require surface or bulk modifications for engineering the 

cell adhesion microenvironment. A straightforward way to endow such materials with cell 

adhesive cues is to incorporate full-length ECM proteins, such as collagen, gelatin, laminin 

and fibronectin.416 These full-length proteins can be physically trapped in a bulk hydrogel if 

their hydrodynamic radius is larger than the mesh size of the hydrogel, non-covalently 

absorbed onto a hydrogel surface through electrostatic interactions, or even covalently linked 

to a hydrogel network via chemical bonds.417 Although this approach is effective, it is not 

the most widely used because of the limitations of poorly controlled spatial distribution and 

temporal presentation of full-length proteins.

To overcome these limitations, bioorthogonal photochemistries have recently been extended 

to reversibly pattern full-length proteins in hydrogels in a spatiotemporally controlled 

manner (Figure 7).418 These offer controllable 4D constructs that can present cells with 

Huang et al. Page 23

Chem Rev. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatiotemporally varying biochemical cues. Nevertheless, more work is needed to refine 

these approaches because multiple ligand-receptor interactions can occur in a single system 

due to the presence of multiple ligands in individual full-length proteins, making it difficult 

to independently investigate separate signaling pathways for fundamental cell biology 

studies. In addition, the use of native proteins is also less desirable because of the possibility 

of eliciting immune responses.

With the development of synthetic biology, bioactive peptide modification has emerged as an 

alternative and facile way to induce cell adhesion cues into inert biomaterials.312 Peptides 

consisting of select amino acid building blocks can mimic the functional unit of full-length 

proteins. However, peptide sequences are much shorter and their structures are much simpler 

than those of full-length proteins, making their synthesis and purification much easier. 

Moreover, peptides can be custom-designed and engineered into hydrogels in a well-

controlled manner. Many kinds of peptides have been identified and artificially produced, 

including Arg-Gly-Asp (RGD), Ile-Lys-Val-Ala-Val (IKVAV), Tyr-Ile-Gly-Ser-Arg 

(YIGSR), Arg-Glu-Asp-Val (REDV), and Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER).419–420 

Studies have shown that the ligand type, concentration and spatial distribution (e.g., ligand 

gradient, ligand separation, and individual pattern size) can affect cell adhesion, spreading, 

migration, proliferation and differentiation.421–426 For instance, by controlling cell shape 

(e.g., spreading area, aspect ratio, and curvature) with adhesive islands on substrates, the fate 

and function of stem cells (e.g., hMSCs and human ESCs) can be regulated independently 

from other cues, such as soluble factors.427–429 Moreover, adhesive cues that are 

dynamically switchable on 2D substrata under various stimuli (e.g., biological signaling, 

voltage, light, mechanical force, and click chemistry) have been fabricated to elucidate 

dynamic cell responses to adhesive cue changes.430–431 Translating these 2D successes to 

3D and 4D represents an important challenge.

The successes of these 2D studies have motivated extension of these approaches to bulk 

modification of hydrogels with peptides for 3D cell culture. In early studies of bulk 3D 

hydrogel modification, peptides were usually mixed thoroughly with a hydrogel precursor 

solution and covalently bound to the polymer network during the gelation process, resulting 

in a homogeneous peptide distribution in the hydrogel.432–433 This approach has seen 

widespread use, especially with cysteine-containing peptide sequences conjugated into PEG-

based hydrogels via thiol-acrylate mixed-mode photopolymerization,434 thiol-acrylate or 

thiol-vinyl sulfone Michael-type addition,435–437 or thiol-norbornene step-growth 

photopolymerization.438 Peptide epitopes can also be conjugated to precursor molecules 

before gelation, as in the case of alginate molecules modified with RGD and heparin-binding 

peptides via carbodiimide chemistry439–440 for the purpose of developing macroporous 

scaffolds for neonatal rat cardiac tissue constructs. These modified, thoroughly mixed 3D 

hydrogels have been used to mimic cell-cell interactions including tumor 

microenvironments. Bian et al.441 incorporated N-cadherin mimetic peptides into HA 

hydrogels to interact with encapsulated hMSCs, mimicking cell-cell adhesion mediated by 

N-cadherin; the conjugated peptides promoted chondrogenesis and neocartilage formation 

both in vitro and in vivo. An example of a successful model of cancer cell invasion consists 

of four-arm PEG functionalized with peptide motifs (i.e., RGD, GFOGER, or IKVAV) that 

was obtained and then gelled with heparin via Michael-type addition to form hybrid 
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hydrogels in the presence of breast (MCF-7) or prostate (PC-3, LNCaP) cancer cells.442 

These systems are promising, and subsequent development of technologies to enable 

spatiotemporally tunable adhesive epitopes443 might serve as a foundation to enable 

replication of the heterogeneous 4D cell microenvironments found in vivo.

A simple way to fabricate bioactive hydrogels with spatially patterned adhesive cues is by 

blending and gelling adhesive-modified and unmodified hydrogel precursors in a single 

system. In this way, bimodal alginate hydrogels with alternatingly presented RGD-modified 

and RGD-free microchanneled blocks were developed. Aligned microchannels can be 

subsequently introduced by uniaxial freeze-drying.444 The spreading, viability, spatial 

organization, and differentiation of human bone marrow MSCs (hBMSCs) in microchannels 

with the RGD modification are significantly enhanced compared with those in 

microchannels without RGD modification. In another study, HA hydrogels with RGD 

clusters, fabricated by mixing and gelling RGD pre-functionalized and un-functionalized 

portions of acrylated HA showed significant changes in the spreading of and integrin 

expression by encapsulated mouse MSCs compared to MSCs in HA hydrogels with un-

clustered (i.e., homogeneously distributed) RGD.445 Despite these promising findings, the 

above methods can only be used to produce simple and static adhesive patterns in hydrogels. 

Supramolecular systems based on hydrogen-bond or host-guest interactions have emerged to 

enable dynamic tuning of the presence of bioactive ligands, thereby offering improved 

controllability.446 However, much work remains to be done to exploit the capacity of these 

systems for engineering the 3D adhesion microenvironment.

To enable the well-controlled 4D spatiotemporal generation of cell adhesion patterns in 

hydrogels, several groups have directed significant efforts toward developing advanced 

hydrogel photopatterning systems. The Shoichet group reported a photolithography method 

for patterning maleimide-functionalized Gly-Arg-Gly-Asp-Ser (GRGDS) into agarose 

hydrogels modified with 2-nitrobenzyl (2-NB)-protected cysteine (Figure 8A).447 Dorsal 

root ganglia cells seeded on top of the hydrogel were guided to migrate and grow along the 

patterned domains. This method was later expanded to more complex 3D patterns in agarose 

hydrogels modified with a 6-bromo-7-hydroxycoumarin sulfide derivative using two-photon 

photolithography.448 Recently, the Schlierf group developed a method for creating 3D 

patterns in PEG hydrogels based on the infrared (IR) light-mediated two-photon 

cycloaddition of maleimide groups.449 Although these methods enable the formation of 

complex adhesion patterns in 3D hydrogels without changing the bulk mechanical properties 

of the hydrogels, the use of cytotoxic maleimides may limit their in situ 3D patterning 

applications.450 Alternatively, the West group451–453 developed an approach for 

spatiotemporally patterning cell adhesion moieties (e.g., acryl-PEG-RGDS) in pre-

crosslinked PEG diacrylate (PEGDA) hydrogels. In their approach, PEGDA hydrogels were 

first fabricated via an initial radical chain photopolymerization. Acryl-PEG-RGDS was then 

swollen into the network and immobilized in particular regions via selective ultraviolet (UV) 

light exposure in the presence of a photoinitiator and living cells. This approach enabled the 

creation of highly complex cell adhesion patterns in hydrogels that mimic specialized tissue 

features (e.g., 3D vasculature of the retina, cerebral cortex, and heart, as well as essential 

elements of the subependymal zone neural stem cell (NSC) niche) for guiding cell 
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organization.454 This work represents important progress, but, as described below, much 

work remains to be done.

As mentioned above, a limitation of hydrogels based upon click reactions is cytotoxicity. A 

photopatterning hydrogel system that overcomes this was developed by the Anseth group 

(Figure 8B),455 who reported the generation of PEG-based hydrogels via a copper-free 

SPAAC click reaction, followed by the photopatterning of biochemical molecules through an 

orthogonal thiol-ene photocoupling reaction. By overcoming the cytotoxicity of traditional 

click reactions, their method enabled the 3D encapsulation of cells during hydrogel 

formation.455 PEG-based hydrogels with various peptide ligand densities456 and multiple 

well-controlled peptide gradients were fabricated457 hMSCs in such 3D hydrogels showed a 

monotonic increase in cell migration speed with increasing peptide ligand density rather 

than a biphasic trend, as observed in 2D.456 In addition, the Anseth group has also 

introduced a method to tether peptides (e.g., RGDS) to a PEG backbone with a photolabile 

ortho-NB (o-NB) moiety, rendering the peptides photoreleasable on demand in situ.458–461 

Temporal removal of RGDS during cell culture did not affect hMSC viability but did induce 

chondrogenic differentiation458 and local NIH 3T3 cell detachment.461 Recently, this group 

introduced an allyl sulfide-functionalized PEG hydrogel system that enables the reversible 

exchange of biochemical ligands in the presence of living cells, further enhancing the 

spatiotemporal controllability of photopatterning.462

The above advanced hydrogel photopatterning systems have shown great promise in 

spatiotemporally manipulating the 3D cell biochemical microenvironment. Nevertheless, the 

use of small synthetic peptides can only partially mimic the structure or function of full-

length proteins since such proteins can have high specificity and rather complex bioactivity. 

A key question is, have these major strides in cell microenvironment biochemistry come at 

the expense of cell microenvironment biophysics? For example, cell adhesion ligands in 

native proteins can be hidden under secondary protein structures and may not always be 

exposed to surrounding cells. Therefore, the bioactivity of these ligands is dynamically 

regulated by cell remodeling and external loading-induced protein deformation or 

conformational changes, which are difficult to fully mimic by simply incorporating small 

synthetic peptides into hydrogels. Additionally, by attaching these ligands to hydrogel 

backbones with non-physiological stiffness, it is possible that key behaviors such as those 

associated with molecular clutch kinetics are disrupted in such systems. Finally, these 

hydrogel systems present biochemical flexibility at the expense of the fibrous nature of the 

ECM, which, based upon earlier discussion, can be expected to interfere with long-distance 

cell-cell communication. Further studies are needed to engineer complete cell adhesion 

ligands that mimic not only the biochemistry but also the biophysics of native proteins found 

in vivo.

3.2.2. Growth Factor Immobilization—A spectrum of growth factors plays important 

roles in cell growth, cell fate determination, disease progression, tissue regeneration, and 

organ development. As discussed in Section 2, the ECM can regulate the distribution and 

activation of growth factors and mediate their interactions with cells via control of diffusion 

and sequestration.463 While many studies have exploited the effects of freely diffusible 

growth factors on cell behaviors, most growth factors in vivo are in fact sequestered or 
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immobilized by ECM macromolecules, such as GAGs,464 and function by directly 

interacting with cell membrane receptors or after being released in response to mechanical 

or enzymatic stimuli. Compared with the use of freely diffusible growth factors, 

immobilizing growth factors in biomimetic materials may prolong growth factor 

presentation, prevent enzymatic growth factor degradation, enable well-controlled growth 

factor delivery and release, and modulate specific growth factor bioactivity and signaling.
465–467 Therefore, the tuning of material biochemical properties for growth factor 

immobilization has been an important biomimetic material design consideration.468–469 The 

literature on controlled release and delivery of growth factors is enormous. We limit our 

focus here to systems suitable for 4D design of hydrogels to mimic and guide the cell 

microenvironment, and refer to reader to other reviews470–472 for coverage of release and 

delivery through bulk scaffolds, polymeric vesicles or particles.473–474

For the purpose of immobilizing growth factors in hydrogels that guide and mimic 4D 

evolution of the cell microenvironment, two main strategies exist: physical (non-covalent) 

immobilization and chemical (covalent) immobilization.475 Physical immobilization is the 

use of physical affinity interactions (e.g., hydrogen bonding, hydrophobic interactions, and 

electrostatic interactions) between the material surface and growth factors for 

immobilization purposes. Hydrogels made from or modified with growth factor-affinitive 

molecules, including biological proteins (e.g., fibronectin, collagen, gelatin, elastin, and 

laminin), GAGs (e.g., HA, heparin sulfate, and chondroitin sulfate), synthetic materials (e.g., 
ECM molecule mimetics, and PNIPAAm), and small peptide mimics, have been applied to 

physically immobilize growth factors.471,476–480 In the following, we describe successes and 

challenges associated with these material systems.

As an example of a success of physical immobilization of a growth factor, we describe some 

successes in application of hydrogels containing immobilized heparin. Heparin is a highly 

anionic PG that can bind various types of growth factors through electrostatic interactions 

and protect the growth factors from losing bioactivity.481 The immobilization of FGF-2 and 

VEGFs in heparin-modified PEG hydrogels has been shown to boost angiogenesis both in 
vitro and in vivo.482–483 Alternatively, the Cohen group484 sulfated the uronic acids in 

alginate to mimic the affinity interactions between heparin/heparin sulfate and growth 

factors. The alginate-sulfate exhibited a high affinity for various heparin-binding proteins, 

enabled the dose-dependent and sustained release of basic FGFs from alginate/alginate-

sulfate microspheres, and promoted vascularization in vivo. This method was later used to 

sequester and deliver various growth factors (e.g., VEGFs, PDGF-BB, TGF-β1, HGFs, and 

insulin growth factor 1 (IGF)-1) for vascularization,485–486 myocardial repair,486–487 

chondrogenesis,488 and immunoregulation applications.485 The Burdick group489 applied 

dextran sulfate (a heparin mimetic) to modify HA hydrogels for sequestering recombinant 

tissue inhibitor of MMPs 3 (rTIMP-3) (Figure 9A). When injected into a myocardial 

infarction (MI) region in a porcine model, the hydrogels released rTIMP-3 in response to 

locally elevated MMP levels, which inhibited MMP activity and attenuated post-MI 

remodeling. One limitation of heparin is its nonspecific binding affinity to multiple types of 

growth factors. To overcome this problem, peptides possessing a specific physical affinity 

can be engineered into hydrogels to specifically immobilize target growth factors.490 These 

successes show promise for the use of physical immobilization for delivering growth factors 
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into hydrogels, but there are limitations of these technologies because (1) the presentation 

and release of growth factors cannot be well controlled either spatially or temporally, and (2) 

large quantities of the growth factor must typically be wasted because the growth factor must 

be distributed throughout the entire hydrogel. Future developments that enable 4D control of 

this delivery constitute an important need.

Compared with physical immobilization, chemical immobilization may have some benefits 

since it can prolong the presentation and release of growth factors, improve their 

spatiotemporal controllability, and reduce the required amount.491–492 Significant efforts 

have been directed toward covalently immobilizing growth factors in hydrogels under 

biocompatible conditions.493–494 For example, the Anseth group modified TGF-β with a 

thiol group and covalently tethered the modified TGF-β to PEG hydrogels through mixed-

mode photoinitiated thiol-acrylate polymerization.495–496 The bioactivity of the immobilized 

TGF-β was verified using a Smad2 reporter cell line. In addition, the chondrogenic 

differentiation of hMSCs encapsulated in the TGF-β-tethered hydrogels was promoted.495 

Shoichet and co-workers applied a multiphoton patterning method they previously 

developed447–448 to create a VEGF165 gradient in agarose hydrogels.497 ECs seeded on the 

surface of a hydrogel with a VEGF165 gradient of 1.65 ng mL−1 μm−1 grew into the interior 

of the hydrogel and formed tubular-like structures. In their later work, multiple growth 

factors, including sonic hedgehog (SHH) and ciliary neurotrophic factor, were 

simultaneously incorporated into different regions of agarose hydrogels using the orthogonal 

chemistry of peptide binding pairs, i.e., barnase–barstar and streptavidin–biotin.498 The 

presence of an immobilized SHH gradient in GRGDS-agarose hydrogels was shown to 

promote the migration and penetration of neural precursor cells into the hydrogels. Recently, 

the Lutolf group reported an enzymatic hydrogel photopatterning method in which 

transglutaminase factor XIII (FXIIIa) was rendered photosensitive and incorporated into 

PEG-based hydrogels.499 Biologically relevant signaling proteins, including VEGF121 and 

PDGF-BB, as well as the recombinant fibronectin fragment FN9–10, were subsequently 

patterned in hydrogels through light-activated local enzymatic crosslinking (Figure 9B). 

Directed MSC invasion in 3D was demonstrated in situ using this method. To date, such 

studies have shown that significantly different bioactivities can be obtained from growth 

factors via different immobilization strategies, bound/released states and spatial 

distributions.500–501 In the context of biophysical cues for the cell microenvironment, 

however, these technologies must be checked carefully to ensure that the covalent bonds to 

the hydrogel backbone do not affect cell mechanobiology adversely.

As mentioned in the previous section, options exist beyond the use of full-length growth 

factor proteins. Small peptide analogs that partially mimic the bioactivity of growth factors 

have been developed, similar to peptides used for mimicking cell adhesion ligands. For 

instance, a spliced peptide analog of stromal cell-derived factor 1 alpha (SDF)-1α that 

mimics the bioactivity of full growth factor has been developed to promote endothelial 

progenitor cell migration and preserve rat ventricular function after acute MI.502–503 In a 

recent study, two peptide analogs (i.e., DWIVA and the knuckle epitope) of BMP-2 were 

fabricated and conjugated into alginate hydrogels via carbodiimide chemistry or sulfhydryl-

based orthogonal coupling schemes.504 These functionalized hydrogels were found to 

enhance the alkaline phosphatase activity of murine osteoblasts and the osteogenic 
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differentiation of murine MSCs in 3D. Compared with full-length growth factor proteins, 

small peptide analogs are easy to synthesize, stable, and can be incorporated into hydrogels 

in a well-controlled manner. Nevertheless, small peptides may not exhibit the full bioactivity 

of native growth factors in some instances, and may interfere with cell mechanobiology 

because of their reduced size and therefore altered mechanics. An ongoing challenge with 

the use of peptide analogs of growth factors is that the balance of potential benefits and the 

above-mentioned risks must currently be assessed on an ad hoc basis.

3.2.3. Chemical Functional Groups for Modification of Surface Chemistry—
Modification of surface chemistry is an attractive pathway for directly affecting the cell 

microenvironment, but special care must be taken to ensure that these alterations produce 

only the desired effect on encapsulated cells. Nonspecific chemical properties of biomimetic 

materials, including electrical charge and hydrophilicity, are known to affect protein 

adsorption, cell adhesion, cell function and cell fate.505–508 Such properties are usually 

determined by material surface chemical groups.17,509 Alkanethiol self-assembled 

monolayers have been widely used to control surface chemistry and have functioned as 

model biomaterial surfaces.510–511 By employing this method, surfaces chemically 

functionalized with hydroxyl (–OH), carboxyl (–COOH), amino (–NH2), methyl (–CH3), 

mercapto (–SH) and sulfonic (–SO3H) groups have been fabricated. The morphology, 

migration and differentiation of NSCs were observed to be closely regulated by surface 

chemical groups.512 Specifically, NSCs cultured on –SO3H- and –CH3-functionalized 

substrates showed the most-flattened and most-rounded morphologies, respectively, at the 

single-cell level. The positively charged –NH2 surface sustained the greatest amount of cell 

migration, while the neutral –OH surface exhibited the weakest cell migration. In addition, 

the –NH2 surface showed increased neuronal differentiation compared with the negatively 

charged –COOH surface. For bone mineralization, most earlier studies used anionic 

chemical moieties inspired by the fact that negatively charged amino acids abundantly 

present in many glycoproteins are involved in bone mineralization in vivo.32,513–514 

Recently, poly(sebacoyl diglyceride) carrying free neutral hydroxyl groups was also 

demonstrated to promote the biomineralization of hMSCs and rat osteoblasts.515 In addition 

to electrical charge, surfaces with a broad range of hydrophilicities have also been fabricated 

by the mixed use of different chemical groups for investigating the adhesion behavior of 

human umbilical vein ECs (HUVECs) and HeLa cells.516 It was suggested that chemical 

group type and density can affect cell adhesion and that material hydrophilicity may play a 

crucial role in cell adhesion. To further spatially control the adhesion and growth of cells, 

patterned superhydrophobic-hydrophilic surfaces have been developed.517–518 However, 

most existing studies on chemical functionalization for cell culture were performed in 2D, 

and few 3D studies have been reported.

The 3D studies that have been reported are limited to a handful of papers. In one study from 

the Anseth group,33 PEG hydrogels were functionalized with different small-molecule 

chemical groups, including amino, acid, t-butyl, phosphate and fluoro groups (Figure 10). 

hMSCs encapsulated in phosphate- and t-butyl-functionalized PEG hydrogels showed 

osteogenic and adipogenic differentiation, respectively, in the absence of differentiation 

additives. In another study, ethylene glycol methacrylate phosphate (EGMP) was 
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incorporated into a PEG hydrogel, leading to the formation of a bone-like mineral phase.519 

The EGMP-functionalized PEG hydrogel was found to sequester cell-secreted osteopontin 

and thereby promote the adhesion and spreading of encapsulated hMSCs. This approach was 

suggested to improve cell viability from 15% to 97% when the concentration of EGMP was 

increased from 0 to 50 mM. These successes are each interesting and useful, but many 

broad-sweeping challenges remain, as described below.

Foremost amongst the limitations of these 3D applications is that the cell-chemical 

functional group interactions that are responsible for directing cell behaviors remain unclear.
6 One pathway observed in osteoblasts involves chemical functional groups changing the 

conformation of adsorbed fibronectin and altering its integrin binding specificity, which 

regulates osteoblast differentiation and mineralization.520 Incorporation of phosphate 

functional groups into a PEG hydrogel promoted the adsorption of ECM proteins (e.g., 
collagen I and fibronectin) from serum, which may have contributed to the enhanced 

osteogenic differentiation of hMSCs.521 Chemical functional groups could also affect cell 

behaviors by sequestering or regulating the diffusion of soluble signaling molecules (e.g., 
growth factors).522 While much remains to be learned about the mechanisms underlying 

cell-chemical functional group interactions, the use of small-molecule chemical functional 

groups to control complex cell behaviors, once understood more clearly, stands to inspire the 

production of new therapeutic materials.33,107

3.3. Biophysical Designs

As mentioned in Section 2, biochemistry and biophysics overlap strongly in the cell 

microenvironment. We focus here on the broad category of biophysical aspects of the 

designs of biomimetic materials, and on techniques specifically targeting the cell 

microenvironment.523–524 However, the degrees to which biophysical cues from biomimetic 

materials can direct cell growth, function and fate, independently or synergistically with 

biochemical cues, are in general poorly understood.118,525–526 The following subsections 

detail successes, challenges, and opportunities, in custom-designing the structural features, 

mechanical properties, degradability, and electrical conductivity of hydrogels.

3.3.1. Structural Features—As discussed in Section 2, native bulk ECM is a highly 

hierarchical and heterogeneous complex structure, and ECM in the cell microenvironment is 

in general poorly characterized relative to bulk ECM. Cells can sense and respond to 

multiscale structural or topographic features of their microenvironment.527–528 Therefore, 

structural features are important biomimetic material design considerations.529–531 

Considering the multiscale nature of the ECM and the widely varying approaches for 

engineering structural features of different length scales, we present this discussion in terms 

of three different scales: macroscale, microscale, and nanoscale (Figure 11).

3.3.1.1. Macroscale Design.: Under macroscale design we describe roles of external 

structure characteristics such as overall shape and size. At this level, structural features can 

determine how external stimuli (e.g., boundary constraints and mechanical forces) are 

transmitted to internal cellular constructs. Cells can sense macroscale structural cues 

mediated by the matrix and then adjust their remodeling behaviors, leading to recursive cell 
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and ECM reorganization and shape evolution. Appropriate macroscale design is particularly 

important in tissue engineering because how well an engineered tissue construct matches the 

shape and size of an anatomical defect will affect its integration with adjacent tissues, defect 

repair and, in some cases, aesthetics. As we will describe in this section, the macroscale 

shape and size of an engineered tissue construct can be conveniently controlled using 

custom-designed molds or computer-aided additive manufacturing technologies.532–533

Although a great many models exist for predicting and tracking growth and development of 

tissues and tissue constructs,534–538 the optimization of macroscale hydrogel design is still 

very much case-specific, and basic, universal principles are lacking. As an example of how 

the shape and size of implants can influence host recognition and foreign body responses, 

we note a study that observed spherical implants with a diameter of 1.5 mm or greater, 

regardless of material types, to be more biocompatible than other shapes or smaller 

counterparts in terms of foreign body reactions and fibrosis in rodents and non-human 

primates.539 This provides a powerful rule-of-thumb, but further studies uncovering the 

mechanisms underlying foreign body responses to implant shape are needed, and a 

predictive framework is an important need for improved macroscale structural design of 

implanted biomaterials.

One notable issue for macroscale structural design is the structural evolution of tissue 

constructs (especially for soft tissue constructs) post-fabrication, which can be induced by 

environmental changes or cell traction forces.289 This issue complicates structural design 

and further highlights the need for 4D design that incorporates time evolution as an 

additional coordinate and considers dynamic material properties and cell-material 

interactions. More broadly, theoretical tools and basic science studies for predicting the 

development of macroscale hydrogel implants represent a pressing need for the field.

3.3.1.2. Microscale Design.: Structural features at the microscale have long been known 

to play important roles in guiding cell behaviors and are therefore important structural 

design considerations.35,540

One widespread and simple, but ultimately limited, approach to structurally engineer the 3D 

cell microenvironment is to use microwells on non-adhesive hydrogels such as PEG541–542 

and agarose,543 generated using micromolding or photopatterning methods. Such microwells 

provide a simple, confined 3D space for accelerating cell aggregation and directing cell 

spheroid formation.544–547 Using microwell-based approaches, cell spheroids consisting of 

either single cell types, such as MCF-7 cells,548 MIN6 β-cells,546 hESCs,545 and adipose-

derived stem cells (ADSCs),549 or multiple co-cultured cell types, such as hESCs-

fibroblasts544 and hepatocytes-fibroblasts,550 have been generated in a high-throughput 

manner. These scaffold-free cell spheroids can potentially serve as building blocks for 

bottom-up tissue engineering and as effective 3D in vitro models for drug toxicity and 

screening applications.551 Microwells with varied geometries and sizes can provide tunable 

confined spaces for regulating behaviors such as cell differentiation. For example, Werner 

and co-workers552 employed microlens array photopatterning technology to locally degrade 

hydrogels and generate microwells and microchannels with defined architectures. The 

differentiation of neural precursor cells was found to be determined by the degree of spatial 
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confinement. Moreover, using biocompatible thermal-responsive polymers such as six-arm 

PEG-poly(caprolactone) (PCL), microwells with different dynamically tunable geometries 

have been fabricated.553 The dynamic changes in microwell geometries resulted in 

alterations in the cytoskeletal organization and differentiation pathways of BMSCs cultured 

in these microwells. However, although these observations are physiologically relevant, they 

cannot overcome the limitation that microwells are only pseudo-3D systems that cannot 

mimic the 3D structural cues cells experience in vivo. We therefore feel that more advanced 

and integrative technologies, as discussed below, represent the future of engineering the 

biophysical microenvironment of cells.

One such promising technology is biomimetic materials with a microporous structure. The 

ECM is typically a highly porous structure with water and soluble factors filling and 

diffusing through the voids. The porous structure provides a large surface area for cell 

attachment and growth, enables efficient molecule transport, and forms localized bioreactors 

for biochemical reactions.554–558 The important porous design parameters, including 

porosity, pore size and interconnectivity, have been found to have significant effects on cell 

behaviors.229,569–573 In general, an increase in porosity, pore size or interconnectivity 

usually leads to improved ECM secretion, cell infiltration, tissue ingrowth, and molecular 

delivery, although this is very much application specific.574–575 For cell differentiation, 

different pore parameters may result in different differentiation pathways. As one example, 

the differentiation of hMSCs in porous honeycomb polystyrene scaffolds was found to 

depend on pore size, with osteospecific and myospecific differentiation preferred on 

scaffolds with a smaller pore size (1.6 μm) and a larger pore size (3.8 μm), respectively.576 

Another important parameter in porous design is spatial distribution of pores. Anisotropic or 

heterogeneous pore distributions can provide structural cues for guiding cell migration, 

orientation, and differentiation. For instance, accordion-like honeycomb poly(glycerol 

sebacate) (PGS) scaffolds were fabricated with controlled anisotropic microstructures.577 

Such structures promoted heart cell alignment and induced direction-dependent electrical 

excitation thresholds. In addition, collagen and chitosan scaffolds with unidirectional 

microporous structures have been fabricated using a temperature gradient-directed freeze-

drying method.155–156,578–579 These porous structures were found to direct the migration 

and orientation of primary porcine trabecular meshwork cells,155 the generation of large 

skeletal myotubes,156 and the formation of functional engineered cartilage.579 3D 

microgrooved collagen scaffolds have also been fabricated using sacrificial ice templates, 

which have been used to create multilayered muscle tissue constructs with highly aligned 

muscle bundles.580 In addition, hydrogels with gradient porosity or pore size have been 

generated,581–583 which were demonstrated to enhance interfacial tissue repair.584–585 A 

spectrum of approaches, including solvent casting/particle leaching,559 freeze-drying,560–563 

gas foaming,564–565 and solid free-form fabrication or rapid prototyping,566 have been 

developed to control the porous structure of hydrogels. The first three approaches are easy to 

perform and are applicable to the majority of hydrogels; however, they have limited 

controllability on the porous structure may also suffer from poor control on cell distribution 

in hydrogels. In contrast, rapid prototyping may enable the creation of hydrogel constructs 

with any custom-designed porous structures. With the emerging of printable biomimetic 
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materials, rapid prototyping may hold potential for fabricating porous tissue constructs with 

native tissue-mimicking structures.567–568

One additional motivation for fabricating hydrogels with microporous structures is to 

enhance mass transport. Cells in native tissues are usually surrounded by abundant vascular 

networks, accessible within 200–300 μm, that provide transport for oxygen and nutrient 

delivery, as well as for waste removal. Because ischemic conditions can injure cells and 

promote pathology, vascularization is a major challenge for tissue engineering of large, 

complex tissue constructs, such as a heart, liver and kidney.95,586–588 For this reason, 

hydrogels with highly interconnected porous structures are preferred, and their development 

is a crucial area for advancing materials for the cell microenvironment.

Key challenges are that, although helpful, mass transport mechanisms dominated by passive 

diffusion are often insufficient, and that the spontaneous vascularization process can be too 

slow. Consequently, hydrogels with microfluidic channels (“microfluidic hydrogels,” Figure 

12) have attracted interest in the past decade.589–594 The creation of microfluidic channels in 

hydrogels greatly improves mass transport through a convection-dominated mechanism.595 

Moreover, endothelialization can enable the microfluidic channels to mimic more closely the 

structures and functions (e.g., the barrier function) of vascular networks in native tissues. 

Combining these microfluidic hydrogels with pore design can further enhance the 

controllability of the 3D cell biochemical microenvironment.596–597 The field is still 

emerging, however, and major challenges persist. Long-term stability of microchannels is 

limited due to clogging and collapse, and due to detachment of endothelial layers during 

perfusion culture or cell-induced matrix remodeling.598 Future work is needed for 

developing stable, highly hierarchical biomimetic vascular networks in hydrogels, and for 

sealing these networks with integrity sufficient for the integration with host vascular systems 

upon implantation into the body.599–602 Finally, these and all methods for introducing 

porosity for mass transport into hydrogels make hydrogels less stiff and thereby 

compounding the perennial challenge of producing hydrogel-based tissues with 

physiological mechanical properties.

An important feature of the microenvironment is that it often differs from the bulk ECM in 

and substantial ways. A strategy for achieving microenvironmental control is to use hydrogel 

building blocks, such as microscale hydrogel particles (“microgels.”)603 This approach is 

also inspired by the observation that many important tissues or organs consist of repeated 

functional units, including hepatic lobules in the liver, nephrons in the kidneys, and pancreas 

islets in the pancreas. By fabricating cell-laden microgels to mimic these functional units, 

one can either use them as building blocks for assembling custom-designed tissue 

constructs604–606 or as in vitro microtissue models for pathophysiological studies and drug 

testing applications.216,221,607–608 To date, microgels have been created with a wide range of 

shapes (e.g., sphere, rectangle, cylinder, star, ring, and dumbbell), sizes, and internal 

microstructures.609–611 As an example, Fan et al.612 employed a two-step photopatterning 

method to fabricate microscale gelatin methacrylate (GelMA) hydrogel rings in a high-

throughput manner. The capture and confined growth of single neurons was achieved; 

consequently, axonal circles formed in these hydrogel ring mimicking self-synapse diseases 

were achieved, demonstrating the potential application of this system in neurobiological 
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studies. Alternatively, microgels can be further assembled into larger 3D tissue constructs 

driven by such forces as magnetic force,613–615 acoustic force,616 electrostatic force,617 and 

interface force,618 or by using multistep photopatterning,619 railed microfluidic channels,620 

DNA-directed self-assembly,621–622 or bioprinting technologies.623–625 Detailed 

descriptions of the development of the bottom-up assembly of microgels can be found in 

some recent reviews.606,626–627 The strengths of these bottom-up approaches are the 

potential to construct highly complex microstructures using simple technologies including 

bioprinting. This includes microstructures that enable spatial control sufficient to provide 

cells with a microenvironment that differs from the bulk ECM. However, the technology 

continues to face challenges including problems with surface interconnectivity: microgel 

building blocks often form surfaces that do not fuse with those of neighbors sufficiently well 

to enable cells to penetrate and to communicate with cells in neighboring microgels.

Another class of microenvironment that is relevant physiologically is highly anisotropic and 

bundled microfibers such as muscle fibers and nerve networks. Hydrogel microfibers can be 

engineered to mimic these functional units for the bottom-up fabrication of 3D tissue 

constructs.628–630 So far, hydrogel microfibers of varying compositions and microstructures, 

including surface-grooved microfibers,631 ribbon-like microfibers,632 multicompartmental or 

patterned microfibers,633–636 core-shell microfibers,637 internally aligned microfibers,
638–639 and stimuli-responsive microfibers,640–641 have been fabricated, mostly using 

microfluidic technologies. For instance, Lee and co-workers642 continuous alginate hydrogel 

microfibers using a microfluidic chip and a digital fluid controller. These microfibers were 

coded with spatiotemporally controlled topographies (e.g., spindle-knots, joints, and 

grooves) and used to enhance the extension and alignment of rat embryonic neurons, and to 

create multifunctional tissue microfibers from a co-culture of rat hepatocytes and L929 

fibroblasts. Takeuchi and co-workers643 used a double-coaxial microfluidic device to 

fabricate meter-long, cell-laden, core-shell hydrogel microfibers, in which alginate formed 

the shell and cell-laden ECM proteins formed the core. After a culture period to allow cell 

growth and organization, the alginate shell was removed, leaving behind cell-laden ECM 

microfibers (termed cell fibers). Via this method, cell fibers of varying types of cells were 

created, with morphologies and functions mimicking those of living tissues. Moreover, the 

cell fibers could be assembled into different 3D higher-order macroscopic tissue constructs 

using a microfluidic weaving machine. The Xu group644 developed a simple method for 

generating cell-laden hydrogel microfibers in a high-throughput manner, inspired by the 

preparation of Chinese Hele noodles (Figure 13). Fibers of this character have been used not 

only for tissue engineering applications but also for fundamental biophysics. Magnetic 

stretching of hydrogel microfibers promotes the proliferation, spreading, alignment, and 

differentiation of C2C12 cells. Although all of these fiber technologies provide the potential 

for controlled, one-dimensional tissue engineered microenvironments, the technologies for 

combining these into functional 3D and 4D tissues are not yet mature. The textile industry 

has faced these challenges for millennia, and adaptation of weaving technologies is a 

promising direction.645

3.3.1.3. Nanoscale Design.: Nanoscale structural cues within the local microenvironment 

of a cell are known to influence cell shape, adhesion, proliferation, migration, and 
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differentiation, as well as sub-cellular molecular organization.646–650 In 3D, nanoscale 

structural cues are usually provided by nanofibers because many ECM proteins in native 

tissues are present in the form of nanofibrous structures.413,651–652 These nanofibers not 

only sustain the structure in which cells reside but also provide instructive cues for guiding 

cell behaviors.653–655 As mentioned in Section 2, the physiological composition and 

presentation of these fibers in natural 3D tissues is known in only a few special cases, and 

much more work is needed. The typical strategy in tissue engineering is to provide cells with 

a few essential nanoscale cues, and then to rely on the cells themselves to create the 

remainder of the nanofibers needed for their microenvironment. In the following, we 

describe several such approaches and their limitations.

Approaches for mimicking nanofibrous structures include phase separation,656–659 

electrospinning,660–661 and self-assembly.662–663 While phase separation is a simple method 

by which bulk nanofibrous scaffolds with nanofibers (~50–500 nm in diameter) mimicking 

the native ECM can be prepared, it is limited to a narrow range of polymers, such as 

polyesters, and lacks precise control over local nanostructures. Moreover, thermal effects 

and non-solvent exchange conditions may not allow 3D cell encapsulation during 

processing. Electrospinning enables precise control over nanofiber dimension and 

orientation and allows the use of a broad range of materials, including naturally derived and 

synthetic polymers, as well as hybrid polymers and nanocomposites.664–666 However, cell 

seeding post-electrospinning is needed, thus often limiting the electrospinning process to the 

production of thin film constructs due to limited cell infiltration. Although thick 3D 

constructs can be obtained by layering or rolling cell-seeded thin films or by combining 

electrospinning with 3D microfabrication technologies, this method still has limited 

controllability in engineering the 3D cell microenvironment.667–668 In contrast, by starting 

from molecular building blocks, self-assembly enables the formation of nanofibers and large 

fibrous tissue constructs in the presence of living cells in a more controlled manner.669 As 

described at the end of this section, however, several fundamental challenges exist.

Self-assembly, mediated by non-covalent hydrogen bonding, hydrophobic, electrostatic, and 

van der Waals interactions, is a common strategy applied in many natural material systems 

for generating higher-order structures. Collagen I is the most abundant self-assembled 

fibrous protein in mammals. Extracted collagen can be dissolved in a weak acid and stored 

at a low temperature for a long time. Once neutralized and warmed to above room 

temperature, the collagen molecules will spontaneously self-assemble into fibrous structures 

and form hydrogels. By controlling the self-assembly conditions or post-processing 

procedures, hydrogels with collagen nanofibers of varying diameters, densities, distributions, 

and organizations have been fabricated and found to significantly affect cell behaviors.
670–671 For instance, many studies have reported the control of collagen fiber orientation,
146,672–675 which has been found to impact EC morphology, function, and survival,676 

increase breast cancer cell intravasation,677 and direct neuronal alignment and growth.672 

Similar phenomena can be found with other naturally derived proteins, such as type II 

collagen, elastin,678 and fibrin.679 It is believed that by mimicking the tissue-specific 

orientation of nanofibrous structures (e.g., parallel alignment in tendon, gradient alignment 

in myocardium, basket-weave meshwork in skin, orthogonal lattice in cornea, and concentric 

weave in bone), one can fabricate 3D tissue constructs with structures and functions more 
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comparable to those of native tissues.680–681 However, as mentioned previously, a central 

challenge is the fact that reconstituted natural proteins cannot reconstitute the mechanical 

stiffnesses of native tissues, even after several days of cellular remodeling;347,682 although 

structure and certain functions of native tissues can be reconstituted, mechanics typically 

cannot.

Synthetic strategies are therefore an area of intense activity. These strategies allow the 

fabrication of nanofibrous materials through the self-assembly of small molecular building 

blocks, such as short peptides.662,683 One of the most commonly used molecular building 

blocks is peptide amphiphiles, which usually possess hydrophobic groups at one end and 

hydrophilic groups at the other end. In appropriate aqueous environments, peptide 

amphiphiles tend to isolate their hydrophobic end from contact with water and self-assemble 

into nanofibers (Figure 14),684 nanotubes,685 or other higher-order structures. In one 

example, a peptide amphiphile was synthesized and self-assembled into a nanofibrous 

scaffold when the pH was adjusted.686 The fibers directed the mineralization of 

hydroxyapatite, forming a composite scaffold with bone-like anisotropic microstructures. In 

another example, the Stupp group687 synthesized IKVAV (a neurite-promoting laminin 

epitope)-containing peptide amphiphile molecules and precipitated their self-assembly into 

3D nanofibrous networks by mixing aqueous dilutions of the molecules with cell 

suspensions. It was found that the nanofibrous hydrogels induced the rapid and selective 

differentiation of the encapsulated murine neural progenitor cells into neurons. In recent 

work, such nanofibers were blended with collagen to form hybrid hydrogels for controlling 

neuronal morphogenesis, survival and maturation.688 With the development of 

supramolecular chemistry, extreme controllability over nanofibrous structures can be 

achieved by designing the structure and controlling the self-assembly process of molecular 

building blocks.363,662 However, these materials typically suffer from the challenge of 

achieving physiological mechanical properties.

Beyond nanofibers, nanoparticles inside scaffolds can also provide 3D nanostructural cues 

for cells. A typical example is hydroxyapatite nanocrystallites in bone. Many 

hydroxyapatite-containing nanocomposites have been developed for bone tissue engineering 

applications, in which the presence of hydroxyapatite enhanced osteoblast mineralizaition.
689–691 In particular, the bioactivity of hydroxyapatite nanocrystallites was found to depend 

on their shape and size. For example, it has been demonstrated that needle-shaped 

hydroxyapatite nanocrystallites could significantly upregulate osteoblast differentiation 

compared with rod-shaped and spherical nanocrystallites.692 Other nanoparticles that have 

been employed to fabricate nanocomposites include CNTs,693 gold nanowires,694 and 

magnetic nanoparticles.695 As most existing studies on this subject have aimed to enhance 

the mechanical properties or electrical conductivity of composites, the structural effects of 

these nanoparticles on cell behaviors need to be investigated in the future.

Finally, we reiterate that native tissue structures are hierarchically organized, and most 

synthetic materials for the cell microenvironment are not. Structural design at a single scale 

may lack instructive cues from other scales and result in insufficient structural or mechanical 

integrity. This has prompted the emergence and development of multiscale hierarchical 

structural design.696–699 Strategies for simultaneously providing cells with appropriate 
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hierarchical environments at the nanoscale, microscale, and macroscale represent a pressing 

need for the field.

3.3.2. Mechanical Properties—As introduced in Section 2, the mechanical properties 

of the ECM influence cell behaviors,700–701 as shown by numerous in vitro studies 

performed on 2D substrata of defined stiffness.175 Several recent works argued that the 

coupling strength between substrates and cell surface receptors, rather than substrate 

stiffness, could affect cell adhesion, spreading and differentiation.30,702–703 These studies 

have dramatically contributed to understanding the roles of mechanical cues in cell 

behaviors and mechanotransduction in 2D704–709 and, to a more limited degree, in 3D.
179,710 The mechanical properties of the cell microenvironment are amongst the most 

important design considerations for engineering the 3D cell microenvironment. Most 

existing studies on the subject have explored the effects of 3D hydrogels with linear 

elasticity on cell behaviors, while other recent studies have extended the effects of hydrogel 

mechanical properties to include nonlinear elasticity, and more recently, viscoelasticity. 

Moreover, hydrogel mechanical properties have been spatially and temporally modulated to 

engineer the heterogeneous and dynamic cell mechanical microenvironment by mimicking 

spatiotemporal mechanical ECM alterations in vivo. However, as emphasized in Section 2, 

the relatively recent discovery that the fibrous nature of the native ECM is essential to cell-

cell communication and cell mechanobiology requires us to critically re-evaluate what is 

known about the role of mechanics in the cell microenvironment.

3.3.2.1. Elasticity and Viscoelasticity.: Elasticity, described by stress-strain curves and 

often characterized by stiffness or Young’s modulus, is the most studied mechanical 

property of hydrogels in engineering the 3D cell mechanical microenvironment. It represents 

the ability of a hydrogel to resist deformation and return to its original state when external 

forces are removed. Hydrogel stiffness has typically been controlled by varying the polymer 

concentration, crosslinking density, or molecular weight of polymer networks. For instance, 

reconstituted protein-based hydrogels, such as self-assembled collagen, are usually 

considered mechanically soft or even weak. Different covalent crosslinking strategies have 

been developed to improve the mechanical performance of these hydrogels; however, they 

are either not appropriate for cell encapsulation or limited in mechanical enhancement. To 

overcome this problem, Brown and co-workers711–712 reported a plastic compression 

method to rapidly remove water from hyperhydrated collagen hydrogels, resulting in 

dramatic shrinkage (> 100-fold) and the rapid formation of dense and mechanically strong 

(~MPa) collagen hydrogels. This method enables the 3D encapsulation of cells, as 

demonstrated by the high viability of both encapsulated human dermal and limbal fibroblasts 

post-compression. To date, stiffnesses ranging from the order of Pa to MPa have been 

generated with naturally derived, synthetic or hybrid hydrogels. Cells cultured in these 

hydrogels respond to the magnitude of stiffness by changing their morphology, movements, 

mechanics, growth and functions. As a typical example, alginate hydrogels with a wide 

stiffness range (2.5–110 kPa) have been created.713 Murine MSCs encapsulated in the 

hydrogels showed adipogenesis and osteogenesis predominantly at 2.5–5 kPa and 11–30 

kPa, respectively. Similar results were also observed in RGD-modified agarose or PEG 

hydrogels. The formation and organization of integrin–adhesion ligand bonds were found to 
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mediate matrix stiffness-induced stem cell differentiation in 3D. Fibroblasts cultured in 

collagen will remodel the collagen, adapt their own mechanical properties to match one 

another, and propagate or die off to approach the steric percolation threshold.288,714–717 In 

recent work, hMSCs encapsulated in 3D stiffer norbornene-functionalized HA hydrogels 

showed reduced cell spreading and nuclear localization of YAP/transcriptional co-activators 

with the PDZ-binding motif (TAZ), which was opposite to the results observed in 2D.718 

These observations clearly show differences between the effects of microenvironmental 

stiffness on cell behavior in 2D versus 3D, and motivate continued efforts to design material 

systems that help delineate the underlying mechanisms.

While many studies have investigated the effects of bulk mechanical hydrogel properties on 

cell behaviors, recent work indicates that cells can sense and respond to nanoscale 

mechanical hydrogel properties in 3D. For example, collagen hydrogels of varying local 

fiber stiffness have been fabricated by controlling the self-assembly temperature of collagen 

molecules.719 Decreasing the self-assembly temperature resulted in increased collagen fibril 

bundling and increased fiber diameter, which contributed to an increase in local fiber 

stiffness (Figure 15A). The local rigid fibrils were found to promote the 3D adhesion 

turnover and maturation of human foreskin fibroblasts. In an alternative work, gold nanorods 

(AuNRs) were mixed with collagen to form nanocomposite hydrogels.720 The incorporation 

of AuNRs resulted in an increase in the nanoscale stiffness of the hydrogels without 

impacting the bulk mechanical properties (Figure 15B), which was observed to promote the 

assembly of intercalated discs through βt-integrin-mediated signaling pathways. These 

results indicate the important role played by nanoscale matrix stiffness in regulating cell 

behaviors. Therefore, an important need for future biomaterials is hydrogels that control 

nanoscale mechanical properties for engineering the 3D cell microenvironment, in addition 

to the nanoscale structural factors associated with the fibrous presentation of ECM.

Many filamentous biopolymers, such as collagen, fibrin, actin, and vimentin, exhibit 

nonlinear elasticity, typically strain-stiffening or stress-stiffening (i.e., the tangent stiffness 

increases with increasing strain or stress) behaviors.721–723 Such nonlinear mechanical 

properties may play important roles in preventing large tissue deformation and maintaining 

tissue integrity, as well as in tissue development, mechanical homeostasis, and wound repair.
721,724–725 The fibrous nature of native ECM, including effects of plasticity, recruitment, and 

alignment, are central to these effects. Although important, the effects of nonlinear elastic 

hydrogel mechanical properties on cell behaviors have only drawn minimal attention in 

recent years. It has been shown that hydrogels with nonlinear elasticity can enable long-

range cell-cell communication and pattern formation,726 regulate the modes of 3D cell 

migration727 and support the differentiation of stem cells.36 For example, linear elastic cell-

derived matrices from human foreskin fibroblasts (HFFs) and nonlinear elastic collagen 

hydrogels have been prepared. HFFs cultured in the cell-derived matrices showed lobopodia-

based migration, while those cultured in the collagen hydrogels showed lamellipodia-based 

migration.727–728 In a recent study, polyisocyanopeptide-based hydrogels, which have been 

shown to exhibit controlled stress-stiffening behavior,729–730 were prepared with varying 

nonlinear behaviors, i.e., with varying critical stresses (beyond which the hydrogels will 

show stress-stiffening behavior) (Figure 16).36 The critical stress of the hydrogels increased 

with increasing polymer chain length, while the stiffness and adhesion-ligand density were 
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maintained. By increasing the critical stress, hMSCs cultured in these hydrogels were 

redirected from adipogenesis toward osteogenesis, which was found to be mediated by 

microtubule-associated protein DCAMKL1.36 More broadly, the fibrous nature of ECM 

proteins enables the long-range transmission of mechanical forces and fields in a way that 

simple neo-Hookean elasticity does not,38–41 and harnessing this type of transmission 

represents an important frontier in engineering the cell microenvironment.

In addition to nonlinear elasticity, most hydrogels (especially reconstituted biopolymer-

based hydrogels) and soft tissues show both elastic and viscous (or dissipative, characterized 

by viscosity or loss modulus) properties (Figure 17A).347,731–732 These hydrogels are 

viscoelastic and exhibit stress relaxation (i.e., the stress decreases in response to the same 

applied strain) or creep (i.e., the tendency toward permanent deformation in response to the 

same applied stress) behaviors.194–195,682 The viscosity of a hydrogel may arise from 

various dissipative events, such as weak bond dissolution, polymer disentanglement, protein 

unfolding, and molecule slipping. The viscoelastic behaviors of hydrogels can be adjusted 

by controlling the hydrogel composition or concentration,733–734 molecular weight or 

network chain length,735–736 crosslink type or density,737 and degradation.738 Regardless, 

the effects of hydrogel viscoelasticity on cell behaviors have been often overlooked.731 

Recent studies revealed that hydrogel viscoelasticity could have significant effects on cell 

behaviors, including cell spreading, proliferation and differentiation.37,193,739–740 For 

example, Mooney and co-workers740 fabricated alginate substrates with elastic or 

viscoelastic properties via ionic or covalent crosslinking, respectively. The results showed 

that both U2OS cells and NIH 3T3 cells cultured on viscoelastic substrates at a low initial 

elasticity showed increased spreading and proliferation compared with those cultured on 

substrates with the same initial elastic modulus. Later, they developed an alternative material 

system in which the stress-relaxation rate of alginate hydrogels could be adjusted 

independent of initial stiffness, degradation, and adhesion-ligand density (Figure 17B, C).37 

This was achieved by the combinatorial use of different molecular weight alginate 

macromers, ionic crosslinking densities, and short PEG spacers covalently linked to the 

alginate backbone. It was found that the spreading and proliferation of encapsulated NIH 

3T3 cells and the osteogenic differentiation of encapsulated murine MSCs were enhanced in 

the alginate hydrogels with faster relaxation. Such effects could be mediated through 

integrin adhesion, ECM ligand clustering, actomyosin contractility, and YAP nuclear 

translocation. Alternatively, McKinnon et al.741–742 developed a hydrazone crosslinked PEG 

hydrogel with tunable viscoelasticity mimicking native tissues. The hydrogel maintained the 

integrity of the covalently crosslinked PEG network and showed viscoelasticity-dependent 

3D cell spreading and growth. Given recent observations by Babaei et al.45 that human 

dermal fibroblasts remodel the viscoelastic behavior of their microenvironment over time, 

the need for new materials to characterize and control the dynamic viscoelastic cell 

microenvironment is pressing.

The nonlinear elasticity and viscoelasticity of hydrogels may influence each other, forming 

complex mechanical interactions experienced by cells. Take collagen and fibrin as examples; 

their nonlinear mechanical responses have been found to depend on strain history.743 

Repeated large-strain loading shifted the onset of strain stiffening to higher strains, which 

was demonstrated to arise from the monomer slipping-induced persistent lengthening of 
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individual fibers. Recently, Chaudhuri and co-workers744 found that upon increasing strain, 

collagen and fibrin hydrogels showed both stiffening and faster stress-relaxation behaviors. 

Such strain-enhanced stress-relaxation behavior is mediated by the force-dependent 

dissolution of weak crosslinks. Aside from elasticity and viscoelasticity, other mechanical 

aspects (e.g., toughness, strength, and fatigue resistance) of hydrogels may also need to be 

considered when engineering the cell microenvironment. Take toughness as an example; 

toughness describes the resistance of a material to fracture under stress. As presented in 

Subsection 2.4, mechanical stress and strain can play important roles in controlling cell 

behaviors. The stress and strain applied to cells in 3D is mainly mediated by the ECM. 

Hydrogels are often stretched or compressed in vitro to reproduce the stress and strain 

microenvironment that cells experience in vivo. An appropriate toughness, or a high 

toughness in some cases (e.g., cartilage tissue engineering), is thus required to enable 

hydrogel deformation without fracture. Several high-toughness hydrogel systems have been 

developed, most of which are based on the principles of double crosslinking745–747 or 

double networks.384,388–389,748 Future studies are needed to evaluate potential applications 

of these hydrogels in engineering the 3D cell microenvironment.

3.3.2.2. Spatial Modulation.: Native tissues are usually heterogeneous, with spatially-

varying stiffness749 that can have profound effects on guiding cell migration, organization, 

and fate, thereby playing important roles in embryonic development, disease progression, 

and tissue healing.750 For instance, injured tissues usually present a stiffness gradient that 

enables the directional migration of cells, termed durotaxis, which is critical for recruiting 

cells for wound healing.751–752 Therefore, materials are needed to reproduce the mechanical 

heterogeneity of cell mechanical microenvironments.

A widely used method for fabricating such heterogeneous hydrogels is photopatterning, 

which is often performed by crosslinking photosensitive hydrogel precursors with light 

through gradient-patterned or any other custom-patterned photomasks753 (Figure 18A). This 

approach has been exploited to fabricate PA hydrogels with ~1 kPa/mm gradient stiffness for 

directing the migration and differentiation of hMSCs,754 PA hydrogels with patterned soft 

and rigid domains for fibroblast mechanical sensing studies,755 MA-modified alginate 

hydrogels with checkerboard, island, or strip mechanical patterns for guiding the alignment 

of MC3T3-E1 preosteoblasts,756 and PEGDA hydrogels with stiffer islands mimicking 

myocardial fibrosis foci for engineering myocardial fibrosis models.757 An alternative 

photopatterning approach for creating mechanically patterned hydrogels is using 

photopatterned degradation. Via this approach, PEG-based photodegradable hydrogels with 

random or regular mechanical patterns and different stiff-to-soft ratios have been fabricated.
758 It was found that the morphology and YAP activation of hMSCs cultured on these 

hydrogel surfaces were closely regulated by the mechanical pattern organization and stiff-to-

soft ratio.

While photopatterning can be readily adjusted to generate varied mechanical patterns, it is 

limited to photosensitive hydrogels. In contrast, microfluidics, which has been widely 

employed for fabricating hydrogel particles, fibers, and other material forms with a 

heterogeneous distribution (e.g., gradient distribution) of polymer compositions, soluble 

factors, and even cells,759–761 enables the use of hydrogels produced by different gelling 
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approaches. The heterogeneous distribution of polymer compositions or concentrations often 

results in heterogeneous mechanical properties.583,762 As one example, a non-planar 

microfluidic flow-focusing device was developed to fabricate mechanically heterogeneous 

ovarian microtissues, with a soft collagen core and a hard alginate shell for mimicking the 

medulla and cortex, respectively763 (Figure 18B). This mechanically heterogeneous 

structure enhanced follicle development and ovulation. A remaining challenge for 

microfluidics is how to tightly and flexibly control flow conditions for generating hydrogels 

with complex and readily regulatable mechanical patterns.

Recently, the Discher group764 developed a method to copolymerize collagen I with PA to 

form rigid-on-soft (i.e., collagen-on-PA) hydrogels, mimicking mechanically heterogeneous 

scar tissue. An interesting finding of their work is that MSCs cultured on these mechanically 

patterned hydrogels exhibited less cell-to-cell variation in smooth muscle actin (SMA) 

expression than did those cultured on homogeneously rigid hydrogels, an effect be mediated 

by the transcription factor NKX2.5. Han et al.765 constructed heterogeneous engineered 

fibrocartilaginous tissues by synthesizing non-fibrous, PG-rich microdomains (PGmDs) 

within a fibrous collagenous matrix: MSC micro-pellets and meniscus fibrochondrocytes 

(MFCs), when sandwiched between nanofibrous PCL sheets, formed PGmDs and a fibrous 

collagenous matrix, respectively. Other methods to fabricate mechanically heterogeneous 

hydrogels include soft lighography,766–767 thermal cycling,768–770 and microfabricated 

geometrically anisotropic pillar arrays.771 Functionally graded engineered tissue constructs, 

which reproduce the compositional, structural, mechanical, and functional features of native 

fibrocartilaginous tissues, provide a promising platform for mechanobiological and 

therapeutic studies of fibrocartilage. More broadly, these results highlight the need for the 

field to develop additional material systems that present cells with spatial gradients of 

microenvironmental cues.

Although the existing methods provide effective tools for engineering a mechanical 

microenvironment with stiffness gradient features, challenges described above persist, 

specifically the challenge achieving a sufficient gradient range to mimic the upper range of 

tissue stiffness in vivo. A typical example is the interface between soft and hard tissues, such 

as tendon-to-bone attachment. The tensile modulus of tendon is ~0.4 GPa, whereas the 

connected bone is nearly fifty orders of magnitude stiffer than the tendon.176 Achieving the 

upper range of stiffness is a challenge, as is overcoming the stress concentrations that 

increase the failure risk.772 Physiologically relevant stiffnesses can be achieved in 2D, but 

using materials that are not themselves amenable to remodeling by cells. For example, in a 

recent study, a multilayered substrate composed of a stiff photopatterned KMPR resin (~4 

GPa) and a soft poly(dimethyl siloxane) (PDMS) layer (~20 kPa) was successfully 

fabricated, allowing the study of single cell behavior under a large stiffness gradient.767 

Such methods provide promising tools for investigating cellular biophysics, but are not 

likely to be applicable to 3D cell culture.

Although this section provided many promising examples of 2D successes, more studies are 

needed to uncover the mechanisms underlying cell responses to mechanical heterogeneities 

in 3D and, eventually, in 4D. Future efforts should be directed toward exploring biomimetic 

materials with spatiotemporally modulated mechanical properties to improve the in vivo 
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therapeutic performance of engineered tissue implants. Finally, given that even graded 

structures in the body are fibrous in nature,773–774 a need exists for developing materials that 

offer realistic, controlled, fibrous cell microenvironments.

3.3.2.3. Temporal Modulation.: The heterogeneous mechanical properties of native 

tissues change with time in development, wound healing, and aging. Typically, ECM 

stiffening can be induced by matrix overdeposition, matrix crosslinking or cell 

contraction775–776 and is distinct from strain-stiffening due to fiber recruitment. ECM 

stiffening is a hallmark of many diseases and plays an important role in fibrosis development 

and tumor progression.777–779 For example, in fibrotic cardiomyopathy, the differentiation of 

cardiac fibroblasts into myofibroblasts yields cells that continuously secrete and overdeposit 

ECM, resulting in ECM stiffening. The stiffened ECM recursively promotes cardiac 

myofibroblast differentiation, forming a positive feedback loop for cardiac fibrosis 

development.780–782 During breast tumor progression, ECM stiffening has been found to 

promote integrin clustering, phosphoinositide 3-kinase (PI3K) signaling activation, and 

tumor invasion.783–785 Recreating dynamic microenvironments that simulate these 4D 

effects represents a pressing need in materials science.786 We describe here a few successful 

strategies that have been utilized to trigger hydrogel stiffening for investigating dynamic cell 

responses.787–789

As an example of a successful temporal evolution of material properties in cell culture, the 

Burdick group developed a sequential crosslinking approach to stiffen HA hydrogels in situ.
788,790–791 In their study, HA macromers were modified with MA and partially crosslinked 

with dithiothreitol (DTT) via Michael-type addition reactions in the presence of living cells. 

After a culture period, the initial hydrogels were then UV-crosslinked in the presence of a 

photoinitiator (Irgacure 2959), resulting in hydrogel stiffening (Figure 19B). The adhered 

hMSCs showed reduced secretion of key angiogenic factors and cytokines788 and increased 

spreading area and traction force790 in response to hydrogel stiffening. Long-term culture 

showed that hMSC differentiation was dependent on the culture period, with adipogenic and 

osteogenic differentiation favored with later and earlier stiffening, respectively.790 However, 

such differentiation state-dependent cell responses to mechanical stiffening as observed in 

2D require further investigation in 3D. In another study, the Anseth group792 reported a 

PEG-based hydrogel with stiffness dynamically tunable from 0.24 kPa to 13 kPa. Valvular 

interstitial cells (VICs) cultured in 3D hydrogels with stiffness of 0.24 kPa for 3 days spread 

and 40% of them were activated into myofibroblasts, as demonstrated by α-SMA 

expression; subsequent stiffening of the PEG hydrogels in situ deactivated the 

myofibroblasts into quiescent VICs.792 These are interesting findings since 2D stiffer 

substrates have been shown to promote the differentiation of fibroblasts into myofibroblasts 

(as introduced in the next paragraph), demonstrating the importance of culture 

dimensionality in cell responses to dynamic stiffness changes. While the above 

photocrosslinking-induced hydrogel stiffening typically occurs in seconds to minutes, in 
vivo matrix stiffening usually develops over days to weeks or even months.

To address this limitation, Young and Engler787 reported a slow Michael-type addition 

reaction to crosslink thiolated HA with PEGDA (Figure 19A). The reaction dynamics, and 

thus the stiffening process, were controlled by changing the PEGDA molecular weight. To 
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mimic the temporal stiffening of heart muscle during mesoderm development into adult 

myocardium, ~3400 Da PEGDA was used to crosslink 1% thiolated HA. The stiffness of the 

hydrogels increased fourfold over 3 days post-polymerization, resulting in enhanced 

cardiomyocyte maturation compared with static PA hydrogels. These systems represent a 

promising foundation for 4D microenvironmental design.

ECM softening, the opposite of stiffening, is another dynamic change in ECM mechanical 

properties that cells may encounter in vivo.793 In vitro studies have revealed that hydrogel 

softening could impact cell spreading, proliferation, mobility and differentiation. The 

commonly adopted approach for inducing hydrogel softening is degradation. While different 

degradation mechanisms exist, photolytic degradation is the most used due to its high 

controllability.794–795 For example, Kloxin et al.796 developed a photodegradable PEG-

based hydrogel that could be softened via exposure to UV light (Figure 19C). Gradient 

degradation in the presence of living cells led to gradient stiffness formation in situ, 

triggering the directional spreading of hMSCs in 3D. This hydrogel system was further 

employed to study the softening effects on the VIC phenotype. It was found that VICs 

cultured on stiff hydrogels were predominantly activated into myofibroblasts, which could 

be deactivated into quiescent VICs after hydrogel softening.797 The deactivated fibroblasts 

could then be re-activated into myofibroblasts in the presence of TGF-β1798 or anisotropic 

topographies.799 The matrix softening-induced de-activation of myofibroblasts was found to 

be mediated through the PI3K/Akt pathway.800 These findings indicate that targeted matrix 

softening may be an effective way to suppress or reverse the progression of fibrotic diseases. 

In recent work, the decrosslinking of ionically crosslinked alginate was employed to soften 

collagen-alginate hybrid hydrogels.801 It was found that human pluripotent stem cells 

(hPSCs) encapsulated in the hybrid hydrogels could maintain their stemness and self-

renewal capacity. However, when the hydrogels were softened by removing the alginate 

component, the stem cells switched to different lineage commitment stages in a switch time-

dependent manner, demonstrating that hydrogel softening may work as a mechanical switch 

for tuning stem cell fate.

In addition to non-reversible stiffening or softening, several hydrogel systems with reversible 

stiffening and softening have been developed, including Ca2+-crosslinked alginate-based 

hydrogels,802 temperature-sensitive PNIPAAm-based hybrid hydrogels,803 pH-sensitive 

triblock hydrogels,804 DNA-crosslinked PA hydrogels,805–807 and supramolecular hydrogels 

with host-guest interactions358,808 (Figure 20). In one example, hydrogels were fabricated 

by crosslinking a mixture of alginate and temperature-sensitive liposomes.809 The liposomes 

were loaded with AuNRs and either calcium chloride or diethylenetriaminepentaacetic acid 

(DTPA). Upon near IR (NIR) laser irradiation, the AuNRs produced heat and induced the 

gel-to-fluid phase transition of the liposomes, releasing calcium chloride or DTPA, which 

further led to crosslinking (stiffening) or decrosslinking (softening) of the alginate 

hydrogels, respectively. This system was demonstrated to enable remote transdermal 

stiffness modulation, showing promise in dynamically engineering the in vivo cell 

mechanical microenvironment for promoting tissue healing. In other work, hybrid hydrogels 

composed of alginate and collagen were fabricated.802 The temporal delivery of Ca2+ or 

chelating agents through a filter membrane induced the crosslinking or decrosslinking of the 

alginate component, thus stiffening or softening the hybrid hydrogels, respectively. Mouse 
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C3H/10T1/2 fibroblasts encapsulated in a Ca2+-crosslinked hybrid hydrogel maintained a 

rounded morphology, while mechanical softening by decrosslinking the alginate led to cell 

spreading. Recrosslinking the alginate did not reverse the morphology of spread cells.802 

Recently, a dynamic cell-laden hydrogel system was fabricated by using the thiol-allyl ether 

photoclick reaction of thiolated PVA, four-arm PEG-allyl ether (PEG4AE), and mono-

functional β-cyclodextrin-allyl ether (βCDAE).808 In situ hydrogel stiffening and softening 

were achieved through controlled supramolecular host-guest interactions between supplied 

free adamantane-functionalized four-arm PEG (PEG4AD) and immobilized βCD. Pancreatic 

MIN6 β-cells encapsulated in the hydrogels showed high viability and stiffness-dependent, 

reversible insulin expression. These reversible crosslinked hydrogel systems provide 

excellent platforms for studying cell responses to dynamically changing mechanical cues in 

4D.810 In addition, related hydrogels with reversible crosslinks can be designed to self-heal, 

thereby potentially replicating the tendency of collagen to crosslink and self-assemble in the 

vicinity of a cell.811–813 These directions are largely unexplored, but hold promise for basic 

studies in cell biophysics.

3.3.2.4. Cell Mechanotransduction.: A key factor that has been emphasized throughout 

this review is the need to develop materials that preserve the ways that cells interact with 

their microenvironment mechanically. An important component of this is 

mechanotransduction, which we define as mechanical sensing that transforms 

microenvironmental mechanical properties (e.g., elasticity and viscoelasticity) into 

intracellular signals.814 Mechanotransduction is known to be sensitive to the details of both 

structure and mechanics in the cell microenvironment. Given the broad uncertainties in the 

3D make-up and 4D evolution of this environment in native 3D tissues, great care must be 

taken. We summarize in this section key components of cell mechanotransduction, and 

emphasize areas in which insufficient information is available (Figure 21).

Cell adhesion contributes to cellular mechanosensing through stress propagation and 

chemical signal activation. Cells sense the stress (strain) of the external matrix by forming a 

dynamic mechanical bond system (e.g., slip/catch bond and sliding-rebinding/allosteric 

catch bond) involving hundreds of known adhesion proteins, such as integrin, talin and 

vinculin.202 Cell adhesion likely enables intracellular chemical signal activation, as in the 

upregulation of the focal adhesion kinase (FAK) phosphorylation on Y397 (FAKpY397) 

within ~100 nm aggregates of integrins called focal adhesions.815

Mechanical cues that regulate gene expression and protein translation must be transduced 

from the cell-ECM interface, through the cytoplasm, and to the nucleus.816–817 We discuss 

two pathways. First is a soluble factor pathway triggered by stress-activated channels. 

Soluble factors that arise in response to mechanical cues, including FAK, Src and Rho,818 

produce downstream signaling via the FAK-RhoA-Rho kinase cascade and likely crosstalk 

with the TGF-β and Hippo cascades; these may also regulate nuclear events.819

Second, it is possible for mechanical signals to reach the lamina that surrounds the nucleus.
820 The lamins in the nuclear lamina connect the nucleus to the cell cytoskeleton through the 

LINC (“linker of nucleoskeleton and cytoskeleton”) complex.821 Contractile actomyosin 

units in the cytoskeleton test matrix rigidity via tension and dynamic, force-dependent 
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reinforcement of integrin clusters.822 Evidence that mechanical forces may regulate the 

nuclear lamina itself comes from observations that nuclear lamin-A follows a power-law 

scaling versus matrix rigidity, with rates of phosphorylation (turnover) of lamin-A inversely 

related to matrix rigidity.823 Lamin-A levels and conformations regulate the location of 

proteins involved in gene expression (e.g., nucleocytoplasmic shuttling of etinoic acid 

receptor gamma (RARG) and YAP) and thus lamin-A provides a potential mechano-

chemical mechanism to explain the dependence of stem cell differentiation on matrix with 

different rigidity. Another possibility is that nuclear membrane stretch mediates 

mechanotransduction.824 Although these connections and their roles in gene expression are 

still hypothetical, this body of literature further highlights how changes to the cell 

mechanical microenvironment can perturb cell function.825

3.3.3. Degradability—Degradation is an essential feature of native ECM and is involved 

in mediating cell behaviors including spreading, migration, and differentiation, thereby 

playing important roles in development, tissue homeostasis and disease progression. Most 

ECM macromolecules and their derivatives can respond to enzymes, especially cell-secreted 

enzymes such as MMPs, plasmin, and elastase. This is a critical pathway for cells to 

modulate their environment, and for cells to dynamically sense and obtain feedback from 

their local microenvironment. Engineering material degradability or adaptable crosslinking 

(Figure 23)891–892 in biomaterials if essential for controlling matrix presentation and 

distribution, soluble factor immobilization and cell mobility, and dynamic tuning of material 

properties.826–827 Two ongoing challenges in this field are controlling degradation 

byproducts and degradation kinetics. This must be balanced as well with the challenge of 

presenting cells with ECM that is the right order of magnitude in stiffness, and the further 

challenge that degradation invariably reduces ECM stiffness even further.

A basic requirement for degradable hydrogels is that degradation byproducts should be 

biocompatible. In some cases, degradation byproducts can provide instructive cues for 

modulating cell behaviors.828 For instance, calcium and phosphate ions, which can be 

generated by the degradation of mineralized materials, have been found to promote the 

osteogenic differentiation of hMSCs through c-Fos829 and adenosine signals,830 

respectively. The degradation byproduct of collagen, endostatin, has been shown to regulate 

EC and stem cell behaviors.6,831–832 In addition, the degradation byproduct of polyester-

based hydrogels, lactic acid, has been found to impact neural cell metabolic activity and 

intracellular redox state.833–834 Similar examples can be found for other degradation 

byproducts of natural or synthetic hydrogels. Further studies are needed to understand the 

interactions between cells and degradation byproducts, which will benefit the design of 

degradable hydrogels for engineering the cell microenvironment. The degradation rate is 

dependent on the hydrogel types used, the crosslinking strategy, and the microenvironmental 

conditions. For tissue regeneration, it is important for the degradation rate of implanted 

biomaterials to match the cellular regeneration rate of the ECM. To control hydrogel 

degradation, various degradation mechanisms and degradable molecules have been 

exploited.48,130,316 A major challenge is integrating all three main degradation mechanisms 

in a single engineered material: enzymatic degradation, hydrolytic degradation, and 

photolytic degradation (Figure 22).
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Synthetic systems designed to achieve this in functionalized hydrogels include enzyme-

sensitive peptide-based crosslinkers and hydrogel precursors.835–836 For example, MMP-

sensitive peptides have been applied to crosslink PEG hydrogels via base-catalyzed Michael-

type addition (Figure 22A),837–839 radical polymerization,840 or thiol-ene 

photopolymerization.438,841 The degradation rate of the MMP-sensitive PEG hydrogels was 

found to depend strongly on the sequences of the MMP-sensitive peptides. Increased bone 

regeneration was observed in more rapidly MMP-degradable hydrogels in the presence of 

recombinant human BMP-2.839 When combined with the incorporation of RGD and 

VEGFs, MMP-mediated hydrogel degradation induced the sustained release of VEGFs over 

two weeks and promoted vascularization in vivo.842 In addition, other degradable peptides 

have also been used to crosslink PEG hydrogels to endow them with degradability in 

response to human neutrophil elastase (HNE)843–844 or plasmin,845–846 among other 

enzymes. The strength of these approaches is that they endow hydrogels with the ability to 

be remodeled locally by cells. However, despite advances in technologies that enable in situ 
degradation monitoring,893–896 a weaknesses is that there is no way to be certain that this 

remodeling is representative of how cells adapt their microenvironment in vivo. The 

differences between a PEG hydrogel and a fibrous ECM may be alleviated or exacerbated by 

cell degradation.

Spatial control of hydrogel degradation has been engineered by Burdick and co-

workers847–848 via partially crosslinked multi-acrylated HA with MMP-sensitive peptides 

and a primary addition reaction. Sequential crosslinking of the remaining acrylates through 

radical polymerization inhibited the spreading of encapsulated hMSCs even in the presence 

of adhesive peptides. Such strategies have been applied to produce patterned MMP-

degradable HA hydrogels for spatially controlling the spreading and differentiation of 

hMSCs848 and for achieving in vitro vasculogenesis or angiogenesis in 3D.849 To control the 

temporal degradation of hydrogels, multiple enzyme-degradable peptides have been used in 

combination. For example, MMP-7 and aggrecanase (ADAM-TS4)-sensitive peptides have 

been applied to crosslink streptococcal collagen-like 2 (Scl2), a recombinant bacterial 

collagen.850 These two peptides were targeted toward enzymes produced by encapsulated 

hMSCs undergoing chondrogenesis and by newly differentiated chondrocytes, respectively. 

The degradation behavior of the hydrogels was tuned by varying the ratios of the two 

peptides to mimic the temporal expression patterns of the corresponding enzymes in hMSCs 

during chondrogenesis. This technique is promising for the specific microenvironment of 

chondrocytes, but it remains to be determined whether it can function as a replicate of stiffer 

tissues.

In cancer,851–852 MI,853 rheumatoid arthritis,854 and other diseases, the cell 

microenvironment may exhibit abnormal elevations in protease activity and concentration. 

Hydrogels have therefore been designed to degrade in response to local protease levels, 

releasing drugs or cells through feedback control for therapeutic and tissue regeneration 

purposes.855–857 However, the enzyme activity and therefore the degradation rate of the 

corresponding hydrogels can be dramatically influenced by microenvironmental conditions. 

In addition, the enzyme concentration may vary across different tissues and depend on 

specific cell types. These factors increase the complexity of optimizing enzyme-degradable 

hydrogels in vitro for use as tissue implants in vivo. Moreover, as for hydrolysis, which will 
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be discussed below, enzymolysis provides limited controllability over the spatiotemporal 

degradation of hydrogels.

Hydrogels containing hydrolysable linkages, such as ester, hydrazone, and acetal linkages, 

either within their network backbone or crosslinker, can be hydrolytically degraded. As one 

example, a triblock copolymer, poly(ε-caprolactone-co-lactide)-b-PEG-b-poly(ε-

caprolactone-co-lactide) (PCLA-PEG-PCLA), was fabricated via ring-opening 

polymerization (Figure 22B).858 The concentrated copolymer solution rapidly gelled at body 

temperature through the formation of percolated micelle networks, forming a hydrolytically 

degradable and thermoreversible PCLA-PEG-PCLA hydrogel. This hydrogel was applied to 

prevent post-operative intestinal adhesion. PNIPAAm-based hydrogels have been rendered 

hydrolytically degradable by introducing hydrolysable segments into di(meth)acrylate 

crosslinkers.859–860 In a recent study, injectable and rapid-gelling PNIPAAm hydrogels were 

prepared by the co-extrusion of hydrazide- and aldehyde-functionalized PNIPAAm 

oligomers.861 The hydrazone linkages that formed during gelling rendered the PNIPAAm 

hydrogels hydrolytically degradable in an acid-catalyzed manner. In some cases, hydrolytic 

degradation can overcome the limitations of enzymatic degradation. It can occur under quite 

mild conditions without involving any trigger molecules. For instance, partially oxidizing 

alginate polymer chains can generate acetal groups to render alginate hydrogels 

hydrolysable without using alginases,862–863 where the hydrolytic degradation rate increases 

with increasing the oxidation degree. Such material systems have been applied for 3D cell 

culture and tissue regeneration with tunable material degradability and mechanical 

properties.864–866 As for HA hydrogels, they can be enzyme-degradable in response to 

hyaluronidase; however, such degradation is slow, and the acidic pH level needs to be 

optimized to enhance the enzyme activity. Therefore, glycidyl methacrylate (GMA) 

modification has been performed to render HA hydrogels hydrolytically degradable.867 The 

degradation rate can be readily regulated by adjusting the ratio of high molecular weight 

(220 kPa) to low molecular weight (110 kPa) HA-GMA.867 While hydrolytic degradation is 

an effective way to induce the bulk degradation of hydrogels in the physiological 

microenvironment, it is sensitive to microenvironmental changes since the hydrolysis rate of 

hydrolysable linkages, including ester and hydrazone linkages, can be affected by a 

multitude of factors, such as pH level and water penetration.868 This sensitivity might lead to 

challenges in predicting degradation kinetics. In addition, as with enzymatic degradation, 

controllability over the spatiotemporal degradation of hydrogels is limited.

Benefiting from the development of laser technologies and cytocompatible, photosensitive 

hydrogel systems, photolytic degradation has been demonstrated to enable good control over 

hydrogel degradation in space and time.869–870 The Anseth group adopted a strategy that has 

been used for the dynamic patterning of bioactive peptides to fabricate photodegradable, 

PEG-based hydrogels by copolymerizing a photodegradable crosslinker with PEG 

monoacrylate (Figure 22C).458–460,871 The crosslinker macromer was synthesized by 

conjugating a photodegradable acrylic monomer containing o-NB groups into the backbone 

of a PEG macromer. Hydrogel channels generated in real time through in situ 
photodegradation released encapsulated fibrosarcoma cells to migrate along the channels.458 

By combining photodegradation with RGD photopatterning, it was shown that both 

interstitial space and adhesion cues were required for guiding NIH 3T3 cell migration in 3D.
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460 Recently, Revzin and co-workers872–873 developed a similar strategy for fabricating 

photodegradable, PEG- and heparin-based hydrogels for cell capture, culture and release. To 

further enhance photodegradation controllability, Griffin and Kasko874–875 synthesized a 

series of o-NB linkers with varying structures and reactivities, and they linked various model 

therapeutic agents to the PEG backbone to form different photodegradable PEG macromers. 

Hydrogels made from these macromers showed o-NB linker-dependent degradation 

behavior. Complex, multistage release profiles of the therapeutic agents were achieved by 

simply changing the light wavelength, intensity, and exposure time.874 Encapsulated hMSCs 

were released in a wavelength-dependent manner via combined use of two different o-NB 

linkers.876 Such systems show promise for the controlled delivery and on-demand release of 

multiple bioactive molecules, therapeutic agents, and cells in 3D for tissue engineering and 

regenerative medicine applications. Nevertheless, nitrobenzene moieties were used in the 

above photodegradable hydrogel systems, which can absorb light strongly and thus limit the 

degradation depth. To overcome this limitation, a method based on oxidizing thiol-

functionalized PEG macromers was reported.877 This method enabled the degradation of up 

to 2 mm of the fabricated PEG hydrogels within 120 seconds upon exposure to 365 nm UV 

light at 10 mW/cm2. However, long-time exposure to UV light can harm cells and tissues.

In part to overcome this challenge, photodegradable hydrogels responding to NIR light have 

been developed.878–879 NIR light-mediated hydrogel degradation can be more useful for in 
vivo biomedical applications since NIR light has good tissue penetrability and causes less 

cellular photodamage. Nevertheless, thermal effects of NIR light must be weighed when 

long-time exposure to high intensity NIR light is required. Photodegradation has provided 

advanced controllability on hydrogel degradation in a remote manner, with varying degrees 

of desired degradation rates depending on light wavelength, intensity and exposure time. As 

with other technologies, toxic byproducts are the major challenge. Small molecules 

generated during hydrogel photodegradation can be toxic to surrounding cells both in vitro 
and in vivo. Therefore, biocompatibility is a key challenge for design and application of 

photodegradable hydrogels. Table 1 summarizes some important aspects of different 

degradation mechanisms.

Beyond those degradation mechanisms discussed above, degradation mechanisms that have 

been employed in tissue engineering include reduction-sensitive degradation,880 thermal 

degradation,881–882 and/or reversible click reactions.883–884 To render hydrogels reduction-

degradable, reduction-sensitive linkages, such as disulfide bonds, are routinely used. The 

disulfide bonds can be incorporated into hydrogels through several strategies, including the 

oxidation of thiol-functionalized precursors,885 the use of disulfide-containing crosslinkers,
880 and the use of thiol-disulfide exchange reactions.886–887 When exposed to thiol-

containing reducing agents, such as glutathione (GSH) and N-acetyl-cysteine, disulfide 

bonds can be rapidly cleaved, resulting in hydrogel degradation. Such disulfide-crosslinked 

hydrogel degradation is rapid, with half-lives ranging from 8–45 min. This relatively rapid 

release may limit the use of this method for drug or growth factor delivery, where sustained 

release is usually preferred. To overcome this limitation, PEG-heparin was prepared by a 

reversible thiol-maleimide Michael-type reaction between thiol-functionalized PEG and 

maleimide-modified heparin.888–889 The presence of GSH can trigger an exchange reaction 

in PEG-heparin hydrogels, leading to degradation, the rate of which can be controlled by 

Huang et al. Page 48

Chem Rev. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functionalizing PEG polymers with different arylthiol derivatives. Considering that GSH 

elevation has been found in the tumor microenvironment and may be associated with cancer 

cell activities,890 the above reduction-sensitive degradable hydrogels have potential for 

various applications in targeted drug delivery for cancer therapy.72

3.3.4. Electrical Conductivity—Electrical communication among cells in mature 

tissues is achieved by direct connectivity through ion channels such as those formed by 

connexins. However, during development and wound healing of native tissues and 

development of tissue constructs, the electrical conductivity of the cell microenvironment is 

a critical mediator of ionic currents. The poor electrical conductivity of most biomimetic 

materials traditionally used in cell culture has led to the development of conductive 

biomaterials, which have typically been produced through the incorporation of conductive 

components, such as conductive polymers or oligomers,897 AuNPs,694 CNTs898 and 

graphene899 (Figure 24).

Conductive polymers were discovered in the mid-1970s900 and attracted interest for 

biomedical applications in the 1980s.901 Conductive polymers not only have some properties 

similar to those of common polymers, such as flexibility and easy processing, but also 

possess attractive electrical properties that can be controlled. Several conductive polymers, 

such as polypyrrole (PPy), polyaniline (PANi), polythiophene, poly(3,4-

ethylenedioxythiophene) (PEDOT), and their derivatives, have been demonstrated to be 

biocompatible for in vitro cell culture and in vivo tissue regeneration.902–905 However, due 

to their poor cell adhesivity, lack of biodegradability, and limited controllability over 

mechanical properties, conductive polymers have typically been blended or copolymerized 

with routinely used degradable polymers to generate conductive biomaterials. These 

conductive biomaterials have been engineered into the forms of particles and nanofibers with 

anisotropic conductive properties for synchronizing cardiomyocyte beating,906 promoting 

neurite extension,907 and enhancing myoblast differentiation,908–910 among other purposes. 

Moreover, conductive hydrogels, including aniline pentamer911 or PANi-grafted912 gelatin, 

PANi-GelMA hybrid hydrogels,913 PEDOT-coated agarose nerve conduits,914 PPy-coated 

cellulose,915 PANi nanofiber- or PEDOT nanofiber-loaded collagen,916 and PPy-grafted 

chitosan,897 have been fabricated and applied for cell culture and tissue regeneration 

applications.917 Although promising, few of these conductive hydrogels have been 

developed for engineering the 3D cell microenvironment, in part due to the use of 

undesirable chemicals or incompatible conditions during the fabrication process of such 

conductive hydrogels.

AuNPs, as one of the most versatile noble metal nanoparticles, have found widespread 

biomedical applications. The excellent optical properties of AuNPs render them especially 

useful for surface plasmon resonance-based sensing, imaging, and thermal therapy.918–919 In 

addition, due to their high electrical conductivity and biocompatibility, AuNPs have been 

recently employed to fabricate conductive nanocomposite hydrogels for tissue engineering 

applications. Several approaches have been developed to incorporate AuNPs into hydrogels. 

One approach is to synthesize AuNPs in hydrogels in situ, i.e., the hydrogels were first 

fabricated and then used as templates for assisting the formation, morphology control and 

distribution of AuNPs.920–921 Via this approach, porous conductive thiol-hydroxyethyl 
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methacrylate (thiol-HEMA)/HEMA hybrid hydrogels with homogeneously distributed 

AuNPs were fabricated.920 The electrical conductivity and the mechanical properties of the 

hybrid hydrogels were controlled by adjusting the thiol-HEMA content. Neonatal rat 

cardiomyocytes cultured on these hydrogels showed upregulated connexin 43 (a gap 

junction protein) expression even in the absence of electrical stimulation. Similar approaches 

have been used to fabricate conductive and pH-sensitive poly(N,N-dimethylaminoethyl 

methacrylate) (DMAEMA)/HEMA hybrid hydrogels.922 The conductivity of these 

hydrogels was demonstrated to be reversibly alterable through pH-induced volumetric 

swelling/deswelling. Another approach is to incorporate prefabricated AuNPs into hydrogels 

either during or after hydrogel formation. In a typical example, gold nanowires were 

incorporated into alginate scaffolds during ionic crosslinking.694 It was shown that the 

embedded gold nanowires significantly improved the electrical conductivity of the alginate 

scaffolds and the electrical communication between adjacent neonatal rat cardiomyocytes, as 

well as cell organization and contraction. Recently, a similar approach was utilized to 

deposit AuNPs on decellularized omental matrices923 and embed AuNRs in GelMA 

hydrogels924–925 to engineer bioactive and conductive cardiac tissue constructs, which 

showed promise for cardiac tissue engineering applications. However, issues of uncertain 

long-term toxicity make these materials, like other nano-particle based materials, unlikely 

candidates for FDA approval.

Another type of conductive nanomaterial that has been broadly used in biomedical 

applications is carbon-based nanomaterials, such as CNTs and graphene. CNTs have been 

widely used to mechanically reinforce tissue engineered scaffolds926 and have recently been 

combined with various types of hydrogels to generate conductive hydrogels for engineering 

cardiac and nervous tissues.927–930 For instance, Khademhosseini and co-workers898,931 

combined multiwalled CNTs and photocrosslinkable GelMA to fabricate CNT-GelMA 

hybrid hydrogels. NIH 3T3 cells and hMSCs encapsulated in the hybrid hydrogels 

maintained high cell viability and readily spread in 3D.931 The incorporation of CNTs into 

GelMA hydrogels drastically increased the spontaneous synchronous beating rates (3-fold 

higher) of adhered cardiomyocytes and reduced the excitation thresholds (85% lower) of the 

engineered myocardial tissues. Moreover, the CNT-GelMA hybrid hydrogels showed strong 

protective effects against cardiac inhibitors (e.g., heptanol) and cardiac toxicants (e.g., 
doxorubicin).898 In a later study, dielectrophoresis was applied to align CNTs in GelMA, 

resulting in the formation of anisotropic conductive hybrid hydrogels.932 Compared with 

hydrogels with randomly distributed or horizontally aligned CNTs, these hydrogels with 

vertically aligned CNTs enhanced the differentiation of C2C12 myoblasts and the formation 

of functional myofibers under electrical stimulation. An alternative method for generating 

vertically aligned CNT forest microelectrode arrays in GelMA hydrogels was recently 

developed to engineer muscle-based biohybrid actuators.933 The beating frequency and 

excitation thresholds of the biohybrid actuators were found to depend on the direction of the 

applied electrical signal relative to the vertically aligned CNTs. In addition to CNTs, carbon 

nanofibers934, graphene and their derivatives899,935–937 have also been combined with 

hydrogels to create electrically conductive hybrid hydrogels. Graphene, usually in the form 

of reduced graphene oxide (rGO), is particularly interesting due to its flexibility, good 

electrical conductivity, and ease of dispersion in aqueous solutions. Despite remarkable 
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advances in the synthesis and functionalization of these carbon-based conductive hydrogels, 

the potential toxicity of CNTs and rGO currently preclude their clinical application.938–939

Recently, nanoelectronics that enable simultaneously generation and sensing of electrical 

signals have been integrated with biomaterials to generate 3D nanoelectronic scaffolds for 

culturing neurons, cardiomyocytes, and SMCs.940–942 Such nanoelectronic scaffolds enable 

not only the delivery of electrical signals to active cells and engineered tissues but also the 

electrical sensing of 3D cell responses and engineered tissue performances (Figure 25).940 

These engineered nanoelectronic tissue constructs hold great potential for use in tissue 

engineering and biosensors, if issues of potential toxicity can be resolved. Even in the 

absence of FDA approval, these technologies may also be promising for high-throughput 

drug screening applications via combination with organ-on-chip technologies.943

Conductive additives to hydrogels exhibit several common strengths and weaknesses in the 

context of engineering the cell microenvironment. Conductive polymers are easily 

incorporated into biomaterials, and often display antibacterial properties due to their surface 

energy. However, they are poor conductors compared to nanoscale conductive additives 

(e.g., CNTs, rGO, and AuNPs). These additives provide excellent conductivity at low 

concentrations, but their size and surface energy–and hence the difficulty of dispersing them 

in a hydrogel–make them poorly suited to large scale synthesis. Table 2 summarizes the 

various conductive additives used for fabricating conductive biomimetic materials and their 

biomedical applications and performances. The conductivities of conductive biomaterials as 

a function of concentrations are summarized in Figure 26. In summary, the challenge of 

creating a non-toxic and facile conductive microenvironment for cells encapsulated in 

hydrogels is still open. Although many technologies are available, each has drawbacks 

preventing its widespread and effective use.

3.4. Decoupling Material Properties

As discussed both in this section and in Section 2, material cues such as stiffness, porosity, 

and adhesion-ligand density can control a range of cell behaviors. However, these material 

cues are usually coupled to each other, which confounds identification of the effects of 

individual cues on cell behaviors.713,976 We summarize a small portion of the very large 

literature on this topic in this subsection. Although we have attempted to construct a 

coherent narrative, the result is a dizzying array of behaviors that are difficult to interpret. 

The most important challenge, in our opinion, is that a fundamental understanding of the 

basic biophysical principles that cells follow when interacting with their microenvironments 

are lacking. A secondary consideration is, as mentioned previously, that the nature of these 

microenvironments in native tissues is often uncertain, confounding efforts to ascertain 

whether responses observed are relevant physiologically. Coupled materials and model 

development represents an important need in this area.

For example, material stiffness is usually tuned by changing the polymer concentration or 

crosslinking density, which might simultaneously result in variations in adhesion-ligand 

density and porosity. Different strategies, including microfabrication, chemical modification, 

composition changes, and crosslinking regulation, have therefore been developed to 

independently control various aspects of material properties.
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Microfabrication has been used to decouple material properties by controlling topological 

structures, for example, to modulate substrate stiffness independent of chemical properties,
977 hydrogel permeability independent of stiffness,978 and structural topography independent 

of both stiffness and chemical properties.979–980 In an archetypal example, Chen and co-

workers977 microfabricated PDMS micropost arrays. By varying the height of the 

microposts but keeping the diameter the same, the effective stiffness (or spring constant) of 

the microposts was tuned independent of the adhesion-ligand density and surface chemical 

properties (Figure 27A). The same principle has also been used to create Matrigel substrates 

with gradient stiffness, which was achieved by continuously changing the local Matrigel 

thickness while keeping the concentration and other parameters the same.981 Cell migration 

velocity on such substrates is driven by the stiffness gradient rather than the stiffness itself. 

In another example, the Long group982 used soft lithography to fabricate PA hydrogel 

substrates with independently varied stiffness and topography. These factors were found to 

affect rat BMSC spreading, proliferation, differentiation, and cytoskeletal reorganization in 

an isolated manner. Recently, Kim et al.980 reported that ECM protein-functionalized 

magnetic nanoparticles, mixed with a hydrogel precursor solution, self-assembled into 

different topographies under a controlled magnetic field, and then fixed in 3D by gelling the 

hydrogel precursors. This enabled the decoupling of topography from hydrogel stiffness and 

composition. It was observed that anisotropic topographies could guide 3D protrusions of 

NIH 3T3 cells and PC12 cells in the absence of other guiding cues. However, lacking in all 

of these technologies is a well-defined fibrous character of the ECM and appropriate 

nonlinearity. Unified models of cell mechanics and ECM remodeling are needed to translate 

these observations into principles that can be used for design of tissue constructs.

Chemical modification is an effective approach to decouple biophysical (e.g., stiffness) and 

biochemical (e.g., adhesion-ligand density) hydrogel properties. Toward this end, RGD-

modified PEG-based hydrogels are often used. PEG provides an inert and “blank” network 

with a tunable stiffness, while RGD can be readily incorporated into PEG in a well-

controlled manner without changing biophysical hydrogel properties, thereby allowing 

independent control over hydrogel stiffness and adhesion-ligand density (Figure 27B).457 By 

using such hydrogel systems, it has been found that hydrogel stiffness and adhesion-ligand 

density (i.e., nanospacing) could independently affect SMC983 and MSC984 behaviors. For 

example, increasing hydrogel stiffness independently enhanced SMC spreading and 

proliferation, reduced the size of focal adhesions and the degree of SMC differentiation; 

while increasing adhesion-ligand density independently enhanced SMC spreading with a 

greater degree of heterogeneity and increased the size of focal adhesions.983 Moreover, 

using photopatterning methods, especially two-photon laser-scanning lithography, PEG-

based hydrogels with varying complex adhesion-ligand patterns have been created 

independent of hydrogel stiffness and porosity for guiding cell migration in 3D.457,460,985 In 

addition to PEG hydrogels, alginate and HA hydrogels have also been modified with cell 

adhesion ligands, such as RGD, for independently controlling biophysical and biochemical 

hydrogel properties.986 Furthermore, chemical modification can also be performed on 

molecular crosslinkers. For example, partially oxidized methacrylic alginate (OMA) has 

been used to crosslink both PEG methacrylate (PEGMA) and poly(N-hydroxymethyl 

acrylamide) (PHMAA) to form hydrolytically degradable hydrogels.987 By increasing the 
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oxidation degree of the alginate crosslinker, the degradation rate of both PEGMA and 

PHMAA hydrogels was increased without altering their initial stiffness. Such OMA-

crosslinked hydrogels were demonstrated to enable the controlled release of proteins and 

enhanced angiogenesis in vivo. Careful controls are still needed to determine whether these 

effects are truly due to physical stimuli, or are in fact related to the presence of byproducts 

of hydrogel breakdown.

Another approach to decouple hydrogel properties is to change their chemical composition. 

This approach has been applied to independently control hydrogel stiffness, permeability, 

adhesion-ligand density, or pore size. For instance, Kong and co-workers988 reported that by 

crosslinking of PEGDA with methacrylic alginate and varying the alginate concentration and 

methacrylic group substitution, the hydrogel stiffness could be tuned by more than one order 

of magnitude without significantly changing the hydrogel permeability (represented by the 

swelling ratio). They developed another hydrogel system with PEG monoacrylate 

incorporated into the PEGDA hydrogel network as hydrophilic pendant chains,989 and found 

that by increasing the mass percentage of PEG monoacrylate without changing the total 

polymer concentration, the stiffness of the hydrogel decreased, while the swelling ratio 

showed only a minimal increase. The proliferation rate of encapsulated NIH 3T3 cells 

decreased with increasing hydrogel stiffness, while the cell viability and endogenous VEGF 

expression showed biphasic dependency on hydrogel stiffness. To decouple the effects of 

hydrogel stiffness and adhesion-ligand density on cell behaviors, Scott et al.990 fabricated 

PEG-based modular hydrogels by crosslinking PEG-Glycine microgels with PEG-four-arm-

amine. At concentrations ranging from 0 to 100 μg mL−1, collagen was incorporated into the 

modular hydrogels during crosslinking, with no significant changes in hydrogel stiffness. In 

another study, the stiffness of copolymerized PEG-based hydrogels was independently tuned 

by changing the MMP-sensitive PEG concentration and maintaining the PEG-RGDS 

concentration.991 Similarly, in an alginate-based hydrogel, the stiffness was tuned from 1.87 

kPa to 5.56 kPa in the presence of a constant RGD density, which was achieved by 

increasing the concentration of unmodified alginate from 0.5% (w/v) to 2% (w/v) while 

maintaining the RGD-modified alginate concentration.381 However, these stiffnesses are 

orders of magnitude lower than typical tissue moduli.

The state of the art in this area is the work of Engler and co-workers,30 who developed a 

collagen-coated PA hydrogel system in which the acrylamide/bis-acrylamide ratios were 

adjusted to independently control hydrogel stiffness and pore size (or porosity) (Figure 

27C). They demonstrated that the differentiation of hADSCs and hBMSCs cultured on the 

PA hydrogel substrates was regulated by substrate stiffness independent of porosity and 

protein tethering. Recently, by adopting this collagen-coated PA hydrogel system, Huang 

and co-workers992 found that increasing substrate stiffness rather than pore size induced the 

differentiation of cardiac fibroblasts into myofibroblasts. Such stiffness-induced cardiac 

myofibroblast differentiation was mediated through angiotensin II type 1 receptor (AT1R) 

and could be inhibited by hADSC-secreted HGFs via AT1R downregulation and Smad7 

upregulation. As discussed at the end of this section, these approaches have provided much 

insight into cellular biophysics, but are limited by several ongoing challenges.
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In addition to the above approaches, some studies have explored the use of crosslinking 

regulation (e.g., crosslinking type and density) to independently control hydrogel properties. 

For example, glutaraldehyde has been used to covalently crosslink self-assembled collagen 

hydrogels to increase the stiffness without changing the hydrogel protein concentration or 

pore size.993 Breast carcinoma cells (MDA-MB 231) cultured on stiffer collagen hydrogels 

showed an enhanced 3D invasion depth when the hydrogel pore size was large enough to 

prevent excessive steric hindrance. In another study, collagen molecules were non-

enzymatically glycated with ribose prior to polymerization.994 Increasing the concentration 

of ribose from 0 to 250 mM led to a three-fold increase in collagen hydrogel stiffness with 

no changes in collagen density and minimal changes in collagen fiber structure. ECs 

encapsulated in the hydrogels exhibited increased cell spreading, angiogenic sprouting and 

spheroid outgrowth with increasing hydrogel stiffness. However, for ionically crosslinked 

hydrogels, it may be effective to modulate the crosslinking density and thus the hydrogel 

stiffness independent of its biochemical properties, and even other biophysical properties, by 

simply changing the concentration of small ion crosslinking agents.377,380 For instance, the 

stiffness of IPN hydrogels made from a reconstituted basement membrane matrix and 

alginate has been tuned from 90 Pa to 945 Pa independent of pore structure and adhesion-

ligand density simply by increasing the calcium concentration used for alginate crosslinking 

from 0 mM to 20 mM (Figure 27D).377 It was found that increasing matrix stiffness alone 

could lead non-malignant MCF10A cells to exhibit a malignant phenotype in 3D, depending 

on the ECM composition. This effect was demonstrated to be mediated through signaling 

pathways involving β4 integrin, PI3K, and Rac1.377 However, even with these crosslinking 

technologies, the stiffness range studied is many orders of magnitude below the stiffness of 

even the mammary tissue that represents the niche of MCF10A cells.

Microfluidic technologies have also been exploited to independently control the physical 

confinement of the microenvironment through the configurations and dimensions of 

microfluidic channels. Microfluidic confinement affects cancer cell division.153–154 In 

microfluidic devices engineered with dimensions mimicking human capillary constrictions,
995 circulating tumor cell (CTC) clusters dynamically reorganize into single-file chains to 

pass through such capillary constrictions. Weakening cell-cell interactions with drugs 

disrupted the CTC clusters in the constrictions, suggesting a potential means of suppressing 

CTC cluster-mediated metastasis.995 By measuring the times required for cells to enter and 

pass through microfluidic constrictions, cell deformability and corresponding cell 

mechanical properties can be characterized in a high-throughput manner.996–997 Moreover, 

microfluidic channel design and hydrodynamic stress field control can enable not only cell 

separation based on deformability998–1000 but also large-population mechanical phenotyping 

based on high-throughput single-cell hydrodynamic stretching.1001–1002 Although 

microfluidic systems are far from the 3D microenvironment of a solid tissue, they are 

representative of a clinically important 3D system and enable decoupling of the effects of 

shape and mechanics in interpretation of circulating cell responses.

Despite the above advances, many fundamental relationships among microenvironmental 

cues and cell behaviors remain elusive. More efforts must be directed toward developing not 

only new decoupling biomimetic materials and strategies, but also associated mathematical 

models that enable identification of fundamental principles underlying cell-
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microenvironment interactions. Biomimetic materials can provide many instructive cues that 

may work independently or cooperatively to form complex microenvironmental networks 

for regulating cell behaviors.1003–1005 In the absence of specially designed systems and 

predictive models, it is often not possible to fully decouple material cues from each other. 

Development of mathematical models in conjunction with material systems that enable their 

testing is an important need in the field.

4. Biomedical Applications

Although a great number of uncertainties and challenges remain, many of the biomimetic 

materials described in the previous section can be produced in sufficient quantity and with 

sufficient reliability to enable manipulation of cells in 4D microenvironments. Although 

actual 4D control is still amongst the remaining challenges, the resulting tissue constructs do 

remodel and often reach a steady state that is useful technologically or clinically. Biomedical 

applications for which these have found utility include (1) promotion of tissue regeneration; 

(2) construction of functional in vitro tissue models for pathophysiological studies and drug 

testing; (3) enhancement of large scale cell differentiation; (4) implementation of 

immunotherapy; and (5) enablement of gene therapy. In this section, we briefly summarize 

the state of the art and open challenges in each of these biomedical application areas through 

the lens of engineered cell microenvironments.

4.1. Tissue Regeneration

Although the dream of tissue engineered replacement organs and tissues is still far away, 

biomimetic hydrogels have utility for assisting with tissue regeneration through their role in 

delivering therapeutic agents and bioactive factors.1006–1008 Numerous hydrogels and 

corresponding fabrication technologies have been developed to afford high degrees of spatial 

and temporal control over therapeutic agents to enhance their therapeutic efficacies.1009 A 

key challenge is engineering the cell microenvironment for the regeneration of tissues, and 

we review here how hydrogels may contribute to this goal.

4.1.1. Skin Tissue—Skin is essential for pathogen protection, sensation, 

thermoregulation, and water retention but can be damaged by physical and chemical factors 

such as burns, surgery, or trauma. The healing of skin requires synergistic function of 

numerous cell types and ECM. Dysfunctional wound healing may result in excessive 

scarring or even malignant transformation.1010 Numerous biomimetic materials have been 

exploited to construct wound dressings or potential tissue-engineered substitutes for skin 

replacement.1011–1013 A great deal of recent research have reported the use of hydrogels 

(mostly collagen, gelatin, chitosan and HA) in engineering the biophysical and biochemical 

microenvironment of cells to aid skin regeneration.1010,1014–1015

Hydrogels for skin regeneration require biocompatibility, bioactivity, and appropriate 

mechanical and degradation properties,1016 with the goals of directing the growth and 

differentiation of keratinocytes and stem cells, and minimizing scarring. Hydrogel strength 

should be sufficient to support surgery and its mechanics should support natural skin 

movement. Hydrogel degradation rates should meet wound healing requirements. The 

commonly used naturally derived hydrogels (e.g., collagen and gelatin) are biocompatible 
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and biologically active, however, they suffer from inadequate mechanical properties and 

uncontrollable degradation kinetics.

Various strategies have been therefore developed to overcome these problems, including 

physical treatment (e.g., plastic compression of collagen) and chemical modification (e.g., 
methacrylamide modification of gelatin).1014 Synthetic and hybrid hydrogels have been used 

to improve function of tissue-engineered skin healing grafts. In addition, growth factors such 

as EGFs, FGFs, TGF-β, and PDGFs have been incorporated into hydrogels and tuned to 

optimize the biochemical microenvironment for vascularization and prevention of scarring.
1016 Moreover, gene augmentation is a promising way for functionalizing the tissue-

engineered skin substitutes for further improving their clinical outcomes.1017

Structural features are also important. Electrospun nanofibers have been proven to be 

effective promoters of appropriate MSC proliferation and differentiation in skin wound 

healing.1018 Bottom-up bioprinting has currently untapped potential for precise patterning of 

diverse cells and hydrogels, and drop-on-demand and layer-by-layer printing processes are 

promising for multi-layered skin tissue constructs.1015,1019 A particularly attractive direction 

is the in situ bioprinting of skin, in which the shape and depth of the printed skin tissue 

constructs can be customized to closely match wound contour.1017

To conclude, with the development innovative bioengineering technologies and regeneration 

strategies, skin equivalents incorporating various appendages and appropriate culture 

microenvironments have been reported in a number of studies.1020–1021 With several 

products already on the market and potential advanced technologies in the pipeline, 

transitioning from skin repair to skin regeneration as a standard of care is an exciting 

possibility.1022 However, holding these advances back is the challenge of understanding how 

fibroblasts are controlled by their microenvironments, and cures for scars in adults as well as 

other desirable aesthetic outcomes remain elusive.1016,1023

4.1.2. Cardiac Tissue—Cardiac tissue engineering requires the use of both cells (e.g., 
cardiomyocytes, fibroblasts, and stem cells) and supporting matrices. Biomimetic materials 

(especially hydrogels) are potentially useful in engineering the cardiac cell 

microenvironment for maintaining transplanted cells in infarction sites, restoring myocardial 

wall stress, and enhancing cell functions for cardiac tissue regeneration.1024–1026

A major challenge for cardiac tissue engineering is obtaining cardiomyocytes, which have a 

limited proliferation capability. Therefore, stem cells (e.g., iPSCs) are often used, with the 

aim of deriving cardiomyocytes by engineering the stem cell microenvironment. Since many 

cells are required for cardiac regeneration, microenvironmental cues that can trigger stem 

cell proliferation, cardiac lineage-specific differentiation and maturation are needed. For this 

purpose, biomimetic materials containing bioactive cues have been developed to promote the 

differentiation of stem cells into cardiomyocytes.1027–1029 For instance, PEG-based 

hydrogels have been developed to contain RGD peptides that can interact with integrins for 

enhancing early-stage cardiogenesis.1030 Using embryonic carcinoma cells as a model and a 

cell suspension as a control, it has been shown that this 3D hydrogel matrix could result in 

the elevated expression of cardiac markers, i.e., Nkx2.5 and myosin heavy chain. ESCs 
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encapsulated in alginate hydrogel shells, where they proliferated to form morula-like cell 

aggregates and pre-differentiated into early cardiac lineage cells under biomimetic 3D 

culture,1031 have been re-encapsulated into injectable alginate-chitosan microgels for cardiac 

tissue regeneration (Figure 28). Attempts have also been made to explore the feasibility of 

using biomimetic materials that can locally and sustainably release drugs and growth factors 

to facilitate stem cell proliferation and differentiation for cardiac tissue engineering.1032–1034 

Moreover, electrical stimulation has been applied to direct stem cell differentiation.1035–1036 

For instance, it has been demonstrated that the homogeneity of stem cell-derived 

cardiomyocytes can be improved by providing exogenous electrical signals,1036 and such 

findings are important for the preclinical use of cells. However, debate still exists about the 

degree to which iPSC derived cardiomyocytes can be induced to express a mature 

phenotype.

The performances of engineered cardiac tissues can be greatly affected by their 

microenvironmental nanostructural features.1037–1039 By engineering the cardiac 

nanostructural microenvironment,1040–1041 it has been demonstrated that the cardiomyocyte 

alignment, cytoskeletal organization and gap junction formation can all be controlled.650 

Extensive studies have been performed to examine the feasibility of using electrospun fibers 

as bioactive scaffolds,1042 with certain mechanical and chemical properties for regulating 

various cardiac cell behaviors.1043 Alternatively, rotary extrusion has been used to produce 

PLA fibers for culturing neonatal rat ventricular myocytes, in which a high degree of 

sarcomere alignment was observed.1044 Moreover, self-assembled, biotinylated peptide 

nanofibers have been constructed for delivering IGF-1 and have shown promise in cell 

therapies for MI.1045 In an in vivo study using mouse models, nanoscale filaments of 

peptides that were functionally analogous to VEGF were incorporated into injectable 

materials, which exhibited significant elevations in blood circulation and angiogenesis in 

damaged myocardial tissue.1046 Cardiac cell orientation can also be controlled by aligned 

nanofibers made of amphiphilic peptides.

Although these accomplishments are impressive, the field of cardiac tissue engineering is 

just in its beginning. Optimal combinations of mechanical, electrical, biological, and 

structural cues are needed, but the interactions of these are poorly understood. 4D control of 

tissue constructs is needed to enable cells, especially iPSC-derived cardiomyocytes, to reach 

a mature state suitable for drug discovery and tissue engineering.

4.1.3. Neural Tissue—Neural tissue engineering aims in part to create a cell 

microenvironment for guiding neural cell growth and differentiation to treat diseases and/or 

injuries of the nervous system.1047–1049 The complex repair processes of the nervous system 

and limited regenerative ability of the adult human nervous system present substantial 

challenges to tissue engineers. When an injury gap in the peripheral nervous is too large and 

direct end-to-end surgical reconnection is not possible, nerve grafts (especially autografts) 

are often used, but they all suffer from various drawbacks, such as potential functional loss 

at the donor site (autografts) and disease transmission (allografts and xenografts).1050–1051 

CNS regeneration is even more difficult because a glial reaction microenvironment is created 

and leads to glial scar formation after injury, inhibiting axonal regeneration and 

remyelination.1052
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Early attempts used biomimetic materials containing desired biochemical cues for enhancing 

the regenerative growth of axons and facilitating nerve regeneration, both in terms of 

structure and function. In one study, peptide-derived agarose hydrogels were demonstrated 

to allow 3D neurite extension through interactions between peptides and cell receptors.1053 

In another study, RGD peptides were covalently immobilized onto a crosslinked poly(N-2-

(hydroxypropyl) methacrylamide) (PHPMA) hydrogel, which showed regenerative axonal 

growth after implantation into cerebral cortex and optic tract lesions in rats1054 and into 

mature and developmental spinal cord lesion models.1055 In addition, by controlling the 

spatial distribution of cell adhesion cues in biomimetic materials, well-defined cell 

arrangement and orientation can be achieved, which have significant influence on NSC 

differentiation and nerve regeneration.

Numerous studies have shown that the biophysical properties of biomimetic materials should 

also be considered when engineering the neural cell microenvironment for nerve 

regeneration. For instance, stem cell fate and lineage differentiation can be greatly affected 

by the ECM stiffness where the cells reside.1056 Soft substrates in the range of 100–500 Pa 

facilitate neuronal differentiation of adult NSCs, whereas stiff substrates in the range of 1–

10 kPa facilitate glial differentiation.1057 In addition, the microstructural alignment of 

biomimetic materials is another important parameter for nerve tissue engineering. Unlike 

most other tissues, nerve tissue structures are highly oriented in a hierarchical manner, from 

a single neural axon to nerve fibers, which is important for nerve impulse transmission. 

Studies have revealed that highly aligned nanostructures can enhance directed neuronal 

elongation, neuronal NSC differentiation, and nerve regeneration.1058–1061 For instance, 

collagen hydrogels with 3D, aligned fibrous structures have been prepared via the 

mechanical conditioning-directed fibrillogenesis of collagen molecules during self-assembly.
1062 Such hydrogels were demonstrated to enhance the parallel extension of neuronal axons 

as well as functional connectivity. In addition, alginate hydrogel microtubes have been 

fabricated to create a tubular 3D microenvironment for mouse NSCs.1063 It was found that 

the tubular microenvironment could sustain NSC viability and enable the formation of 

microfiber-shaped neural tissue in which the dendrites and axons were parallel to the 

direction of the microtubes. Recently, the Wang group1064 simultaneously used 

electrospinning and molecular self-assembly to produce a fibrillar fibrin-based hydrogel 

with a stiffness and hierarchical alignment mimicking those of native nerve tissues. It was 

demonstrated that these two features synergistically facilitated the neurogenic differentiation 

of human umbilical cord MSCs as well as rapid, long neurite outgrowth, without using 

neurotrophic growth factors. An in vivo assessment based on a rat T9 dorsal hemi-section 

spinal cord injury model found that the fibrin hydrogel could trigger the rapid migration and 

axonal invasion of endogenous neural cells along the fiber direction, forming aligned tissue.

However, the field is still without a clinically useful strategy for enabling neural tissue 

regeneration in the spinal cord, and the inability to re-engineer the cell microenvironment is 

to blame.1065 The key is that injured cells of the central nervous system form a 

microenvironment around themselves that prohibits regrowth and reconnection of neurons 

following spinal injury. Decoding and re-engineering the cell microenvironment in spinal 

cord tissues represents a grand challenge for materials science and biomedical engineering.
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4.1.4. Cartilage Tissue—Cartilage is an avascular, alymphatic and aneural connective 

tissue. In diarthrodial joints, articular cartilage provides a smooth, low-friction and wear-

resistant surface that can disperse mechanical loads by synergistically working with synovial 

fluid. Articular cartilage can be frequently damaged due to trauma and osteoarthritis. 

Unfortunately, it has limited capacity to repair itself spontaneously in the absence of blood 

and lymphatic vessels. Although a large number of studies and various strategies have been 

reported for promoting articular cartilage regeneration, the field is still far from fulfilling 

clinical requirements.1066–1068 Recent efforts have focused on biomimetic material-based 

cartilage tissue engineering strategies.1069 This is based on the observation that the cartilage 

ECM, which is mainly composed of fibrous type II collagen and aggregating hydrophilic 

proteoglycans (e.g., aggrecan), provides a 3D microenvironment with numerous 

biochemical, structural, and mechanical cues in maintaining differentiated phenotype and 

proper functions of chondrocytes and MSCs.

A large number of natural, synthetic, and hybrid biomimetic materials have been developed 

to engineer the microenvironment of chondrocytes and MSCs for generating functional 

cartilage substitutes and promoting cartilage regeneration.570,1070–1071 These biomimetic 

materials have been fabricated into various forms such as membranes, sponges, and 

hydrogels, of which hydrogels are the most widely explored.1072–1074 Naturally derived 

hydrogels (typically collagen, HA and agarose) are abundant and contain many intrinsic 

adhesion and bioactive cues for chondrogenesis. However, they may have immunogenicity 

problems and are usually not mechanically stable to withstand high compressive, shear and 

tensile loadings in articulation. Synthetic hydrogels (typically PEG) can be designed to have 

well-controlled microstructures and adequate mechanical properties. However, they need 

bioactive modification and their degradation byproducts can be harmful to cells and cause 

inflammation.1075 A trend in cartilage tissue engineering has been to develop hybrid 

hydrogels exploiting the advantages of both naturally derived and synthetic biomimetic 

materials.1075–1076 Hydrogels can now be designed to have mechanical properties matching 

those of native cartilage, to enhance the chondrogenic phenotype of cells, and to be non-

invasively injected to fill cartilage defects of any shape and size.1077

Various biomimetic material formulations are commercially available for clinical use in 

cartilage regeneration and have shown enhanced cartilage repair when implanted.1069,1078

However, full restoration of native cartilage structure and function has yet not been achieved.
1079 In the context of the cell microenvironment, construction of clinically relevant thick 

cartilage tissue constructs requires 4D materials that enable spatially and temporally 

controlled evolution of cells into a metabolically inactive chondron-like microenvironment. 

Hierarchical and zonally organized cartilage structure requires such advances, as does 

rebuilding of both bulk mechanical load-bearing and surface lubrication functions of native 

cartilage. Finally, the integration of engineered cartilage with surrounding tissue remains 

challenge due to the need to keep chondrocytes in a relatively inactive state metabolically.
579,1076,1080–1081

4.1.5. Bone Tissue—Bone formation entails a series of sequential cellular events, from 

osteoprogenitor cell recruitment from the surroundings, osteoprogenitor proliferation, 
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osteoblast differentiation, matrix deposition, and bone mineralization.1082 From the tissue 

regeneration perspective, the creation of a suitable 3D cell microenvironment is of the 

utmost importance for triggering osteoblastic differentiation in vitro as well as the bone 

formation process in vivo.1083–1085 Bone has a very strong ability to heal itself, but only for 

defects below a critical size of a few centimeters. For defects larger than this, a permanent 

cavity is left. A pressing need exists for developing tissue engineered scaffolds that guide 

regeneration of these defects.

A crucial aspect lies in constructing an adequate 3D matrix in which biochemical cues, such 

as cell adhesion ligands and growth factors, are provided.1086 For this reason, biomimetic 

hydrogels that have covalent linkages with RGD peptides have been synthesized with 

macromolecules that contain bioactive moieties and been shown to play roles in the adhesion 

of marrow stromal osteoblasts.1087 Other than RGD peptides, peptide sequences that can 

interact with polysaccharide molecules on the cell surface have been used to develop 

biomimetic materials for bone tissue engineering due to their adhesive properties. For 

example, it has been demonstrated that RGD modification by itself cannot facilitate focal 

adhesion, while the presence of the heparin-binding domain could lead to substantial 

cytoskeletal clustering.1088 Furthermore, the RGD sequence and heparin-binding domain 

have been shown to function in synergy by triggering osteoblastic differentiation and bone 

mineralization.1089 Recently, Zhao et al.1082 used microfluidic technology to encapsulate 

BMSCs and growth factors within injectable, photocrosslinkable GelMA microspheres 

(Figure 29). High cell viability, cell migration within microspheres and toward microsphere 

surfaces, and improved cell proliferation were observed. Both in vitro and in vivo 
evaluations concluded that the fabricated microspheres resulted in increased bone 

mineralization and enhanced osteogenesis.1082

Another crucial aspect lies in designing the porous characteristics of scaffold materials, such 

as porosity, pore size, interconnectivity, and orientation, which play important roles in 

osteoblast proliferation and osteogenesis.1090 Increasing porosity has been shown to enhance 

permeability and bone ingrowth. However, this is often sacrificed for improved mechanical 

properties.1091 Because sufficient mechanical support is needed to prevent the premature 

collapse of engineered bone tissue constructs, an upper limit for porosity exists, and a 

balance between porosity and mechanical properties should be reached to accelerate bone 

regeneration. In addition, bone tissue has a radial porous structure gradient, as the outer 

cortical bone region is more compact (porosity 5%−30%), and the inner cancellous bone 

region is more porous (porosity 30%−90%). Mimicking such a porous structure gradient 

might enhance the mechanical performance of engineered bone tissue constructs, the 

ingrowth of cells and new bone tissue, and the integration of implants with surrounding host 

tissues.1092–1094 Efforts directed toward fabricating hierarchical porous structures for bone 

tissue engineering and have particularly benefited from the development of computer-aided 

additive manufacturing technologies.1095–1097 Future efforts are still needed to engineer 3D 

bone tissues with controlled porous structure, while simultaneously being able to withstand 

high mechanical loads and maintain a stable structure for sufficient amount of time.

4.1.6. Concerns, Caveats, and Immunogenicity—In addition to skin, cardiac, 

neural, cartilage and bone tissues, engineering the cell microenvironment with biomimetic 
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materials is also of particular interest for the regeneration of other tissues, such as 

dental1098–1099 and musculoskeletal tissues.1100–1102 Since each targeted tissue has its own 

specific microenvironment, the biochemical and biophysical properties of biomimetic 

materials should be carefully evaluated and optimized to maximize the regenerative or 

therapeutic efficacy according to tissue-specific requirements. An important frontier is 

systems in which a spatial gradient of cell microenvironments exists. This occurs throughout 

interfaces in the body, such as at the attachment of tendon to bone.1103 Here, spatial 

gradients emerge during development, and tissue engineered systems are needed to replicate 

these following healing and surgical repair.1104–1106 Technologies now exist for controlling 

cell concentration gradients,1107 but providing these in conjunction with the needed 

gradients in microenvironmental mechanical fields and ECM proteins represents an ongoing 

challenge.176,1108

FDA clinical trials for biomimetic materials and related products have had mixed clinical 

trial results that include several successes (Table 3).319,1109 However, a major clinical 

concern is immunogenicity of these biomimetic materials, and associated inflammation, 

tissue damage, and implant rejection.1110 Naturally derived biomimetic materials are 

biocompatible but all potentially immunogenic due to the presence of specific and/or 

nonspecific antigens such as residual oligosaccharide α–Gal epitopes, DNA molecules, and 

damage-associated molecular patterns.320,1110–1111 For example, collagen-based 

biomaterials have been demonstrated to promote mild immunogenicity and risk of collagen-

induced autoimmunity.1112 Decellularized ECM and alginate may promote immunogenicity 

due to incomplete decellularization and insufficient purification, respectively.1113–1114 The 

severity of the host response to naturally derived biomimetic materials is dependent on the 

material’s origin, composition, and processing, and upon the genetics and implantation site 

of the patient.1115 On the other hand, synthetic biomimetic materials can have user-defined 

compositions and structures without specific immunogenic components. However, they may 

also suffer from nonspecific immune responses due to being foreign bodies and/or due to the 

acidity or toxicity of their degradation byproducts.

Immune responses typically start from the adsorption of host proteins (e.g., fibrinogen, 

albumin, and fibronectin) to the surface of material implants. The adsorbed proteins can 

promote the adhesion of neutrophils/macrophages and the formation of collections of fused 

macrophages called “foreign-body giant cells.” Because reducing protein adsorption by 

modulating surface hydrophilicity, structural features, and degradation characteristics can 

alleviate immune responses,1110,1116 implants usually require such surfaces. Common 

strategies for this include surface modification with hydrophilic polymers, surface grafting 

or coating with non-fouling polymers or proteins (e.g., PEG, heparin, and osteopontin), 

structural adjustment such as decreasing pore size or increasing fiber organization, and 

controlled delivery and release of anti-inflammatory agents.496,1110,1117–1119 While some 

naturally derived biomimetic materials (e.g., chitosan, heparin, and high molecular weight 

HA) intrinsically possess anti-inflammatory cues, the majority of biomimetic materials (e.g., 
decellularized ECM, collagen, gelatin, alginate, silk, PGA, and PCL) are pro-inflammatory 

and require the use of anti-inflammatory agents.1110,1120–1121

Huang et al. Page 61

Chem Rev. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To control the delivery and release of anti-inflammatory agents, a range of stimuli-

responsive biomimetic materials have been explored, with bioresponsive materials emerging 

as a promising direction.1122–1124 Bioresponsive materials can change their properties (e.g., 
the swelling/deswelling ratio) in response to the changes of specific biomolecules such as 

glucose, enzymes and antigens.1125 Compared to traditional stimuli-responsive materials 

thatrespond to physicochemical changes in pH or temperature, bioresponsive materials can 

have several advantages. For example, by using antigen-antibody binding, antigen-

responsive materials can recognize and respond to select biomolecules with high affinity and 

specificity.1126–1127 In addition, multiple complementary anti-inflammatory cues can be 

used combinatorially in antigen-responsive materials to make the materials respond to 

specific immune conditions.1128 With the development of novel anti-inflammatory strategies 

and in-depth understanding of the immunological mechanisms relative to material-induced 

recruitment, adhesion and activation of neutrophils, monocytes, macrophages, fibroblasts 

and foreign-body giant cells, it is reasonable to believe that increasing numbers of 

immunologically safe biomimetic materials and devices will be available in the near future.
1129–1130

4.2. In Vitro Tissue Models for Pathophysiological Studies and Drug Screening

Conventional in vitro tissue models mainly focus on 2D culture platforms, which fail to 

capture the 3D in vivo microenvironment. The shortcomings of conventional tissue culture 

models can be resolved with biomimetic platforms that can offer improved, realistic tissue 

models for understanding fundamental cellular/molecular biology.13,1131–1132 Various 

biomimetic in vitro tissue models, especially organ-on-a-chip platforms,1133–1136 have been 

established to simulate the responses of the in vivo microenvironment for pathophysiological 

studies and drug testing, including heart,1137 lung,1138 liver,1139 kidney,1140 blood vessel,
1141 gut,1142 and tumors.1143

4.2.1. Cardiac Tissue Model—Cardiac failure is the leading cause of death in the 

developed world,287,1144 and in vitro testing systems are required for identification and 

screening of cardiovascular drugs.1145 Conventional approaches developed for engineering 

cardiac tissue models mainly include 2D cardiac cell sheets1146–1147 or cardiac tissue slices.
1148 Although simple and effective, they are still limited in mimicking physiological cell-cell 

and cell-ECM connections. To address such challenges, 3D cardiac tissue models based on 

hydrogels encapsulating cardiac cells have been established.1149–1152 The characterization 

of cell contraction force has also been achieved in 3D systems including cardiac tissue 

models.1153–1154 Recently, hydrogels have been combined with paper to fabricate cardiac 

tissue models.1155–1156 As one example, the Whitesides group1157 developed an MI model 

by co-culturing cardiac fibroblasts and cardiomyocytes in multilayer hydrogel-paper stacks. 

The number of upper fibroblast-cultured layers was adjusted to control the transport of 

oxygen and nutrients to cardiomyocytes cultured in the lower layers, mimicking the cell 

microenvironment of low, medium, and high ischemia.

While there are ongoing challenges in simulating heart physiology, especially with ensuring 

that cardiac cells represent a mature cardiomyocyte phenotype, recent reports on heart-on-a-

chip studies have shown great promise for in vitro drug testing through physiologically 
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relevant models.1158–1159 In one study, PDMS microfluidic channels were coated with 

hydrogels (GelMA and methacrylated tropoelastin (MeTro)) to facilitate cell attachment for 

culturing cardiomyocytes.1158 It was found that the hydrogel type determined cell 

attachment and alignment, while matrix stiffness determined beating. In another recent 

study, a multimaterial 3D printing technique was used for the high-throughput generation of 

intelligent cardiac microtissue models on a single chip (Figure 30).943 The tissue contractile 

stresses in the microtissue models could be continuously read in real time using embedded 

soft strain gauge sensors. The potential of these cardiac microtissue models for facilitating 

drug studies was demonstrated.

However, the key problem once again is ensuring a realistic 4D cell microenvironment. Cell-

cell contacts as well as cardiomyocyte maturation require an evolution over time of a tissue 

construct and its cell microenvironments. Understanding the roles of multiple mechanical, 

metabolic, and electrophysiological stimuli and reconstituting these roles in a time-varying 

material model represent critical needs for these in vitro tissue models.

4.2.2. Lung Tissue Model—The lungs extract oxygen from the atmosphere and 

transfer it into the bloodstream via functional units called alveoli. These provide a thin 

mucosal barrier with a large surface area and ready, non-invasive access to the bloodstream 

for gas exchange. Microfluidic systems have been developed to mimic the structure and 

mechanical microenvironment of alveoli for engineering lung tissue models.1160 For 

instance, a “breathing lung-on-a-chip” model was made by seeding human alveolar 

epithelial cells and microvascular ECs onto opposite sides of an ECM-coated porous PDMS 

membrane to recreate the alveolar-capillary barrier in vitro.1138 The cells in the model 

experienced cyclic mechanical strain in addition to air and fluid flow to simulate normal 

breathing motion. It was found that the cyclic mechanical strain could enhance nanoparticle 

uptake and nanoparticle translocation across the alveolar-capillary interface, as well as 

nanoparticle cytotoxicity and alveolar epithelial cell inflammatory responses in the model 

(Figure 31). Therefore, such models can reconstitute the 3D microarchitecture and the 

mechanical movement and cohesive physiological function of the alveolar-capillary barrier.

Continuing efforts in this research area have been made toward developing on-chip human 

disease models, such as a drug toxicity-induced pulmonary edema model.1161 By using the 

pulmonary edema model, it was demonstrated that mechanical force can promote vascular 

leakage and induce pulmonary edema, while circulating immune cells are not required for 

pulmonary edema development. Moreover, the application of such disease models in 

identifying potential new therapeutics was verified. These results demonstrate that on-chip 

lung tissue models hold great promise as alternatives to animal and clinical models for 

pathophysiological and drug studies. However, reaching this promise requires further 

identification of the specific mechanics and compositions of the cell microenvironment. 

Although bulk ECM properties and overall homogenized tissue response and function is 

recapitulated in these systems, the identification of small therapeutic molecules requires the 

development of a refined and improved understanding of the nanoscale features with which 

these molecules interact.
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4.2.3. Liver Tissue Model—The study of drug hepatotoxicity is primary motivation for 

development of hepatic drug delivery platforms.1162 To evaluate hepatotoxicity, a number of 

in vitro models simulating either normal or diseased liver cell microenvironments and 

functionalities have been developed, including 2D monolayer cultures, hepatic tissue slices, 

3D hepatic spheroids, engineered models using hydrogels, and organ-on-a-chip platforms.
1139,1163 In one study, hepatocytes and fibroblasts were co-cultured in a micropatterned 

collagen substrate in a 24-well plate format.1164 This model was demonstrated to promote 

the lasting preservation of liver-specific functions and allow the corresponding analysis of 

drug hepatotoxicity. In another study, the uptake of 5 nm AuNPs coated with 

polyvinylpyrrolidone (PVP) and associated toxicity to hepatocytes, ECs, and Kupffer cells 

sourced from precisely cut slices of rat liver were studied by Dragoni et al.1165 However, 

tissue slices and biopsies are not viable for high-throughput or long-term studies due to a 

rapid decline in functionality observed within days of beginning in vitro culture. While long-

term drug studies usually utilize primary human hepatocytes, 3D hepatic spheroids are 

promising models for the rapid and clinically pertinent assessment of new drugs.1166–1169 

For studies based on multi-organ-on-a-chip models, it is important to include a liver module 

since the liver is the primary site for drug metabolism.1170 In these models, drug action 

occurs after the prodrug is initially metabolized by the liver module and then reaches the 

target organ. As one example, Wagner et al.1171 combined engineered liver microtissues 

with skin biopsies to produce a multi-organ-on-a-chip model suitable for long-term culture. 

Crosstalk between the liver and skin modules was demonstrated. Such models show great 

potential for the systemic evaluation of drugs and other substances.1164,1172 As before, 

further delineation of the physiological cell microenvironment will be of tremendous help in 

refining these systems and increasing their physiological relevance.

4.2.4. Tumor Tissue Models—Effective drug delivery to tumor sites is confronted by 

the complexity of the in vivo tumor microenvironment.1147,1173 The development of drug-

loaded nanoparticles targeting tumor sites for cancer treatment with minimal consequence to 

healthy tissues has been the focus of researchers and pharmaceutical companies alike.1174 

While numerous biological barriers have prevented the successful in vivo testing of 

nanoparticle surface targeting moieties, promising in vitro results have been demonstrated. 

Consequently, understanding nanoparticle transportation by the bloodstream, dispersion in 

target tissues, and subsequent cellular uptake is significant. The importance of preclinical 

models capable of simulating the in vivo tumor microenvironment, such as dynamic flow, is 

also evident in the study of factors affecting drug delivery and toxicology evaluations.
1175–1176

Various 3D in vitro tumor tissue models have been developed and have usually leveraged 

various microengineering technologies, typically lab-on-a-chip technology.1177–1179 

Microfluidic networks present in 3D tissue engineered cultures enable the controlled 

investigation of nanoparticle transport barriers. As one example, a tumor-on-a-chip model 

has been developed by loading human melanoma cell spheroids with ECM (Matrigel) into a 

microfluidic device with precisely controlled flow conditions.1180 The transport behavior of 

PEG-functionalized AuNPs with various diameters through such a tumor-mimicking tissue 

model was studied. It was shown that only AuNPs with a diameter less than 110 nm could 
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diffuse into the ECM and interact with tumor cells. Moreover, in vivo conditions were 

simulated through a laminin coating on the spheroids that functioned against AuNP 

transport. AuNPs functionalized with targeting groups were unable to infiltrate deep into the 

core and were observed to gather at the outside edge. Such studies offer important insights 

into the creation of nanoparticles for improved in vivo targeting.

Numerous tumor-on-a-chip platforms have been developed and evaluated for drug studies 

and treatment strategy development.1181–1185 The Varghese group1186 reported a tumor-on-

a-chip platform (fabricated by slightly modifying a device they described previously1187) in 

which cancer spheroids (MCF-7) and HUVECs were simultaneously photoencapsulated 

within a GelMA hydrogel integrated in a microfluidic device. Under perfusion culture, 

HUVECs migrated to the hydrogel periphery to form an endothelial barrier by responding to 

flow-induced chemotactic gradients, while MCF-7 spheroids showed limited motility and 

were confined within the hydrogel interior. The potential application of this tumor-on-a-chip 

platform in drug screening was validated with the anti-cancer drug doxorubicin.1186 By 

combining the use of chip and other advanced technologies (e.g., bioprinting), tumor-on-a-

chip models with well-controlled tumor microenvironments can be generated in a high-

throughput manner.1188 Such tumor-on-a-chip models are promising for future applications 

in the optimization of personalized chemotherapy programs.

In addition to the in vitro tissue models outlined above, engineering the cell 

microenvironment with biomimetic materials has also shown promise in promoting the 

development of brain,1189–1190 blood vessel,1191 skeletal muscle,1192 kidney,1193–1194 gut,
1195–1196 and other tissue and cancerous models of interest for pathophysiological studies 

and drug testing.1197 Future efforts should be directed toward carefully evaluating the 

effectiveness of these in vitro tissue models in relation to their recapitulation of the cell 

microenvironment. Moreover, integrating various organ modules at a physiologically 

appropriate scale to obtain human-on-a-chip systems for systemic studies represents a 

critical need.1198–1199

4.3. Cell Manufacturing

“Cell manufacturing” refers to the use of bioprocessing technologies for the expansion of 

stem cells (e.g., hESCs, iPSCs, and hMSCs) that have the remarkable features of self-

renewal and multipotency. Stem cells are thus promising cell sources for therapeutics for 

tissue damage,1200 cardiomyopathies,1201 and neurodegenerative diseases,1202 in which 

large numbers of high quality cells are required.1203 For instance, around 1×109 

cardiomyocytes and 1×106 hMSCs are needed to treat a patient with MI1204 and bone 

defects,1205 respectively. Additionally, only a few percent of transplanted stem cells survive 

to integrate into damaged tissues.1206–1207 Hence the numbers needed for a successful cell 

therapy are even higher and expansion of stem cells without losing their self-renewal and 

multipotency is critical.

2D tissue culture flasks (T-flasks) are the mainstay for the expansion of stem cells in 

preclinical studies.1208 However, 2D T-flasks can only produce monolayers of stem cells, 

limiting their scalability and reproducibility, and more broadly their suitability for 

therapeutic applications.1209 To overcome these obstacles, 3D suspension systems such as 
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cell aggregates,1210 cells on microcarriers,1211 and cells in microencapsulates1212 are 

attractive possibilities.1213 However, significant challenges exist with 3D suspension cell 

culture systems.1207 For example, cells in aggregated form can re-establish specific 

microenvironments that allow them to express a tissue-like structure, ultimately enhancing 

cell differentiation,1214 leading to potency loss. Another major limitation of cell aggregate 

systems is the need to control the aggregate size to prevent the formation of necrotic centers. 

Microcarrier approaches can expose cells to harmful shear stress and1215 cause microcarrier 

aggregation,1216 and are furthermore subject to additional processing for cell–bead 

separation. Cell microencapsulation is an advanced cell expansion approach that shields 

cells from shear stress and avoids aggregation of microcarriers in culture.1217 In addition, 

microencapsulated cells can have microenvironments that mimic stem cell niches for cell 

expansion with high quality.1218

Cell detachment is a critical step during large-scale cell expansion. To avoid potential 

damage caused by enzyme for cell detachment, thermally responsive microcarriers and 

encapsulation hydrogels have been developed to allow for enzyme-free cell detachment 

under reduced temperature.1207–1208,1219

As compared to 3D suspension systems, bioreactor systems have the merits of efficient stem 

cell seeding and nutrition supplement, as well as supporting the scalable expansion of stem 

cells. Moreover, with operations such as agitation and perfusion, bioreactors can achieve 

enhanced mass transport, which is critical for 3D cell culture at high density.1220 

Furthermore, by using microcarriers in bioreactors, the size of cellular aggregations can be 

well controlled, preventing the formation of necrotic centers.1221 For example, alginate 

beads have been applied as microcarriers in a bioreactor for the expansion of hESCs and 

maintained hESC pluripotency up to 260 days, suggesting that microcarrier-based cell 

culture in bioreactors is favorable for large-scale expansion of stem cells.1222 It is important 

to bear in mind that stem cells are highly responsive to biophysical cues such as matrix 

stiffness. Therefore, the mechanical properties of the developed microcarriers or 

encapsulation matrices should be carefully characterized and optimized to maintain stem cell 

phenotype during expansion.

4.4. Immunotherapy

Immunotherapy is the treatment or prevention of diseases by inducing, enhancing, or 

suppressing host immune response. Many pathologies, including autoimmune disorders, 

cancers, infections, and allergies, can be associated with dysregulation of the host immune 

response. As a typical example, cancer cells often express surface antigens that are poorly 

immunogenic and experience an immunosuppressive microenvironment due to the presence 

of immune-inhibitory cytokines (e.g., IL-10 and TGF-β),1223–1224 which result in reduced T-

cell recognition and activation. Cancer immunotherapy aims to treat cancers by efficiently 

inducing and enhancing systemic antitumor immune response. Such treatment provides 

improved immune system-associated specificity and immunological memory-associated 

long-term protection effects. They offer promise in some cancers in which chemotherapy 

and radiotherapy offer little.1225–1226

Huang et al. Page 66

Chem Rev. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our focus here is biomimetic material-based immunotherapy. In contrast to traditional 

design of biomimetic materials that aims to minimize immune response, biomimetic 

material-based immunotherapy seeks to initiate specific therapeutic immune responses by 

harnessing the immunomodulatory capacity of biomimetic materials.1115,1227 Attractive 

features of biomimetic material-based immunotherapy include delivery of multiple 

immunomodulatory agents with a single material carrier, promotion of local and durable 

release of immunomodulatory agents, targeting of specific cell populations and subcellular 

compartments, reduction of high dosage-associated systemic toxicity, and supply of diverse 

biophysical cues for controlling cell function.276,1228–1229

Immunomodulatory biomimetic materials can manipulate immune cells (typically dendritic 

cells (DCs) and T cells) and modulate immune system for immunotherapy through two 

primary mechanisms: ex vivo priming and delivery of activated immune cells,1230–1231 and 

in situ recruitment and programing of host immune cells.1232–1235 For each mechanism, a 

range of microenvironmental factors, including material biochemical properties such as cell 

adhesivity, biophysical properties such as structural features and mechanical properties, the 

4D delivery and release of immunomodulatory agents, and the subjection of mechanical 

forces, may need to be taken into account to improve immunotherapy outcomes.1236–1241 

This is because these factors (particularly mechanical cues) have been shown to play vital 

roles in immune cell migration and activation, lymphoid tissue development and function, 

and immune-related disease progression such as malignant transformation.1111,1242–1244

For practical applications, the form of immunomodulatory biomimetic materials is also an 

important aspect that should be carefully evaluated. Generally speaking, immunomodulatory 

biomimetic materials can take the forms of implantable macroscale 3D scaffolds and 

hydrogels, or injectable micro-/nanoparticles and in situ crosslinking hydrogels.1227 Several 

important factors should be considered when choosing material forms, mainly including the 

material fabrication conditions, the tissue being targeted, the immunomodulatory agents 

being delivered and their delivery kinetics. Macroscale 3D scaffolds and hydrogels can be 

produced in vitro by using various biofabrication technologies in well-controlled conditions, 

thus enabling the generation of custom-engineered microenvironment for programming 

immune cells. They can be used to deliver immunomodulatory agents including proteins, 

genes, and drugs, as well as programed immune cells. The delivery kinetics can be tightly 

regulated by engineering material porosity, degradation, and affinity to carried agents.

However, these systems require surgical implantation, which may result in traumatogenic 

wounds that slow therapeutic progress. In contrast, micro-/nanoparticles or in situ gelling 

hydrogels can be injected in a minimally invasive manner, avoiding the use of open surgery.
1235,1245 They are most suitable for delivering immunomodulatory proteins, genes, and 

drugs, but have limited potential to control engineering biophysical cues for programing of 

immune cells. In addition, burst release of immunomodulatory agents may make it 

challenging to control the delivery kinetics for persistent immunomodulation. Nevertheless, 

recent studies recommended that injectable nanoscale hydrogels (i.e., nanogels) could be a 

novel attractive form of immunomodulatory biomimetic materials that holds promise in 

immunotherapy (Table 4).1246–12481128,1223
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The promise of biomimetic material-based immunotherapy is illustrated by recent studies on 

preclinical and clinical trials of vaccine scaffolds.1227 However, it is still far from a true 

clinical success. Further efforts are needed to engineer biomimetic materials for producing 

clinically required immune cells and functional tissues, reducing the cost and improving the 

efficiency of immune cell activation and delivery, and promoting the development of 

effective personalized immunotherapy.1128 In this context, the rapidly developed stem cell 

and gene technologies may provide great benefits.1223 Recently, biomimetic material-based 

3D immune organoids have attracted particular interests as they could provide powerful 

platforms for studying biomimetic material-immune cell interactions in a native-like 

immune microenvironment.1111,1249–1252 Such studies may improve the mechanistic 

understanding and predication of molecular and cellular events in immune system, and 

accelerate the design of 4D biomimetic materials and cell microenvironments for 

immunotherapy.

4.5. Gene Therapy

Gene therapy seeks to express therapeutic genes in target cells, or to replace absent or 

disease-associated genes.1266 MicroRNAs (miRNAs) and small interfering RNA (siRNAs) 

are generally negatively charged, and cannot cross the cell membrane.1267–1268 In addition, 

they undergo degradation in vivo.1269 Hence, vectors that can effectively deliver therapeutic 

genes into cells and protect them from degradation are required for gene therapy. Various 

vectors such as inorganic nanoparticles,1270 liposomes,1271 and micelles,1272 and polymeric 

nanoparticles1273 have been explored for gene delivery. However, their therapeutic outcomes 

are usually poor, due to the unmet challenges in terms of gene dissociation from the vector, 

poor stability and toxicity of the vector, and inefficient targeting.1274 Moreover, after 

systemic administration, these vectors are likely to induce nonspecific transfection or 

systemic immune responses.1275–1276

In this context, a local delivery carrier that can intensively transmit therapeutic genes to a 

target site for a sufficient period can overcome the above mentioned drawbacks.1276 For 

instance, hydrogels with appropriate microenvironments have been used as local delivery 

carriers for siRNA transfection and realized effective gene knockdown in different cell lines 

(e.g., kidney, epithelial, ovarian, and hepatoma).1277 Due to the tunable biochemical and 

biophysical properties of hydrogels, they are capable of delivering genes to a wide range of 

tissues in vivo.1278 Other commonly applied scaffolds fabricated from cationic polymers 

such as chitosan, poly(ethyleneimine) (PEI), poly-L-(lysine) (PLL) and poly(2-(N,N-

dimethylamino)ethyl methacrylate) (PDMAEMA) have also been used for local gene 

delivery.1279 However, cationic polymeric scaffolds usually suffer from toxicity if high 

transfection efficiency is required. In addition, therapeutic genes that are physically loaded 

within hydrogels or cationic polymeric scaffolds may have a short half-life in vivo and low 

gene silencing efficiency, because of the uncontrollability in holding and delivering the 

genes.1276,1280

Responsive polymeric nanoparticle-embedded scaffolds are emerging as advanced local 

delivery carriers to solve the above-mentioned issues. Responsive nanoparticles with pH, 

GSH or intracellular enzyme-regulated endosomal escape behavior have been found to 
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efficiently enhance intracellular gene delivery.1272,1281–1283 To further enhance this delivery 

approach, siRNA loaded pH-responsive nanoparticles have been incorporated into porous 

polyester urethane scaffolds.1284 Effective gene silencing in vivo and angiogenesis 

promotion within tissue defects have been achieved using this platform. Therefore, 

encapsulating responsive gene delivery vectors inside scaffolds such as hydrogels is a 

versatile approach for manipulating the cell microenvironment and directing cell functions 

while minimizing gene loss due to nonspecific delivery.1285

5. Conclusions and Outlook

Functional and biomimetic materials for engineering the 3D cell microenvironment form the 

foundation for a number of technological innovations. However, much work remains to be 

done. We conclude with some thoughts on five sets of challenges and opportunities in the 

field as it currently stands: dynamic 4D cell microenvironments; single-cell analysis; high-

throughput assays; identification of fundamental and universal principles; and translation of 

these principles into predictive computational models and useful products.

The dynamic character of the cell microenvironment complicates the design of material 

systems. Throughout the development, cells exist in lineage-specific microenvironments that 

change with the age of the cell and/or organism. For tissue engineering applications, the key 

challenges are determining which aspects of these changing microenvironments are 

important for the development of an adult tissue and which are needed to maintain the adult 

tissue. For drug screening, the key challenges are identifying which aspects of the 

dynamically changing environments affect the cellular responses to small molecules, and 

more broadly, determining whether developmental stage matters when assessing drug 

efficacy and safety. For example, the ongoing effort to determine the safety of drugs during 

pregnancy needs to be informed by determining the ways that the cell microenvironment 

evolves with age. More broadly, studying the aging cell microenvironment and enabling 4D 

temporal control of the cell microenvironment are important to the long-term goal of 

identifying universal criteria for designing biomimetic materials across cell type and 

developmental stage.

The vast majority of what we know about cell microenvironments and their control is the 

result of observations of how populations of cells respond to biomimetic materials. These 

ensemble averages capture dominant cell-biomimetic material interactions but mask how 

local details of the microenvironment promote cell fate and function. Increasing evidence 

from single-cell analysis indicates broad cellular heterogeneity, which may arise from the 

cell cycle, cell lineage, cell aging, microenvironmental heterogeneity, gene mutations, or 

intrinsic noise in gene expression.1286–1288 Cellular heterogeneity can be essential in 

carcinogenesis and stem cell fate determination.1289–1292 Identifying and understanding the 

biological function of cellular heterogeneity will benefit the design of biomimetic materials 

for controlling heterogeneous cell-biomimetic material interactions. To this end, significant 

recent efforts have been directed toward developing microengineering technologies that 

enable single-cell analysis at the genetic, proteomic, or phenotypic level.1293–1294 While 

most existing approaches are limited by high cost and low throughput, rapidly developing 
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microfluidic technologies for single-cell separation and analysis show promise for scalability 

and automation.1295–1297

More broadly, an enabling technology that has not yet been fully harnessed is high-

throughput screening. Advances in synthetic chemistry and biology have provided powerful 

tools for producing vast amounts of biomimetic materials.1298–1300 Efficient identification of 

key factors among the abundant material cues for engineering specific cell 

microenvironments is critical, and high-throughput assays that enable the performance of 

multiple experiments in parallel are vital.1301–1303 High-throughput assays are often based 

on the production of material gradients, microarrays or combinatorial libraries.1304–1310 

Although effective, material systems generated in current assays are often too simple, and 

future studies should be performed to develop well-defined high-throughput biomaterial 

systems with more biologically relevant cell-microenvironment interactions in 3D.1311–1313 

Accordingly, methods that enable the high-throughput, real-time in situ characterization of 

the 3D cell microenvironment, including chemical, physical and biological aspects of cells, 

biomaterials and cell-biomaterial interactions, need to be further explored. This exploration 

can benefit from progress in advanced bioimaging and biosensing technologies.997,1314–1318

As high-throughput systems come online, the possibility of identifying universal principles 

governing the design of cell microenvironments will emerge. Developing a better 

understanding of the fundamental principles of life processes, such as organ development, 

tissue homeostasis and disease progression, is one of the primary motivations in engineering 

the cell microenvironment with biomimetic materials.1319 Although current research has 

dramatically broadened our knowledge of how cells respond to material cues, many aspects, 

especially how biophysical cues interact with cells in 4D, are still on debate. The interplay 

and crosstalk among microenvironmental cues and signaling pathways increases the 

difficulty of deducing and dissecting the underlying mechanisms. Future efforts should be 

directed toward combining studies at different levels, including the tissue, cellular, 

molecular, and gene levels, to establish extracellular and intracellular signaling networks that 

can facilitate a comprehensive understanding of cell-microenvironment interactions.

Another main motivation in engineering the cell microenvironment with biomimetic 

materials is the regeneration of injured tissues in vivo. While in vitro engineering of the cell 

microenvironment has promoted the formation of functional engineered tissue constructs for 

implantation purposes, these engineered tissue constructs may fail or show limited 

regeneration capacity when implanted into the body. Therefore, in vivo engineering of the 

cell microenvironment is emerging with the aim of improving the performances of 

biomaterials and engineered tissue constructs in vivo.1128,1320–1321 Moreover, the rapid 

development of stem cell biology, injectable biomaterials and corresponding injection 

therapies have further motivated studies on in vivo engineering of the cell 

microenvironment.1322–1327

Finally, a frontier that is only now being reached is the translation of what we know of 

governing principles into predictive computational models. With the development of 

computer technologies, computational material science and computational biology have 

made considerable advancements.1328–1329 However, efforts to combine the two for 
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engineering the 3D cell microenvironment are still emerging. As in other areas, we 

anticipate that computational tools will not only accelerate the design of biomimetic 

materials but also facilitate investigations into how these biomimetic materials interact with 

cells.202,1330 Moreover, computational tools may enable complex research that would not be 

feasible using experimental tools. As such, it is important to establish detailed databases for 

cells, biomaterials, and cell-biomaterial interactions from available knowledge. With the 

development of multiscale and multifield theoretical and mathematical models for cell-

biomaterial interactions, computational modeling will provide increasingly predictable and 

reliable results in the future.1331–1333 Altogether, we believe that functional and biomimetic 

materials to dissect and engineer the 3D cell microenvironment will enable a new generation 

of breakthroughs in biophysics, drug discovery, personalized medicine, and regenerative 

medicine.
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Figure 1. 
Schematic illustration of the main components of the cell microenvironment. Key 

components of the cell microenvironment include neighboring cells, soluble factors, the 

ECM, and biophysical fields (e.g., stress and stain, electrical, and thermal fields). Among 

these, the ECM not only serves as a structural support for cells to reside within but also 

provides diverse biochemical and biophysical cues for regulating cell behaviors.
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Figure 2. 
Electron microscopic overview of a rat left ventricular myocardial capillary. The capillary 

was stained with Alcian blue 8GX. The inset is a detailed picture of glycocalyx on the 

capillary. Reprinted with permission from ref 21. Copyright 2003 Wolters Kluwer.
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Figure 3. 
Schematic representation of cell–ECM interactions. Cells are surrounded by abundant ECM, 

which provides diverse biochemical cues (e.g., cell adhesion ligands and growth factor 

immobilization) and biophysical cues (e.g., structural features, mechanical stiffness, and 

degradation) for guiding cell behaviors.
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Figure 4. 
Schematic of engineering the cell microenvironment from 2D to 3D and 4D.
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Figure 5. 
Biomimetic material design considerations for engineering the 3D cell microenvironment. 

The design considerations can be generally divided into two classes, i.e., biochemical (e.g., 

cell adhesion ligands, soluble factor immobilization, and chemical functional groups) and 

biophysical design considerations (e.g., structural features, mechanical properties, 

degradability, and electrical conductivity).
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Figure 6. 
Classification of hydrogel-based biomimetic materials for engineering the 3D cell 

microenvironment. Most biomimetic materials used for engineering the 3D cell 

microenvironment are based on hydrogels, which can be classified into naturally derived, 

synthetic, and hybrid hydrogels, according to their origins and compositions.
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Figure 7. 
Photopatterning full-length proteins in hydrogels. The protein of interest is first 

functionalized with NHS-ortho-nitrobenzyl (o-NB)-CHO and then incorporated into 

SPAAC-based hydrogels via photomediated oxime ligation. Upon further light exposure, the 

photoscissile o-NB moieties undergo photocleavage, leading to the removal of linked 

proteins. Reprinted with permission from ref 419. Copyright 2015 Nature Publishing Group.
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Figure 8. 
Photopatterning hydrogels with cell adhesion peptides. (A) Maleimide-functionalized 

biomolecules (e.g., GRGDS) are incorporated into agarose hydrogels modified with 2-NB-

protected cysteine. Reprinted with permission from ref 448. Copyright 2004 Nature 

Publishing Group. (B) PEG-based hydrogels are prepared through a copper-free SPAAC 

click reaction. Biochemical molecules (e.g., RGD) can be subsequently patterned in the 

hydrogels by an orthogonal thiol–ene photocoupling reaction. Reprinted with permission 

from ref 456. Copyright 2009 Nature Publishing Group.
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Figure 9. 
Growth factor immobilization in hydrogels. (A) HA hydrogels are modified with dextran 

sulfate (a heparin mimetic) for sequestering rTIMP-3. The hydrogels can release rTIMP-3 in 

response to locally elevated MMP levels in vivo. Reprinted with permission from ref 490. 

Copyright 2014 Nature Publishing Group. (B) Enzymatic hydrogel photopatterning with 

bioactive signaling proteins. Transglutaminase factor XIII is rendered photosensitive by 

masking its active site with a photolabile cage group and then incorporated into PEG-based 

hydrogels. Biologically relevant signaling proteins are subsequently patterned into hydrogels 

through local light-activated enzymatic cross-linking. Reprinted with permission from ref 

500. Copyright 2013 Nature Publishing Group.
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Figure 10. 
Small-molecule chemical groups used for modifying PEG hydrogels, including amino, acid, 

t-butyl, phosphate, and fluoro groups. Reprinted with permission from ref 33. Copyright 

2008 Nature Publishing Group.
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Figure 11. 
Schematic of the structural design aspects of biomimetic materials that can be classified as 

macroscale, microscale, and nanoscale design aspects. Macroscale design is related to 

external structure characteristics, such as overall shape and size. Microscale design is related 

to the characteristics of microwells, micropores, microchannels, microgels, and microfibers 

in hydrogels. Nanoscale design is related to the characteristics of nanofibers and 

nanoparticles that compose hydrogels.
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Figure 12. 
Fabrication of microfluidic hydrogels for perfusion cell culture. (A) Schematic of the 

fabrication of microfluidic cell-laden hydrogels using a helical spring as a template. 

Reprinted with permission from ref 629. Copyright 2012 Wiley Periodicals, Inc. (B) 

Schematic of the fabrication of microfluidic cell-laden hydrogels based on sacrificial printed 

carbohydrate-glass fibers. Reprinted with permission from ref 592. Copyright 2012 Nature 

Publishing Group.
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Figure 13. 
Chinese-noodle-inspired fabrication of hydrogel microfibers for engineering muscle 

myofibers. (A) Schematic of the high-throughput generation of cell-laden hydrogel 

microfibers by squeezing a cell-laden hydrogel block through a sieve. (B) Schematic of the 

magnetically actuated stretching of cell-laden hydrogel microfibers for generating functional 

myofibers. Reprinted with permission from ref 646. Copyright 2015 WILEY-VCH Verlag 

GmbH & Co. KGaA, Weinheim.

Huang et al. Page 153

Chem Rev. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14. 
Generation of nanofibers through the self-assembly of collagen-mimetic peptide 

amphiphiles. (A) Molecular structure of collagen-mimetic peptide amphiphiles. (B) Self-

assembly process. Reprinted with permission from ref 685. Copyright 2011 American 

Chemical Society.
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Figure 15. 
Control over nanoscale hydrogel mechanics. (A) Decreasing the self-assembly temperature 

results in collagen fibril bundling and increased fiber diameter (a), which contributes to 

increased local fiber stiffness (b). Scale bars: μm. Reprinted with permission from ref 720. 

Copyright 2015 Nature Publishing Group. (B) AuNRs are mixed with collagen to form 

nanocomposite hydrogels (a–c). The incorporation of AuNRs results in increased nanoscale 

hydrogel stiffness without impacting the bulk mechanical properties (d). Scale bars: 500 nm 

for (c, d). Reprinted with permission from ref 721. Copyright 2016 WILEY-VCH Verlag 

GmbH & Co. KGaA, Weinheim.
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Figure 16. 
Nonlinear elasticity of hydrogels. (A) Differential modulus-stress plot showing the stress-

stiffening behavior of some biopolymers. (B) Synthesis of polyisocyanopeptides with 

varying polymer chain lengths (mean polymer length) by adjusting the molar ratio of 

catalyst to monomer, which results in (C) different mean critical stress levels. Reprinted with 

permission from ref 36. Copyright 2015 Nature Publishing Group.
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Figure 17. 
Engineering the viscoelasticity of hydrogels to mimic that of living tissues. (A) Viscoelastic 

behaviors of some living tissues and hydrogels. (B) Schematic of designing alginate 

hydrogels with varying stress-relaxation rates by the combinatorial use of different 

molecular weight alginate macromers, ionic cross-linking densities, and short PEG spacers 

covalently linked to the alginate backbone. (C) Stress-relaxation behaviors of alginate 

hydrogels. (D) The stress-relaxation time scale (a), initial elastic modulus (b), and initial 

elastic modulus after 1-day and 7-day cultures (c), and the dry mass (d) of alginate 

hydrogels. Reprinted with permission from ref 37. Copyright 2016 Nature Publishing 

Group.
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Figure 18. 
Spatial modulation of hydrogel mechanical properties. (A) Schematic of photopatterning 

hydrogels with bar-coded (a) and gradient (b) stiffness. (B) Schematic of the microfluidic 

fabrication of hydrogels with a mechanical gradient (a) and core–shell (softer-stiffer) 

hydrogel particles (b).
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Figure 19. 
Temporal modulation of hydrogel mechanical properties. (A) A slow Michael-type addition 

reaction to cross-link thiolated HA with PEGDA. The reaction dynamics, and thus the 

stiffening process, can be controlled by changing the PEGDA molecular weight. (B) 

Stiffening of HA hydrogels through a sequential cross-linking strategy. HA macromers are 

modified with methacrylate and partially cross-linked with DTT via Michael-type addition 

reactions. The initial hydrogels are then UV-cross-linked to induce stiffening. (C) Light-

mediated softening of a photodegradable PEG-based hydrogel. Photolabile groups are 

incorporated into di(meth)acrylated PEG macromers, which are then cross-linked to form 

photodegradable hydrogels. Upon exposure to UV light, the cross-linkages are cleaved, 

resulting in hydrogel softening. Reprinted with permission from ref 47. Copyright 2012 

Nature Publishing Group.
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Figure 20. 
Schematic of hydrogels with reversibly modulated mechanical properties. (A) Ca2+-cross-

linked alginate-based hydrogel. Reprinted with permission from ref 803. Copyright 2010 

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Thermal-responsive PNIPAAm-

based hybrid hydrogel. Reprinted with permission from ref 804. Copyright 2015 WILEY-

VCH Verlag GmbH & Co. KGaA, Weinheim. (C) pH-sensitive triblock hydrogel. Reprinted 

with permission from ref 805. Copyright 2011 American Chemical Society. (D) DNA-cross-

linked PA hydrogel. Reprinted with permission from ref 808. Copyright 2012 Biomedical 

Engineering Society. (E) Supramolecular hydrogel with host–guest interactions. Reprinted 

with permission from ref 809. Copyright 2016 Royal Society of Chemistry.
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Figure 21. 
Cellular mechanosensitive system. The cell-adhesions, myosin-filaments system, tension-

sensitive ion channel, and nuclear lamina both can act as the cellular mechanosensors which 

are distributed from cell–ECM interfaces to cell nuclear.
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Figure 22. 
Adaptable hydrogels. (A) Comparison of a reversibly cross-linked, adaptable hydrogel with 

a permanently cross-linked, degradable hydrogel. Reprinted with permission from ref 827. 

Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Comparison of 

an adaptable hydrogel based on sliding cross-linkages with a covalently cross-linked 

hydrogel. Reprinted with permission from ref 828. Copyright 2015 WILEY-VCH Verlag 

GmbH & Co. KGaA, Weinheim.
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Figure 23. 
Hydrogels with different degradation mechanisms. (A) An enzymatically degradable PEG-

based hydrogel. Vinyl sulfone-modified multiarm PEG macromers are functionalized with 

cell adhesion peptides and then cross-linked with bis-cysteine MMP-sensitive peptides to 

form enzyme-degradable hydrogels. Reprinted with permission from ref 838. Copyright 

2003 Nature Publishing Group. (B) Molecular structure of a hydrolytically degradable 

triblock copolymer, i.e., PCLA-PEG-PCLA. Reprinted with permission from ref 839. 

Copyright 2011 Elsevier, Ltd. All rights reserved. (C) A photodegradable PEG-based 

hydrogel. Such a photodegradable hydrogel system has been used for engineering softening 

hydrogels. Reprinted with permission from ref 459. Copyright 2009 American Association 

for the Advancement of Science.
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Figure 24. 
Electrically conductive hydrogels. (A) PPy-chitosan hydrogel. Reprinted with permission 

from ref 898. Copyright 2015 American Heart Association, Inc. (B) AuNP-alginate 

hydrogel. Reprinted with permission from ref 695. Copyright 2011 Nature Publishing 

Group. (C) CNT-GelMA hydrogel. Reprinted with permission from ref 899. Copyright 2013 

American Chemical Society. (D) GO-MeTro hydrogel. Reprinted with permission from ref 

900. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 25. 
Schematic of a microelectronic cardiac patch. Such electronic scaffolds enable the 

electrically controlled release of biomolecules, the electrical stimulation of cells and 

engineered tissues, and the electrical sensing of cell responses and engineered tissue 

performances. Reprinted with permission from ref 941. Copyright 2016 Nature Publishing 

Group.
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Figure 26. 
Conductivities of conductive biomimetic materials as a function of concentrations.
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Figure 27. 
Independent control over biomimetic material properties. (A) Microfabrication. By varying 

the height of PDMS microposts but keeping the diameter the same, the effective stiffness (or 

spring constant) of the microposts is tuned independent of adhesion-ligand density and 

surface chemical properties. Reprinted with permission from ref 978. Copyright 2010 Nature 

Publishing Group. (B) Chemical modification. Cysteine-containing peptides are 

incorporated into PEG-based hydrogels via a thiol–ene click reaction with independent 

control over the stiffness and adhesion-ligand density. Reprinted with permission from ref 

458. Copyright 2010 American Chemical Society. (C) Composition change. PA hydrogels 

are fabricated with independently controlled stiffness and pore size (or porosity) by 

adjusting the acrylamide/bis-acrylamide ratio. Scale bars: 50 μm. Reprinted with permission 

from ref 30. Copyright 2014 Nature Publishing Group. (D) Cross-linking regulation. The 

stiffness of IPN hydrogels made from a reconstituted basement membrane matrix and 

alginate is tuned by simply increasing the Ca2+ concentration used for cross-linking alginate 
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independent of the pore structure and adhesion-ligand density. Reprinted with permission 

from ref 378. Copyright 2014 Nature Publishing Group.
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Figure 28. 
Cardiac regeneration using cell aggregate-laden hydrogel vehicles. (A) Schematic of 

hydrogel injection at different locations for repairing myocardial infarction (MI) in a mouse 

disease model. (B) Overview of the bioinspired process for fabricating murine ESC 

aggregate-laden alginate-chitosan micromatrix (ACM) vehicles together with live/dead 

staining images. Scale bar: 100 μm. (C) Gross images of a normal heart and MI hearts 

administered five different treatments (ACM-A, cell aggregates with ACM encapsulation; 

Bare-A, bare predifferentiated aggregate). Arrows indicate granulomas generated in single-

cell (Single)- and Bare-A-treated mice. Scale bar: 3 mm. (D) Survival of the mouse disease 

model at 4 weeks; the ACM-A group exhibited significantly higher survival than all the 

other groups. (E) Ejection fraction results; the ACM-A treatment significantly enhanced 

heart function after MI. Reprinted with permission from ref 1032. Copyright 2016 Nature 

Publishing Group.
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Figure 29. 
Bone regeneration using cell-laden GelMA microspheres. (A) Schematic illustration for the 

fabrication of cell-laden GelMA microspheres using a photo-cross-linking-microfluidic 

method, and in vitro and in vivo applications for osteogenesis and bone regeneration in a 

rabbit model. (B) Alizarin red staining results of cell-laden GelMA microspheres after (a) 1, 

(b) 2, (c) 3, and (d) 4 weeks of culture for in vitro osteogenesis. Scale bar: 100 μm. (C) 

Histomorphometric results (%) of new bone (left) and osteoid (right) formation. Reprinted 

with permission from ref 1083. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim.
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Figure 30. 
Heart-on-a-chip. (A) Schematic illustration of a heart-on-a-chip fabricated by a 

multimaterial 3D printing technique. (B) Overview of a printed chip, and a confocal 

microscopy image of immunostained cardiac tissue. Blue, DAPI nuclear stain. White, α-

actinin. Scale bars: 10 μm. (C) Images of immunostained laminar cardiac tissues on chip 

cantilevers on day 2 (left) and day 28 (right), respectively. Blue, DAPI nuclear stain. White, 

α-actinin. Scale bars: 10 μm. (D) Contractile twitch stress generated by laminar cardiac 

tissues on day 2 (left) and day 28 (right), respectively. (E) A modified chip cantilever with 

supporting thicker laminar cardiac tissue (left), and immunostained thicker laminar cardiac 

tissue (right). Blue, DAPI nuclear stain. White, α-actinin. Red, actin. Scale bars: 30 μm for 

(1), and 10 μm for (2). (F) Dose–response curve for verapamil (left) and isoproterenol 

(right). Reprinted with permission from ref 944. Copyright 2016 Nature Publishing Group.
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Figure 31. 
Breathing lung-on-a-chip. (A) Schematic illustration of the design of the breathing lung-on-

a-chip. (B) Sketch diagram of the physical stretching process of the alveolar–capillary 

interface in the lungs during inhalation. (C) Cross-sectional view of microfluidic chip. Scale 

bar: 200 μm. (D) Overview images of a chip device. (E) 3D confocal reconstruction of the 

epithelial–endothelial tissue interface generated on the chip. (F) Functional tissue membrane 

generated 15% strain in cells. (G) Toxicological study of silica nanoparticles based on the 

lung chip. Left, endothelial expression of intercellular adhesion molecule 1 (ICAM-1) and 

neutrophil adhesion in the lower channel. Right, mechanical strain and silica nanoparticles 

synergistically increased the expression of ICAM-1. Scale bar: 50 μm. (H) Mechanical strain 

(10%) promoted the cellular uptake of polystyrene nanoparticles (100 nm). Internalized 

nanoparticles are indicated with arrows. (I) Schematic illustration of mimicking nanoparticle 

transportation across the alveolar–capillary interface with the lung chip. Reprinted with 

permission from ref 1163. Copyright 2010 American Association for the Advancement of 

Science.
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Table 1.

Some important aspects of different degradation mechanisms.

Enzymatic
degradation Hydrolytic degradation Photolytic degradation

Sensitive moieties MMP-, plasmin-, and elastase-sensitive 
peptides

Ester, hydrazine, and acetal 
linkages

Azobenzene, o-nitrobenzyl, and 
coumarin

Degradation times Hours to days Days to weeks Seconds to minutes

Influence factors Sequences of enzyme-sensitive peptides, 
concentration and activity of enzymes

Molecular weight of monomer, 
hydrogel concentration and water 
content, solution pH, ratio of 
hydrolysable linkages in network 
backbone

Light wavelength, intensity, 
irradiation time, and the site of 
photosensitive moieties in network, 
the ratio of host-guest inclusion 
complex

Advantages Predictable cell-mediated degradation
Mild reaction conditions without 
involving any trigger molecules, 
biocompatible byproducts

High controllability on 
spatiotemporal degradation, deep 
tissue regulation of hydrogel 
degradation

Disadvantages Limited controllability on spatiotemporal 
degradation

Difficult to predict degradation 
kinetics, limited controllability on 
spatiotemporal degradation

Light-induced harmful effects to 
cells, potential toxic byproducts
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