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Abstract

The accelerated failure time (AFT) model is a common method for estimating the effect of a 

covariate directly on a patient’s survival time. In some cases, death is the final (absorbing) state of 

a progressive multi-state process, however when the survival time for a subject is censored, 

traditional AFT models ignore the intermediate information from the subject’s most recent disease 

state despite its relevance to the mortality process. We propose a method to estimate an AFT 

model for survival time to the absorbing state that uses the additional data on intermediate state 

transition times as auxiliary information when a patient is right censored. The method extends the 

Gehan AFT estimating equation by conditioning on each patient’s censoring time and their disease 

state at their censoring time. With simulation studies, we demonstrate that the estimator is 

empirically unbiased, and can improve efficiency over commonly used estimators that ignore the 

intermediate states.
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1 Introduction

In many chronic diseases, patients move through a series of progressively worsening disease 

states until a primary failure such as death. Further, in clinical studies of progressive 

diseases, we often will not know every subject’s failure time because many are lost to 

follow-up or do not fail within the time period of the study. We may, however, also have 

information on their disease course recorded up to their last follow-up time. For a clinical 

study of a progressive disease, we will provide an estimator for the effect on survival time 

that incorporates the information from these intermediate disease states as auxiliary 

information in a manner relevant to the primary failure. When there are relatively few 

observed primary failures in the study, it can be challenging to precisely estimate this effect. 
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The goal of this paper is to utilize the intermediate states to get a more precise and holistic 

estimate of the treatment effect.

The proportional hazards model has been used to obtain estimates of a survival treatment 

effect with auxiliary information, for example in Lu and Tsiatis (2008). While the PH model 

is useful for testing and hazard ratio estimation, the estimate does not have a direct 

interpretation in terms of the survival time for a subject. Alternatively, the estimate for an 

accelerated failure time (AFT) model has the straightforward interpretation of the treatment 

accelerating (or decelerating) the average time to failure. This makes it an appealing 

alternative to the proportional hazards model.

The standard semiparametric AFT model relates the covariates to the logarithm of the 

survival time through the following regression model:

log T i = β0′ Xi + εi (1)

where Ti is the failure time for subject i, εi are i.i.d. with unspecified distribution function F, 

β0 is a vector of parameters, and Xi is a vector of covariates.

Several methods for estimating parameters of the semiparametric AFT model arose from 

treating the censored data linear rank tests as estimating equations (Prentice 1978; Tsiatis 

1990). These linear rank tests include the popular log-rank (Mantel 1966; Cox 1972), Peto-

Peto (Peto and Peto 1972), and Gehan (1965) tests. The weighted-log rank test with the 

Gehan weight has become a particularly attractive estimating function due to properties that 

make it more practical for model fitting than other methods. Fygenson and Ritov (1994) 

showed that this estimating equation is monotone in each component of β, and Jin et al. 

(2003) developed an algorithm using linear programming to reliably estimate the parameters 

in multidimensional settings. Further, the Gehan function is amenable to smooth 

approximations, which allows for computationally simpler parameter and variance 

estimation (Brown and Wang 2007; Heller 2007).

These estimators for AFT models are based on univariate failure times, so they need to be 

modified to incorporate the intermediate states. Under the same premise of using linear rank 

tests as estimating equations, we propose estimating the AFT parameters based on a recent 

extension of the Gehan test statistic proposed by Ramchandani et al. (2015) that accounts for 

the observation of intermediate events, such as disease progression, among censored 

subjects. The test statistic modifies the Gehan test by estimating probabilities for each 

subject surviving longer than each of the other subjects conditional on their follow-up times 

and their last observed disease states. These probabilities are estimated using multi-state 

models, and allow us to compute the expected Wilcoxon ranks of survival for each subject 

conditional on what we observe. The idea is to obtain more precise parameter estimates by 

using intermediate disease status as additional information to the usual death and censoring 

times. This allows us to meaningfully include the intermediate transitions into parameter 

estimation while not allowing them to dominate the estimator. The key assumption that we 

have to make in order to obtain interpretable parameter estimates is that each transition of 

the process, in addition to the total time from origin to the absorbing failure, follows an 
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accelerated failure time model. The AFT model is a natural one to use in this case because 

of its straightforward interpretation in terms of linearly accelerating or decelerating a disease 

process.

In section 2, we will describe the model under which we are operating, and provide a 

formulation of the proposed estimating equation under the assumption that the probabilities 

were known. We will then describe the Aalen-Johansen estimator, which we use to estimate 

the probabilities. We follow by proposing a method for estimating the variance of the 

parameters based on a Monte Carlo smoothing method given by Jin et al. (2014). In section 

3, we describe the simulation studies. We illustrate the method on a clinical trial for 

Amyotrophic Lateral Sclerosis (ALS) in section 4, and conclude with a discussion in section 

5.

2 Methods

Suppose Ti is a failure time, and Ci the independent right censoring time for subject i; let 

Yi=min(Ti,Ci), ei
β = log Y i − β′Xi (the observed residual), and δi =I(Ti≤Ci),i=1, …,n. The 

Fygenson-Ritov (Gehan) estimating equation for fitting the semiparametric accelerated 

failure time model is given by:

UG β = 1
n2

i = 1

n

j = 1

n
δi Xi − X j I ei

β < e j
β = 0 (2)

With a binary covariate, this equation is simply the Gehan-Wilcoxon test applied to the 

observed residuals, and counts all the pairs for which we know that 

log T i − β′Xi < log T j − β′X j, i.e. that the failure time residual for one individual is less than 

the failure time residual for another. However, we can possibly get better precision if all 

pairs of residuals, whether uncensored or censored, contribute to the statistic in a meaningful 

way. The idea is to base an estimating equation on the expected scores of UG(β) conditional 

on what we observe. Let ei
β = log T i − Xi′β denote the possibly unobserved failure time 

residual for individual i. A straightforward modification to the above estimating equation (2) 

would be:

UE β = 1
n2

i = 1

n

j = 1

n
Xi − X j P ei

β < e j
β ei

β, e j
β, δi, δ j = 0 (3)

where P ei
β < e j

β |ei
β, e j

β, δi, δ j  represents the probability that the failure time residual for 

subject i is less than that of subject j, conditional on each of their residual follow-up times 

and their failure status. This estimating equation is related to Efron’s modification of the 

Gehan-Wilcoxon test (1967). Another way to think of the conditional probabilities in (3) is 

in terms of disease states. In the above setting, we are in the simple case of two disease 

states: alive and dead, with δi the indicator for the latter. However, if we are in the setting of 

a chronic disease where individuals pass through multiple states on the way to failure, we 

can condition the above probabilities on the disease states of the individuals at each of their 
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last observed times to get a more precise estimate of the model parameters. Examples of this 

type of intermediate data include cancer stage progression, neurodegeneration from ALS, 

and Alzheimer’s disease transitioning from mild to severe. This can be an especially useful 

extension for studies with relatively low failure rates over long periods of time.

To develop this idea more precisely, suppose individuals move through a finite set of states S 
={0,1,2,…,D} governed by a progressive multi-state process, where 0 is the initial state, D 
represents the single absorbing state, and that transitions to each state are observed exactly. 

We will consider progressive models of the forms given in Figure 1, and assume that the 

structure of the model is known and correctly specified. Let Si(t) denote the state of 

individual i at time t, let Ti,gh denote the random variable for the transition time for 

individual i from state g to state h, where g ϵ {0,1,…,D-1}, h ϵ {1,2,…D}, and h > g. Let Ti 

be the absorbing failure time for individual i (i.e the time from origin to the absorbing state) 

We will assume that each transition from one state to another follows an AFT model, i.e. 

log T i, gh = βgh′ Xi + εi, gh, where the εi,gh are i.i.d. with unspecified distribution function and 

independent of Xi. If the absorbing failure time from origin (time 0) follows the AFT model 

log T i = β0′ Xi + εi, where εi are i.i.d. with unspecified distribution function and independent 

of Xi, it follows that βgh=β0 for models of the forms given in Figure 1 (proof in Appendix A.

1).

Additionally, we let Ci be a censoring random variable independent of the multistate 

process, Yi = min(Ti,Ci), and δi = I(Ti ≤ Ci). Let ei
β = log Y i − β′Xi, and ei

β = log T i − β′Xi. 

Under the model described, a reasonable estimating equation for β is:

UP β = 1
n2

i = 1

n

j = 1

n
Xi − X j P ei

β < e j
β Si ei

β , S j e j
β = 0 (4)

where P ei
β < e j

β |Si ei
β , S j e j

β  represents the probability that the failure time residual for 

individual i will be less than the failure time residual for individual j conditional on each of 

their observed disease states at their observed follow-up time residual. This extension of the 

Gehan estimating equation is based on the extension of Gehan’s test statistic proposed by 

Ramchandani et al. (2015) to account for intermediate disease state information. At β = 

β0,this equation is centered around 0 under the true, unknown, probability measure. (See 

Appendix A.2). The estimating equation in (4) can also be written as:

UP β = 1
n2

i j < i
Xi − X j P ei

β < e j
β Si ei

β , S j e j
β − P

ei
β > e j

β Si ei
β , S j e j

β = 0
(5)

This formulation of UP(β) can be identified as an order 2 U-statistic, thus giving us 

asymptotic normality of the score function at a fixed β, and providing a way of computing 
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the covariance matrix of nUP β . Let D(β) denote the asymptotic covariance matrix of 

nUP β  From standard U-statistics theory, D(β) has elements that can be estimated with:

Dl, m β = 1
n3

i j k ≠ j
Xil − X jl Xim − Xkm ϕi j

βϕik
β , (6)

where ϕi j
β = P ei

β < e j
β |Si e j

β , S j e j
β − P ei

β > e j
β |Si ei

β , S j e j
β  (Van der Vaart 2000).

When we know that log T i − β′Xi < log T j − β′X j ,the conditional probability in the 

summand of (4) is known and equal to 1, just as in the Gehan estimating equation, UG(β). 

This would happen in the scenario where both subjects i and j had reached the absorbing 

state, or if subject i reached the absorbing state and their residual time to the absorbing state 

was less than the residual time of subject j. It follows that we can rewrite UP(β) as the sum 

of UG(β) and an additional term of probabilities for censored subjects:

UP β =
i j

Xi − X j I ei
β < e j

β

δi + 1 − δi P ei
β < e j

β Si ei
β , S j e j

β − P ei
β > e j

β Si ei
β , S j e j

β

= 0

(7)

The summand of the estimating equation UP(β) is based on the true probabilities, but in 

practice we have to estimate the probabilities. This can be done in a number of ways using 

event history models that account for incomplete observation. In this paper, we will estimate 

the probabilities nonparametrically using the Aalen-Johansen estimator.

2.1 The Aalen-Johansen Estimator

To estimate the failure probabilities, we propose using the empirical transition matrix 

developed by Aalen and Johansen (1978), fit on the residuals of each transition time. The 

Aalen-Johansen estimator is a natural generalization of the Kaplan-Meier estimator for non-

homogeneous Markov chains with a finite number of states (Aalen et al 2008). Suppose we 

have a finite number of states S ={0,1,…,D}. Let αg,h(t) denote the transition intensity from 

state g to state h, where g ≠ h. This describes the instantaneous risk, or the hazard, of 

transitioning from state g to state h at time t. Now, let Pg,h(s,t) denote the probability of a 

subject being in state h at time t given that the subject was in state g at time s. This is called 

a transition probability, and it is the g,h entry of the d x d transition probability matrix P(s,t). 
The transition probability matrix can be written as a function of the transition intensities 

through the product integral:

P s, t =
s, t

I + dA u

where I is the identity matrix, and A(u) is the cumulative transition intensity matrix with 

elements Agh t = 0
t αgh u du. Let Ngh(t) be the number of individuals observed to 
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experience a transition from state g to h between time 0 and time t, and let Yg(t) be the 

number of individuals in state g just before time t. For g ≠ h, we can use the Nelson-Aalen 

estimator to estimate the cumulative hazard Agh(t), yielding Αgh t =
0

t dNgh u

Yg u , which can 

also be written as 
u ≤ t

ΔNgh u

Yg u , where ∆Ngh(u) represents the number of transitions from 

state g to state h at time u. Also, we let Αgg t = −
h ≠ g

Αgh t , so that the rows of the d × d 

matrix A t  sum to 0. Suppose u1 < u2 < … are the exact times when a transition between 

any two states are observed. Then the estimate for P(s,t) is given by the matrix product:

P s, t =
s < u j ≤ t

I + dA u j .

where dA u j = A u j − A u j − 1 , and we define u0 = 0. For example, in a progressive three 

state model, this expression written out in full using the counting process notation described 

above would be:

P s, t =
s < u j ≤ t

1 −
ΔΝ01 u j

Y0 u j

ΔΝ01 u j
Y0 u j

0

0 1 −
ΔΝ12 u

Y1 u j

ΔΝ12 u

Y1 u j

0 0 1

In the presence of censoring, these transition probabilities will be used to estimate the 

probability of an individual’s lifetime being less than another individual’s, on the scale of 

the failure time residual, eβ = log T − β′X. The rationale for estimating the transition 

probabilities based on the residuals is that, under our assumed model, the trajectory of each 

patient based on their residual transition times is identically distributed at the true β0. There 

are several statistical packages that allow for the computation of the Aalen-Johansen 

estimator. One excellent option is the etm package in R (Allignol et al 2011; R Core Team 

2014).

2.2 The Estimating Equation

For the estimating equation UP(β), when comparing two subjects, we have two scenarios 

where we would need to estimate a probability: when subject i is censored and j is 

uncensored, and when both are censored. In the first case, suppose subject i is censored in 

state k and j is uncensored. Then we can estimate 

P ei
β < e j

β |Si ei
β = k, S j e j

β = d − P ei
β > e j

β |Si ei
β = k, S j e j

β = d  with 

Pkd ei
β, e j

β − + Pkd ei
β, e j

β − 1  where t− indicates a time just before time t. Now suppose that 
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subject i is censored in state k, subject j is censored in state k′ and ei
β < e j

β. Then 

P ei
β < e j

β |Si ei
β = k, S j e j

β = k′ − P ei
β > e j

β |Si ei
β = k, S j e j

β = k′  can be estimated with:

ei
β

∞
1 − Pk′, d e j

β, t dPk, d ei
β, t −

e j
β
∞

1 − Pk, d ei
β, t dPk′, d e j

β, t (8)

where by convention we define P ei, t = 0 for t≤ei. Note that these expressions are general in 

the sense that we can use them for any multi-state models where we estimate transition 

probabilities. In the case of the Aalen-Johansen estimator, the probabilities are step-

functions, so in practice equation (8) is computed with sums. Denote the maximum follow-

up residual time as emax
β  and let t1,t2, … be the jumps in P s, t  for any fixed s. We can 

compute (8) as:

l : ei
β < tl ≤ emax

β
1 − Pk′, d e j, tl Pk, d ei, tl − Pk, d ei, tl − 1

−
l : e j

β < tl ≤ emax
β

1 − Pk, d ei, tl Pk′, d e j, tl − Pk′, d e j, tl − 1

We now denote the estimating equation UP(β) as UP β; A  to indicate that the equation 

depends on the estimated cumulative transition hazard matrices A ⋅ . The estimating 

equation can now be written as:

UP β; A = 1
n2

i j
Xi − X j I ei

β < e j
β

δi + 1 − δi δ j P
Si ei

β , d
ei

β, e j
β − + P

Si ei
β , d

ei
β, e j

β − 1

+ 1 − δi 1 − δ j
ei
β

∞
1 − P

S j e j
β , d

e j
β, t dP

Si ei
β , d

ei
β, t

−
e j
β

∞
1 − P

Si ei
β , d

ei
β, t dP

S j e j
β , d

e j
β, t

(9)

The estimate β is the value of β where UP β; A  crosses 0.

In the simple two-state model, this estimator is similar to the Peto-Prentice version of the 

weighted log-rank estimator. Note that by using the Aalen-Johansen estimator for the 

probabilities, we are additionally making the assumption that the error terms for the multi-

state process arise from a non-homogeneous Markov process. However, the method is more 

general as the probabilities can be estimated in other ways as well, including parametrically. 
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Alternative estimates for the probabilities may be used if one wants to relax the Markov 

assumption, such as those proposed by de Uña-Álvarez and Meira-Machado (2015), and 

Meira-Machado et al. (2006). Nevertheless, simulations suggest that the proposed estimator 

works well in some non-Markov settings as well.

2.3 Remark on estimation and asymptotic properties

As described in Section 2, the estimating function UP(β) is a U-statistic when we know the 

true conditional probabilities in the summand of the statistic of equation (5). Those 

conditional probabilities are based on the true cumulative hazard process A(·) described in 

section 2.1. In practice we do not know the true hazard process, and we propose estimating it 

to obtain the necessary transition probabilities. By estimating this process, the estimating 

equation is no longer strictly a U-statistic, so the usual properties of U-statistics do not 

directly apply. While this may have implications on the convergence and asymptotic 

variance of the estimator, our simulation studies suggest that the estimator as presented is 

unbiased and that the variance estimator described in the next section is close to the 

empirical variance.

Additionally, it is clear that the proposed estimating equation is neither continuous nor 

monotone in β. This is not a major problem when there is a single covariate, but for 

multidimensional settings, it can make estimation of β difficult and admits the possibility of 

multiple solutions. In these settings, we could first find a consistent auxiliary estimator, such 

as the Gehan estimator that is obtained with linear programming as described by Jin et al. 

(2003). We would then solve for β as the minimizer of the norm ∥ UP β; A ∥ using a 

derivative-free optimization algorithm, such as Nelder-Mead (1965), with the consistent 

auxiliary estimator as an initial value to arrive at a solution in the correct neighborhood of 

β0. We encourage use of various starting values to ensure that the estimate obtained is the 

global minimizer.

While it is not ensured that a solution will exist in finite samples, at least one solution should 

exist provided that the following conditions apply:

1. If there are p covariates, there are at least p + 1 failures to the absorbing state.

2. The distribution of covariates among those who have had an absorbing failure are 

not concentrated on a hyperplane of the dimension of the parameter space; i.e. if 

the covariate vectors among subjects who had an absorbing failure are linearly 

dependent, a p-dimensional solution may not exist.

3. Covariates are bounded and have finite variance.

4. Densities of the sojourn and absorbing failure times are bounded and have finite 

variance.

2.4 Inference Procedure for β

It is well known that variance estimation for the parameters of the ordinary semiparametric 

accelerated failure time model is difficult. This is because the estimating equations are non-

smooth, and the usual sandwich variance estimate involves the derivative of the unknown 
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hazard function of the error terms. For the general weightedlog rank estimating functions, it 

has been established that the covariance matrix for n β − β0  is given by V=B−1DB−1T, 

where B is the non-singular slope matrix of the estimating function U(β) and D is the 

variance of the score function, each evaluated at β0 (Kalbfleisch and Prentice 2011). 

Estimation of D is straightforward, but the discontinuities of the estimating equation do not 

allow for direct computation of B using derivatives; further, direct numerical differentiation 

can be unstable in practice. This will similarly be the case for our estimating function, where 

we may estimate D using the asymptotic variance formula for the U-statistic with the 

resubstituted probability estimates, but where an estimate of B is difficult to obtain due to 

the discontinuity of the estimating equation in finite samples.

In light of these issues, some authors have pursued a smooth approximation of the Gehan 

estimating equation to allow for straightforward parameter and variance estimation (Brown 

and Wang 2007; Heller 2007). While this approach works well for the Gehan estimating 

equation, it is not straightforward to obtain smooth versions for other AFT estimators. To 

accommodate other types of estimators, Jin et al. (2014) proposed a Monte Carlo smoothing 

method based on the approach of Brown and Wang (2007) for estimating standard errors.

The idea is that in large samples, the distribution of β − β0 is approximately equal to n

−1/2V1/2Z, where Z is a standard normal random vector and V is the covariance matrix of 

n β − β0 . This induces the smooth estimating function U V , β = EZ U β + n−1/2V1/2Z , 

where the expectation is taken with respect to the vector Z. They then argue that the 

derivative of the smooth function U V , β  is given by:

B Γ; β = EZ U β + ΓZ ZTΓ−1
(10)

where Г=n−1/2V1/2. They propose an iterative method where they numerically approximate 

the integral in (10), update Г(the current estimate for the standard error for β) and iterate 

through until convergence of Г. One approach is a Monte Carlo method (MCM), with which 

perturbed score equations must be evaluated a very large number of times. This is an 

intuitive and simple way to estimate B, but it requires a very large number of function 

evaluations at each step of the algorithm. The other approach is a Gaussian Quadrature 

Method (GQM), which we choose to implement here because it can be far more 

computationally efficient while giving similar results to the MCM. The idea is to choose a p-

dimensional grid of nodes based on onedimensional Gauss-Hermite quadrature, obtain their 

corresponding weights, and use those to approximate the integral in (10). We describe the 

algorithm in Appendix A.3. Confidence intervals for β can be obtained by the Wald method.

An alternative to this method would be to use a bootstrap approach for estimating the 

variance of β. The classical bootstrap would entail resampling subjects’ entire trajectory 

with replacement, reestimating the requisite probabilities using the Aalen-Johansen 

estimator, and obtaining an estimate of β∗ that solves the estimating equation based on the 

new sample. This process would be repeated a large number of times M, with standard errors 

computed from the empirical distribution of β∗ = β1
∗, …, βM

∗ T
. Confidence intervals for β0 
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can be obtained either with the Wald method, or directly from the empirical distribution of 

β∗.

3 Simulations

To test the performance of our estimator, we simulated data from a 3-state progressive multi-

state model of the form 0→ 1 →2 (where 2 is the absorbing state), such that the 

acceleration parameter acts on the entire process. Let Tik represent the time taken to 

transition from state k-1 to state k. We generated the sojourn times log T ik = 2 + β0Xi + εik, 

for k=1,2, i=1,….,n Clearly, the absorbing state failure time T i = T i1 + T i2 satisfies 

log T i = 2 + β0Xi + εi. We set β0= 0.7, which corresponds approximately to a 2-fold 

acceleration of the failure time for a unit difference in the covariate X. This was done for 

various choices of εik, including distributions for which the Markov assumption does not 

hold. In one setting, the εik were independent of each other, and had either standard extreme-

value (log-Weibull), standard normal, standard logistic distributions. In another setting we 

allowed the εik to be correlated, with standard multivariate normal distributions with either 

correlation ρ = 0.5 and ρ= 0.9. It should be noted that these are the distributions of the state 
sojourn times and not the distributions of the absorbing failure times. The covariate Xi was 

normally distributed with mean 0 and standard deviation 0.5 in all settings. Censoring values 

were generated from a Uniform(0,τ), with τ chosen to yield a desired level of censoring. In 

each setting, we also allowed censoring to depend on the covariate, with Ci distributed as 

exp(1.5Xi)·Uniform(0,τ).

We computed the bias, empirical standard error, and empirical MSE for the Fygenson-Ritov 

(Gehan), the Peto-Prentice, the Log-rank, and the Proposed estimators. For the proposed 

estimator, we also computed standard error estimates, 95% coverage probabilities based on 

Wald confidence intervals, and relative efficiencies of the proposed estimator compared to 

the Gehan, Peto-Prentice, and Log-rank estimators. The variance of the score equation was 

obtained using equation (6) with the resubstituted probability estimates. Standard error 

estimates for the proposed estimator were obtained using the GQM method with 16 Gauss-

Hermite quadrature nodes, and a tolerance level of 10−4 for convergence of Г. 1000 

simulations were used in each setting, with sample sizes of 100 and 200.

Recall that the Gehan estimating function is given in equation (2). The Log-rank and Peto-

Prentice estimating functions are given by:

i
wiδi xi − j

x jI ei
β ≤ e j

β

j
I ei

β ≤ e j
β

where for the Log-rank estimator wi = 1, and for the Peto-Prentice estimator F ei
β , where 

F ⋅  denotes the left-continuous Kaplan-Meier estimator based on the observed residuals.

The results are given in Tables 1 and 2. Table 1 refers to the setting where the censoring 

distributions are independent of the covariate, while Table 2 refers to the unequal censoring 
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case. Observe that in all settings, the proposed estimator is essentially unbiased, the average 

of the standard error estimator is close to the empirical standard error, and the coverage 

probabilities are close to the nominal level of 0.95. In addition, the proposed estimator is 

more efficient than the Gehan, Peto-Prentice, and Log-rank estimators in each of these 

settings, with the most efficiency gains coming in cases of high censoring. It is not expected 

that in finite samples the proposed estimator will always be more efficient, but these 

simulations demonstrate the potential efficiency gains we can get when the intermediate 

states are taken into account as auxiliary information.

4 Example

We will illustrate the proposed method on data from a clinical trial of patients with ALS 

(Berry et al 2013). Subjects in the trial were monitored for survival, and rate of decline in 

neurological function as measured by their ALSFRS-R scores. The ALSFRS-R is a 

functional rating scale by which physicians estimate the degree of functional impairment in 

ALS patients (Cedarbaum et al 1999). The scale ranges from 0–48, with a higher score 

indicating better function. We are interested in estimating the effect of treatment on survival, 

using ALSFRS-R score as the intermediate information. ALSFRS-R was measured 

periodically in patients until death, drop-out, or the end of the study. We discretized this 

score into 3 states: 33–48 (state 1), 17–32 (2), 0–16 (3). We assume the transition time 

occurs when a transition is observed, and we allowed all forward transitions that were seen 

in the data, but no backward transitions. This means that even if someone actually moved 

from state 2 to 1 for example, that they were kept in state 2 for the analysis. There were a 

total of 513 subjects in the analysis, an average follow-up time of 1.5 years, a maximum 

follow up time of 5.5 years, and 43% of all subjects were censored. It is known that site of 

disease onset is associated with survival, so we choose to include this covariate in the model.

We estimated coefficients for the model log T i = βtrt × treatment + βsite × site + εi, where 

treatment = 1 for “active” and 0 for “placebo”, and site indicates site of disease onset (1 for 

bulbar-onset, 0 for limb-onset). We first estimated the coefficients using the Gehan 

estimating equations. The Gehan estimators were (.217, −.350) for treatment and site of 

onset, respectively. We then estimated the coefficients using the proposed estimating 

equation given in (9). This was done using the optim function in R, with the Nelder-Mead 

method and using the Gehan estimates as initial values. The coefficients for the proposed 

estimator were (.210, −.383). This implies that average progression and survival time among 

the treated group, adjusted for site of onset, was estimated to be exp(.21) = 1.23 times that of 

the placebo group. Similarly, adjusting for treatment, average progression and survival time 

in the bulbar-onset group was 0.68 times that in the limb-onset group.

Standard errors were estimated using the GQM method described in section 2.3 and 

Appendix A.3, and the bootstrap. Using the formula in (6), the covariance matrix of the 

score equation, D, was estimated to be:

.063 .001

.001 .046 .
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For the GQM, we used 6 Gauss-Hermite quadrature nodes, given by the values z = ±(2.35, 

1.33, 0.436), with requisite weights w = (.0045, .157, .725). The transformed nodes z∗ = 2z
were used in order to approximate the desired integral in equation (10). An illustration of the 

grid of points over which we approximate the integral is given in Figure 2.

The algorithm converged in 4 iterations within a .0001 tolerance level for each entry of the 

estimated covariance matrix G. Standard error estimates of the coefficients for treatment and 

site of onset were .144 and .173, and p-values based on Wald test statistics were .145 and .

026, respectively. We also estimated standard errors using the bootstrap, yielding standard 

error estimates of .145 and .159, with Wald p-values given by .148 and .016, respectively. 

We conclude that treatment, adjusted for site of onset, is not significantly associated with 

progression and survival when adjusted for disease site of onset, but that bulbar site of onset 

of is associated with earlier progression and failure, resulting in almost two-thirds the 

average survival time of patients whose site of onset was in a limb. These results were not 

unexpected given the difficulty of treating ALS, and that site of onset is established as 

prognostic of survival.

5 Discussion

While the asymptotic properties are not fully developed, simulations have demonstrated that 

the proposed estimator and the corresponding standard error estimator have good finite-

sample properties in several settings. The estimators are close to their empirical values under 

semi-Markov sojourn time distributions, correlated sojourn time distributions (non-Markov), 

and when the censoring distribution depends on the covariates.

In most settings, the proposed estimator was more efficient than those obtained with the 

Gehan and Peto-Prentice estimators that ignore intermediate events. The improvement in 

efficiency will depend on the sojourn time distributions and the censoring distributions, with 

the most improvement in settings where there is very high censoring. Thus, the method of 

estimation can be particularly useful for shorter studies where the main event of interest is 

rarely observed, but subjects are monitored frequently for intermediate “benchmarks” as 

well. An example of this would be any relatively short clinical trial of a chronic disease such 

as ALS.

A key assumption for the proposed estimator is that the acceleration parameters act on every 

transition of the process. This is a stronger assumption than the ordinary accelerated failure 

time model for two states, but a necessary one to ensure that the AFT parameters we 

estimate are interpretable as such. Thus, it would be useful to devise a procedure to check if 

the AFT model holds in the manner specified. One potential way would be to treat the time 

from origin to state k as a failure time, and use the Gehan estimating equation to estimate βk, 

for each non-initial state k = 1, …, D. We could then construct a test for H0 : βj = βk, j ≠ k, 

using the method proposed by Lin and Wei (1992). If one was instead interested in 

estimating AFT parameters for each particular state’s sojourn time, Huang’s accelerated 

sojourn times model (2002) is the appropriate choice.
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Additionally, under our assumed model, there may be other more efficient ways of 

estimating the desired parameters, such as in the framework of clustered or multivariate 

failure times (Johnson and Strawderman 2009; Chiou et al 2014). Other estimators could be 

proposed where each transition time for every participant contributes to the estimation, 

however, methods that may directly incorporate all intermediate transition times into 

estimation are somewhat different than what we are proposing. We are essentially treating 

the intermediate failures as auxiliary information that informs the primary failure of interest, 

the absorbing state. The absorbing failures still drive the proposed estimator, with some 

additional information gleaned from the intermediate disease states. Under the assumed 

model, more emphasis on the intermediate transitions can certainly make more efficient use 

of all of the observed data, but it was our desire to have an estimator driven primarily by 

survival that also incorporated the intermediate information in a manner directly relevant to 

the survival outcome. This also makes the proposed estimator more robust to intermediate 

transitions departing from the assumed AFT model.

To give more weight to the intermediate transitions, we can possibly estimate parameters 

from Huang’s (2002) accelerated sojourn times model, and use a weighted combination of 

those model estimates and the ordinary semiparametric AFT estimate based on the survival 

time. For example, suppose we have a four-state progressive model with an absorbing state 

and two intermediate states. The weighted estimator could be given by w1βH1 + w2βH2 

+ (1−w1−w2)βG where w1 + w2≤1, βH,k represents Huang’s model estimates for the kth 

sojourn time, and βG represents the Gehan estimator for overall survival. The weights could 

be specified based on some combination of clinical input, standard error of the estimates, 

and a measure of model fit. Huang’s proposed goodness of fit test restricts the amount of 

follow-up data used by creating an artificial censoring time at various points of follow-up. 

Then new estimates for the parameter can be computed and compared with the estimate 

based on the entire follow-up time. Weights may be based on the relative level of variation 

between the restricted follow-up estimates and the original. Estimating the standard error for 

such an estimator will involve estimating the covariance between the components and could 

prove difficult, but a resampling procedure may be viable. Studying this weighted approach 

and the GEE approach proposed by Chiou (2014) in the multi-state context may be an 

avenue of further research.

The proposed estimating equation does not have the same desirable property of 

monotonicity as the Gehan estimating equation, but its close relationship with the Gehan 

function can make parameter estimation feasible in practical settings with sufficient sample 

size. In order to simplify parameter and standard error estimation, an induced smoothing 

approach may also work well with the proposed estimator, but such an approach would 

involve smoothing both the indicator functions and the transition probability estimates of the 

estimating function. Aalen and Johansen (1978) provide an asymptotically equivalent 

smooth version of their estimator that could be used for this purpose.

The asymptotic properties of the estimator need to be explored in greater detail. As with the 

traditional censored linear rank estimators, the key result is to establish asymptotic linearity 

of the score function in a neighborhood of β0, from which consistency and asymptotic 

Ramchandani et al. Page 13

Lifetime Data Anal. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



normality of the estimate β typically follow. Our simulation studies suggest this to be the 

case under certain assumptions, but it remains to be formally established.
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A Appendix

A.1 Proof that β parameters for each transition are equal when individual 

transitions and overall survival time follow an AFT model

Consider a progressive model of D + 1 states as in Figure 1a. Let Tgh indicate a continuous 

random variable for time to transition from state g to state h. Let 

T = T01 + T12 + … + TD − 1, D. Further, suppose T = exp β0X + ε , where ε is independent of 

X. Let Tg − 1, g = exp βgX + εg  for g = 1,…, D, where εg is also independent of X. Then we 

have:

T = exp β0X + ε = exp β1X + ε1 + … + exp βDX + εD

= exp β0X
exp β1X

exp β0X
exp ε1 + … + exp β0X

exp βDX

exp β0X
exp εD

= exp β0X exp β1 − β0 X + ε1 + … + exp βD − β0 X + εD

Since T = exp β0X exp ε , It follows that 

ε = log exp β1 − β0 X + ε1 + … + exp βD − β0 X + εD . Without loss of generality, suppose 

that β1 ≠ β0. Then we have that ε = log exp cX + ε1 + … + exp βD − β0 X + εD .where c is 

a non-zero constant. In this case, ε is not independent of X and cannot be independent of X 
unless ε1 is not independent of X. But by our model assumptions, ε and εg are independent 

of X for g = 1,…, D, so it must be the case that β1 = 0. Similarly, we will have that 

β2 = … = βD = β0.

A similar argument can be used for progressive models that have the form in Figure 1b. We 

will show the case of the progressive illness-death model (Figure 1c), but the proof is 

analogous for models with a larger state space. Suppose we have a 3-state model where 

subjects can transition from state 0→1, 1→2, and 0→2, with state 2 as the absorbing state. 

As before, let Tgh denote the random variable for the direct transition from state g to state h, 

let T denote the absorbing failure time from origin, and assume T = exp β0X + ε , where ε is 

independent of X. Let Tgh = exp βghX + εgh  for g = 0, 1, h = 1, 2, and h > g, where εgh is 

also independent of X. We have that
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T = 1 exp β01X + ε01 ≤ exp β02X + ε02 exp β01X + ε01 + exp β12X + ε12
+ I exp β01X + ε01 > exp β02X + ε02 exp β02X + ε02
= exp β0X I exp β01X + ε01 ≤ exp β02X + ε02

exp β01 − β0 X + ε01 β12 − β0 X + ε12
+ exp β0X I exp β01X + ε01 > exp β02X + ε02 exp β02 − β0 X + ε02

(11)

Since T = exp β01X + ε , it follows that 

ε = log I exp β01X + ε01 < exp β02X + ε02 exp β01 − β0 X + ε01 + exp β12 − β0 X + ε12
+ I exp β01X + ε01 > exp β02X + ε02 exp β02 + β0 X + ε02

. 

In order for the indicator functions to be independent of X, we would need β01 = β02, and in 

order for the non-indicator terms to be independent of X, we need β01 = β12 = β02 = β0. If at 

least one of β01, β12, β02 are not equal to β0, then ε is not independent of X, which 

contradicts our model assumption.

A.2 Justification for Estimating Equation

Consider the formulation of the estimating equation given in (5):

UP β = 1
n2 i j < i

Xi − X j P ei
β < e j

β Si e j
β , S j e j

β − P ei
β > e j

β Si ei
β , S j e j

β

We can think of the probabilities as expectations of an indicator function conditional on 

what we observe:

1
n2 i j < i

Xi − X j E I ei
β < e j

β Si e j
β , S j e j

β − I ei
β > e j

β Si ei
β , S j e j

β

where the expectation is taken with respect to the distribution of the residual failure times 

conditional on the disease states at the residual follow-up times. This function can be seen to 

be centered at 0 when β = β0, as its expectation is:

Xi − X j E E I ei
β < e j

β Si ei
β , S j e j

β − I ei
β > e j

β Si ei
β , S j e j

β

where the outside expectation is taken with respect to the distribution of the observed states 

at the residual follow-up times. By the law of iterated expectations, this is simply equal to:

Xi − X j P ei
β < e j

β − P ei
β > e j

β

Since ei
β and e j

β are i.i.d. and independent of Xi and Xj when β = β0, it follows that the 

expectation is 0 under boundedness of the residual failure time and log censoring time 

densities, and the covariates.
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A.3 Variance estimation for β: Gaussian Quadrature Method

First, we give the assumptions in Jin et al. for validity of their Monte Carlo Method and 

Gaussian Quadrature Method of variance estimation (Jin et al 2014). Suppose we denote the 

estimating equation as U (β ), and β0 is the true parameter vector:

Assumption 1: nU β0  is asymptotically normal with mean 0 and covariance matrix D.

Assumption 2: The estimator β is root-n consistent, and n β − β0  is asymptotically normal 

with mean 0 and covariance matrix V.

Assumption 3: U (β ) is locally asymptotically linear in a neighborhood of β0.

Let B be the limiting slope matrix of U (β0). B is difficult to estimate because the estimating 

function U is not smooth in β. First, we define Г = n−1/2V 1/2, where V = B−1DB−1, i.e. the 

variance of n β − β0 . We are ultimately interested in estimating Г, which depends on B. Jin 

et al. show that the derivative B of a smoothed version of the estimating equation satisfies 

the following expression:

B Γ; β = EZ U β + ΓΖ ZTΓ−1 . (12)

We can use Gaussian quadrature or Monte Carlo methods to approximate B(Г; β ) and 

evaluate Г, but notice that B(Г; β ) also depends on Г, resulting in an iterative algorithm. We 

describe our implementation of the algorithm for the Gaussian Quadrature Method below:

1. Calculate an estimate D for D, the covariance matrix of nU β . This can be done 

using the formula in (6), or a bootstrap procedure. Set Г0 = n−1/2I.

2. Suppose the dimension of β is p. Choose m nodes x j, j = 1,…, m, based on one-

dimensional Gauss- Hermite quadrature, and let z1, z2,…, zmp each be a p×1 

vector for a unique single combination of the m nodes among p points. For 

example, if we choose 5 1-D Gauss-Hermite quadrature nodes, and we had 2 βʹs 

to estimate, we would have 52 unique vectors z j of 2-dimensional nodes for 

estimating the (double) integral of interest; these two dimensional nodes would 

be (x1, x1), (x1, x2),…, (x2, x1),…, (x5, x5) (see Figure 2). Let wj be the p×1 

vector of Gaussian quadrature weights corresponding to the nodes in z j. Thus, 

we will have a grid of points over which we approximate the p-dimensional 

integral B(Г; β). We are interested in computing the integral, 

−∞
∞ 1

2π

p
e
−xp

2 /2
…e

−x1
2/2

U β + Γx xTΓ−1 dx1…dxp. Since Gauss-Hermite 

quadrature computes integrals of the form 
−∞

∞
e−x2

f x dx, we use a change of 

variable on x so that we can write the integral in this form. Set x∗ = 2x = then 
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the integral becomes −∞
∞ 1

π

p
e
−x1

∗2
…e

−xp
∗2

U β + Γx∗ x ∗ TΓ−1 dx1
∗…dxp

∗ Thus, 

let z j
∗ = 2z j for all j, and proceed.

3. Compute at the kth step:

Bk = B Γk − 1; β = 1
πp

j = 1

m
U β + Γk − 1z j

∗ z j
∗Γk − 1

−1
l = 1

p
w jl (13)

where wjl is the lth element of the weight vector wj.

4. Calculate Gk = Bk
−1DBk

−1 and let Γk = Gk
1/2nk

−1/2.

5. Repeat steps 3 and 4 until Гk converges within a specified tolerance level.

The diagonal of the matrix Гk at the last iteration yields the standard error estimates for the 

vector β. The MCM is the same as the above method, except that in step 2 the z j vectors are 

randomly generated from a standard multivariate normal distribution, and in step 3 Bk is 

estimated as B Γk − 1; β = 1
m ∑ j = 1

m U β + Γk − 1z j z j
TΓk − 1

−1 . In simulations, we found that as 

few as 8–10 Gauss-Hermite nodes worked reasonably well for the variance estimation when 

there is a single covariate.
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Fig. 1. 
a) Progressive multi-state model; b) Progressive multi-state model where absorbing state can 

be reached from any state; c) Illness-death model without recovery from illness
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Fig. 2. 

Points z j
∗ used to evaluate the double integral in (10)
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Table 1

Equal Censoring. Dist: Sojourn Time Distributions; PC: Percent Censoring; SE: empirical standard error; SEE: 

mean of standard error estimator; CP: 95% coverage probability; RE: Relative efficiency of Proposed 

estimator compared to Gehan/P-P estimator = MSE(Gehan/P-P)/MSE(Proposed);. EV: Extreme-Value (log-

Weibull); L: Logistic; N: Normal; CN1: Correlated Normal (ρ = 0.5); CN2: Correlated Normal(ρ=0.9).

Proposed Gehan Peto-Prentice Log-Rank

 N
Dist. PC

 Bias  SE
SEE

 CP  Bias  SE  RE  Bias  SE  RE  Bias  SE  RE

100
 EV

50
 0.012

0.196 0.198 0.935
 0.016

0.216 1.213
 0.016

0.206 1.101
 0.012

0.200 1.034

75
 0.013

0.263 0.261 0.947
 0.024

0.321 1.496
 0.026

0.306 1.356
 0.026

0.306 1.358

 L
50

 0.012
0.303 0.295 0.938

 0.014
0.314 1.073

 0.013
0.318 1.101

 0.013
0.335 1.219

75
 0.008

0.351 0.348 0.946
 0.009

0.390 1.239
 0.013

0.388 1.222
 0.012

0.395 1.268

 N
50 −0.005 0.180 0.179 0.943

 0.002
0.191 1.133

 0.000
0.190 1.117

 0.005
0.201 1.257

75 −0.007 0.221 0.221 0.936 −0.000 0.253 1.314 −0.001 0.255 1.330
 0.003

0.265 1.447

CN1 50
 0.005

0.211 0.205 0.941
 0.005

0.225 1.144
 0.007

0.226 1.153
 0.003

0.241 1.308

75
 0.011

0.245 0.243 0.931
 0.012

0.284 1.340
 0.013

0.282 1.318
 0.014

0.296 1.455

CN2 50 −0.004 0.223 0.220 0.940 −0.005 0.238 1.136 −0.006 0.240 1.160 −0.003 0.252 1.282

75
 0.004

0.259 0.264 0.946
 0.014

0.307 1.410
 0.010

0.305 1.389
 0.010

0.315 1.481

200
 EV

50
 0.004

0.145 0.139 0.939
 0.006

0.161 1.229
 0.005

0.153 1.122
 0.010

0.151 1.092

75 −0.010 0.174 0.184 0.951 −0.004 0.214 1.504 −0.005 0.201 1.334 −0.004 0.206 1.401

 L
50

 0.005
0.212 0.210 0.943

 0.007
0.218 1.058

 0.008
0.219 1.069

 0.005
0.233 1.202

75 −0.012 0.236 0.241 0.951 −0.002 0.268 1.291 −0.002 0.264 1.247 −0.000 0.268 1.286

 N
50 −0.000 0.130 0.127 0.944 −0.001 0.135 1.081

 0.000
0.136 1.100 −0.002 0.145 1.244

75
 0.003

0.145 0.156 0.953
 0.010

0.166 1.316
 0.009

0.166 1.307
 0.012

0.174 1.435

CN1 50 −0.006 0.143 0.146 0.959 −0.007 0.155 1.173 −0.006 0.154 1.151 −0.007 0.163 1.296

75
 0.001

0.173 0.172 0.943
 0.007

0.203 1.384
 0.007

0.205 1.405
 0.009

0.213 1.517

CN2 50
 0.000

0.155 0.156 0.949 −0.001 0.168 1.181 −0.000 0.167 1.169
 0.003

0.175 1.279

75 −0.002 0.180 0.186 0.955 −0.005 0.212 1.394 −0.005 0.210 1.361 −0.005 0.217 1.459
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Table 2

Unequal Censoring. Dist: Sojourn Time Distributions; PC: Percent Censoring; SE: empirical standard error; 

SEE: mean of standard error estimator; CP: 95% coverage probability; RE: Relative efficiency of Proposed 

estimator compared to Gehan/P-P/LR estimator = MSE(Gehan/P-P/LR)/MSE(Proposed);. EV: Extreme-Value 

(log-Weibull); L: Logistic; N: Normal; CN1: Correlated Normal (ρ = 0.5); CN2: Correlated Normal(ρ=0.9).

Proposed Gehan Peto-Prentice Log-Rank

 N
Dist. PC

 Bias  SE
SEE

 CP  Bias  SE  RE  Bias  SE  RE  Bias  SE  RE

100
 EV

50 −0.013 0.214 0.200 0.928 −0.018 0.234 1.193 −0.017 0.225 1.109 −0.018 0.218 1.040

75 −0.018 0.257 0.273 0.953 −0.033 0.323 1.592 −0.029 0.302 1.390 −0.025 0.298 1.351

 L
50 −0.016 0.308 0.297 0.933 −0.017 0.311 1.016 −0.016 0.315 1.043 −0.013 0.331 1.155

75 −0.026 0.337 0.352 0.950 −0.031 0.379 1.261 −0.032 0.377 1.251 −0.026 0.387 1.316

 N
50

 0.001
0.179 0.180 0.946 −0.002 0.189 1.112 −0.003 0.189 1.120

 0.002
0.206 1.320

75 −0.000 0.216 0.223 0.940 −0.002 0.241 1.247 −0.004 0.246 1.298 −0.006 0.253 1.378

CN1 50 −0.007 0.212 0.205 0.932 −0.013 0.229 1.162 −0.011 0.229 1.167 −0.014 0.241 1.292

75 −0.010 0.243 0.249 0.943 −0.022 0.279 1.322 −0.018 0.283 1.361 −0.025 0.286 1.392

CN2 50 −0.004 0.233 0.223 0.934 −0.004 0.249 1.138 −0.004 0.248 1.125 −0.003 0.259 1.229

75 −0.005 0.262 0.267 0.949 −0.012 0.313 1.435 −0.007 0.316 1.462 −0.009 0.325 1.549

200
 EV

50 −0.003 0.145 0.142 0.950 −0.007 0.161 1.232 −0.006 0.154 1.134 −0.010 0.151 1.089

75 −0.001 0.182 0.190 0.951 −0.016 0.226 1.561 −0.012 0.209 1.333 −0.012 0.211 1.355

 L
50

 0.012
0.213 0.208 0.943

 0.009
0.214 1.007

 0.009
0.217 1.041

 0.012
0.232 1.189

75 −0.002 0.232 0.246 0.955 −0.001 0.261 1.265 −0.002 0.265 1.307 −0.003 0.272 1.378

 N
50 −0.003 0.127 0.129 0.949 −0.005 0.133 1.094 −0.005 0.132 1.084 −0.005 0.142 1.253

75
 0.000

0.149 0.160 0.962 −0.006 0.169 1.288 −0.006 0.170 1.303 −0.005 0.177 1.421

CN1 50
 0.001

0.146 0.146 0.945 −0.001 0.156 1.151 −0.001 0.157 1.155 −0.002 0.165 1.285

75 −0.010 0.165 0.177 0.959 −0.011 0.193 1.375 −0.014 0.192 1.368 −0.016 0.201 1.490

CN2 50 −0.011 0.161 0.158 0.937 −0.015 0.173 1.158 −0.015 0.173 1.157 −0.017 0.179 1.256

75 −0.009 0.179 0.191 0.963 −0.017 0.212 1.399 −0.015 0.210 1.369 −0.016 0.215 1.441
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