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Abstract

Incomplete multi-view clustering optimally integrates a group of pre-specified incomplete views 

to improve clustering performance. Among various excellent solutions, multiple kernel k-means 

with incomplete kernels forms a benchmark, which redefines the incomplete multi-view clustering 

as a joint optimization problem where the imputation and clustering are alternatively performed 

until convergence. However, the comparatively intensive computational and storage complexities 

preclude it from practical applications. To address these issues, we propose Late Fusion 
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Incomplete Multi-view Clustering (LF-IMVC) which effectively and efficiently integrates the 

incomplete clustering matrices generated by incomplete views. Specifically, our algorithm jointly 

learns a consensus clustering matrix, imputes each incomplete base matrix, and optimizes the 

corresponding permutation matrices. We develop a three-step iterative algorithm to solve the 

resultant optimization problem with linear computational complexity and theoretically prove its 

convergence. Further, we conduct comprehensive experiments to study the proposed LF-IMVC in 

terms of clustering accuracy, running time, advantages of late fusion multi-view clustering, 

evolution of the learned consensus clustering matrix, parameter sensitivity and convergence. As 

indicated, our algorithm significantly and consistently outperforms some state-of-the-art 

algorithms with much less running time and memory.

Index Terms:

multiple kernel clustering; multiple view learning; incomplete kernel learning

1 Introduction

Multi-view clustering (MVC) optimally integrates features from different views to improve 

clustering performance [1]. It has been intensively studied during the last few decade [2], 

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and widely used in various 

applications, including object segmentation [15], [16], object pose estimation [17], image re-

ranking [18], saliency detection [19], information retrieval [20], Cancer Biology [21], to 

name just a few.

A common assumption adopted by the aforementioned MVC algorithms is that all the views 

are complete. However, it is not uncommon to see that some views of a sample are absent in 

some practical applications such as Alzheimer’s disease prediction [22] and cardiac disease 

discrimination [23]. The research along this line is termed as incomplete multi-view 

clustering (IMVC), which can be roughly grouped into two categories. The first category 

firstly fills the incomplete views with an imputation algorithm and then applies a standard 

MVC algorithm to these imputed views, which is termed “two-stage” algorithm. The widely 

used imputation algorithms include zero-filling, mean value filling, k-nearest-neighbor 

filling and expectation-maximization (EM) filling [24]. Some advanced algorithms have 

recently been proposed to perform matrix imputation [25], [26], [27], [28]. For example, the 

work in [25] constructs a full kernel matrix for the other incomplete view with the help of 

one complete view. The work in [26] proposes an algorithm to accomplish multi-view 

learning with incomplete views by exploiting the connections of multiple views, where 

different views are assumed to be generated from a shared subspace. A multi-incomplete-

view clustering (MIC) algorithm and its online variant are proposed in [27], [29]. It first fills 

the missing instances in each incomplete view with average feature values, and adopts a 

joint weighted NMF algorithm to learn not only a latent feature matrix for each view but 

also minimize the disagreement between the latent feature matrices and the consensus 

matrix. By giving missing instances from each view lower weights, MIC minimizes the 

negative influences from the missing instances. In addition, the approach in [28] proposes to 

predict missing rows and columns of a base kernel by modelling both within-view and 
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between-view relationships among kernel values. By observing that the above-mentioned 

“two-stage” algorithms disconnect the processes of imputation and clustering, the other 

category, termed as “one-stage”, puts forward to unify imputation and clustering into a 

single optimization procedure and instantiate a clustering-oriented algorithm termed as 

multiple kernel k-means with incomplete kernels (MKKM-IK) algorithm [30]. Specifically, 

the clustering result at the last iteration guides the imputation of absent kernel elements, and 

the latter is used in turn to conduct the subsequent clustering. By this way, these two 

procedures are seamlessly connected, with the aim to achieve better clustering performance.

Of the above-mentioned IMVC algorithms, the “one-stage” methods form a benchmark, 

where the incomplete views are optimized to best serve clustering. The main contribution of 

these methods is the unification of imputation and clustering, so that the imputation would 

be meaningful and beneficial for clustering. It has been well known that the “one-stage” 

methods can achieve excellent clustering performance [30], but they also suffer from some 

non-ignorable drawbacks. Firstly, the high time and space complexities prevent them from 

being applied to large-scale clustering tasks. Secondly, existing “one-stage” methods directly 

impute multiple incomplete similarity matrices, in which the number of variables increases 

quadratically with the number of samples for each view. This could make the whole 

optimization over-complicated and also considerably increase the risk of falling into a low-

quality local minimum. Thirdly, note that a clustering result is determined by a whole 

similarity matrix in [30]. As a result, the imputation to an incomplete similarity matrix has 

impact to the clustering of all samples, no matter whether a sample is complete or not. When 

an imputation is not of high quality, it could adversely affect the clustering result of all 

samples, especially for those with complete views.

All of the above issues signal that directly imputing the incomplete similarity matrices 

seems to be problematic and that a more efficient and effective approach shall be taken. We 

argue that multiple view clustering is essentially a task of information fusion. It is known 

that information fusion can be performed at different levels. From bottom to up, they are raw 

data level, feature level and decision level, respectively. Although performing at lower levels 

could lead to promising result, working at higher levels has the advantage of reduced 

computational complexity and less interference to the individual decision made from each 

information channel.

In light of this, we propose to impute each incomplete base clustering matrix which is a 

partition matrix generated by performing clustering on each individual incomplete similarity 

matrix, instead of itself. This algorithm is termed as Late Fusion Incomplete Multi-view 

Clustering (LF-IMVC) in this paper. These base clustering matrices are then optimally 

utilized to learn a common clustering partition matrix, termed consensus clustering matrix. It 

is then employed to impute each incomplete base clustering matrix. These two steps are 

alternatively performed until convergence. Specifically, we maximize the alignment between 

the consensus clustering matrix and an uniformly weighted base clustering matrices with an 

optimal permutation, together with an extra term which constraints each base clustering 

matrix not far from its incomplete one. We design a simple and efficient algorithm to solve 

the resultant optimization problem by three singular value decomposition (SVD) per 

iteration, and analyze its computational and storage complexities and theoretically prove its 
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convergence. After that, we conduct comprehensive experiments on eleven benchmark 

datasets to study the properties of the proposed algorithm, including the clustering accuracy 

with the various missing ratios, the running time with the various number of samples, the 

evolution of the learned consensus matrix with iterations, the clustering accuracy with the 

variation of hyper-parameter and the objective value with iterations. As demonstrated, LF-

IMVC significantly and consistently outperforms the state-of-the-art methods in terms of 

clustering accuracy with much less running time.

We end up this section by clarifying the difference between the proposed LF-IMVC and 

some recent late fusion MVC [14], [31]. The work in [31] proposes a multi-view clustering 

ensemble algorithm based on multi-view clustering and clustering ensembles. Specifically, a 

Gaussian kernel with a pre-specified parameter σ is applied into each view data to construct 

multiple kernel matrices. They are taken as the input of multiple kernel k-means algorithms 

to generate a clustering partition, which is a partition of given samples. By this way, one can 

obtain more clustering partitions by taking different σ, which are integrated by a clustering 

ensemble algorithm. The difference between this work and ours is that it cannot be able to 

handle clustering ensembles with incomplete clustering partitions. A Multi-View Ensemble 

Clustering (MVEC) framework is proposed in [14] to solve multi-view clustering (MVC) in 

an ensemble clustering way. It generates basic partitions (BPs) for each view individually 

and seeks for a consensus partition among all the BPs. The low-rank and sparse 

decomposition are employed to explicitly consider the connection between different views 

and detect the noises in each view. Moreover, the spectral ensemble clustering task is also 

involved to achieve the final consensus partition. As seen, MVEC [14] and the proposed LF-

IMVC clearly differ from the motivation, formulation, computational complexity and ability 

in handling incomplete views.

2 Related Work

Multiple kernel k-means (MKKM) provides an elegant framework for multi-view clustering. 

In this section, we briefly review MKKM and its variants of handling incomplete multi-view 

clustering.

2.1 Multiple Kernel k-means (MKKM)

Let xi i = 1
n ⊆ 𝒳 be a collection of n samples, and ϕp( ⋅ ):x ∈ 𝒳 ℋp be the p-th feature 

mapping that maps × onto a reproducing kernel Hilbert space ℋp(1 ≤ p ≤ m). In multiple 

kernel setting, each sample is represented as ϕβ(x) = [β1 ϕ1 (x(1))⊤, ⋯, βm ϕm (x(m))⊤]⊤, 

where x(p) denotes the p-th (1 ≤ p ≤ m) view of x, β = [β1, ⋯, βm]⊤ consists of the 

coefficients of the m base kernels κp( ⋅ , ⋅ )
p = 1
m

. These coefficients will be optimized 

during learning.

Based on the definition of ϕβ(x), a kernel function can be expressed as

κβ xi, x j = ϕβ xi
⊤ϕβ x j = ∑p = 1

m βp
2κp xi

(p), x j
(p) . (1)
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A kernel matrix Kβ is then calculated by applying the kernel function κβ (⋅,⋅) into xi i = 1
n

Based on the kernel matrix Kβ, the objective of MKKM can be written as

minH, β Tr Kβ In − HH⊤

s . t . H ∈ ℝn × k, H⊤H = Ik, β⊤1m = 1, βp ≥ 0, ∀ p .
(2)

where Ik is an identity matrix with size k × k.

The optimization problem in Eq.(2) can be solved by alternatively updating H and β:

i) Optimizing H given β. With the kernel coefficients β fixed, H can be obtained by solving 

a kernel k-means clustering optimization problem shown in Eq.(3);

maxH Tr H⊤KβH s . t . H ∈ ℝn × k, H⊤H = Ik, (3)

The optimal H for Eq.(3) can be obtained by taking the k eigenvectors having the larger 

eigenvalues of Kβ [32].

ii) Optimizing β given H. With H fixed, β can be optimized via solving the following 

quadratic programming with linear constraints,

minβ ∑p = 1
m βp

2Tr Kp In − HH⊤

s . t . β⊤1m = 1, βp ≥ 0.
(4)

2.2 MKKM with Incomplete Kernels (MKKM-IK)

The recent work in [30] has extended the existing MKKM to enable it to handle incomplete 

multi-view clustering. In specific, it unifies the imputation and clustering procedure into a 

single optimization objective and alternatively optimizes each of them. That is, i) imputing 

the absent kernels under the guidance of clustering; and ii) updating the clustering with the 

imputed kernels. The above idea is mathematically fulfilled as follows,

min
H, β, Kp p = 1

m Tr Kβ In − HH⊤

s . t .   H ∈ ℝn × k, H⊤H = Ik,

β⊤1m = 1, βp ≥ 0,

Kp sp, sp = Kp
(cc), Kp ≽ 0, ∀ p,

(5)
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where sp (1 ≤ p ≤ m) denote the sample indices for which the p-th view is present and Kp
(cc)

be used to denote the kernel sub-matrix computed with these samples. The constraint 

Kp sp, sp = Kp
(cc) is imposed to ensure that Kp maintains the known entries during the 

course. As seen, the ultimate goal of Eq.(5) is clustering, while the imputation of incomplete 

kernels can be treated as a by-product of learning.

A three-step alternative algorithm is then developed to solve the optimization problem in Eq.

(5):

i) Optimizing H with fixed β and Kp p = 1
m

. Given β and Kp p = 1
m

, the optimization in 

Eq.(5) for H reduces to a standard kernel k-means problem, which can be efficiently solved 

as Eq.(3);

ii) Optimizing Kp p = 1
m

 with fixed β and H. Given β and H, the optimization in Eq.(5) 

with respect to each Kp is equivalent to the following optimization problem,

minKp
Tr Kp In − HH⊤

s . t . Kp sp, sp = Kp
(cc), Kp ≽ 0.

(6)

It is shown that the optimal Kp in Eq.(6) has the closed-form expression as in Eq.(7), where 

U = In – HH⊤ and U(cm) is obtained by taking the entries of U corresponding to the 

complete and incomplete sample indices. Interested readers are referred to [30].

iii) Optimizing β with fixed H and Kp p = 1
m

. Given H and Kp p = 1
m

, the optimization in 

Eq.(5) for β is a quadratic programming with linear constraints, which can be efficiently 

solved as in Eq.(4).

Kp
(cc) −Kp

(cc)U(cm) U(mm) −1

− U(mm) −1U(cm)⊤Kp
(cc) U(mm) −1U(cm)⊤Kp

(cc)U(cm) U(mm) −1
(7)

Although the recently proposed MKKM-IK demonstrates excellent clustering performance 

in various applications [30], it also suffers from the following non-ignorable drawbacks. 

Firstly, from the above optimization procedure, we observe that its computational 

complexity is 𝒪 n3 + ∑p = 1
m np

3 + m3  per iteration, where n, np (np ≤ n) and m are the number 

of all samples, observed samples of p-th view and views. During the learning procedure, it 

requires to store m base kernel matrices with size n. Therefore, its storage complexity is 

𝒪 mn2 . The relatively high computational and storage complexities preclude it from being 

applied to large-scale clustering tasks. Furthermore, as seen from Eq.(7), there are 
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1
2 n − np n + np + 1  elements to be imputed for the p-th incomplete base kernel matrix Kp(1 

≤ p ≤ m). It unnecessarily increases the complexity of the optimization and the risk of being 

trapped into a low-quality local minimum. In addition, the imputation on Kp p = 1
m

 would 

affect the clustering of all samples, no matter whether they are complete. This improperly 

increases the impact of imputation on all samples, especially for those with complete views. 

As a result, instead of imputing incomplete similarity matrices Kp p = 1
m

, we propose to 

impute the incomplete base clustering matrices to address the aforementioned issues. 

Moreover, we argue that this way of imputation could be more natural and reasonable since 

all of them reside in the space of clustering partition, which would produce better imputation 

and finally boost the clustering.

3 Late Fusion Incomplete Multi-view Clustering (LF-IMVC)

3.1 The Proposed Formulation

According to the above discussion, we turn to fill incomplete base clustering matrices 

Hp
(0)

p = 1
m

 with Hp
(0) ∈ ℝ

np × k
(1 ≤ p ≤ m), which can be obtained by solving kernel k-means 

in Eq.(5) with m incomplete base kernel matrices Kp sp, sp p = 1
m

. Note that other similarity 

based clustering algorithms such as spectral clustering can also be used to generate 

Hp
(0)

p = 1
m

.

LF-IMVC proposes to simultaneously perform clustering and the imputation of missing 

elements among base clustering matrices Hp p = 1
m

 with Hp ∈ ℝn × k(1 ≤ p ≤ m). 

Specifically, it firstly finds a consensus clustering matrix H from Hp p = 1
m

, and then 

imputes the incomplete parts of them with the learned consensus matrix. By this way, the 

above two learning processes can be seamlessly coupled and they are allowed to negotiate 

with each other to achieve better clustering. The above idea can be fulfilled as follows,

max
H, Hp, Wp p = 1

m
Tr H⊤ ∑p = 1

m HpWp

s . t . H ∈ ℝn × k, H⊤H = Ik,

Wp ∈ ℝk × k, Wp
⊤Wp = Ik,

Hp ∈ ℝn × k, Hp sp, : = Hp
(0), Hp

⊤Hp = Ik,

(8)
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where H and Hp are the consensus clustering matrix and the p-th base clustering matrix, 

respectively, and Wp is the p-th permutation matrix in order to optimally match Hp and H. 

The constraint Hp sp, : = Hp
(0) is imposed to ensure that Hp maintains the known entries 

during the course. The orthogonal constraints are imposed on H, Hp and Wp since they are 

clustering matrices and permutation matrix, respectively.

Compared with MKKM-IK [30], the objective function of LF-IMVC in Eq.(8) has the 

following nice properties: (1) Less imputation variables: The number of elements needs to 

be filled for the p-th view is (n − np) × k, which is much less than 1
2 n − np × n + np + 1

required by MKKM IK because k ≪ 1
2 n + np + 1  in practice. This could dramatically 

simplify the model and usually reduce the risk of being trapped into a local minimum. As a 

result, our optimization would be more robust to the initialization during optimization. (2) 

Less vulnerable to low-quality imputation: In LF-IMVC, clustering on samples with 

complete views will not be affected by the imputation. However, it is not this case for 

MKKM-IK because it needs to fill all incomplete elements and conduct eign-decomposition 

on the whole imputed similarity for clustering. This is helpful to make the proposed model 

be more robust in the whole course of optimization.

Although the objective in Eq.(8) is not difficult to understand, the equality and orthogonal 

constraints on Hp make the optimization intractable. To address this issue, we remove the 

equality constraint on Hp and instead require it to maximally align with Hp
(0). This leads to 

the follow optimization problem in Eq.(9).

max
H, Wp, Hp p = 1

m
Tr H⊤ ∑p = 1

m HpWp + λ ∑
p = 1

m
Tr Hp

⊤Hp
(0)

s . t . H ∈ ℝn × k, H⊤H = Ik,

Wp ∈ ℝk × k, Wp
⊤Wp = Ik,

Hp ∈ ℝn × k, Hp
⊤Hp = Ik,

(9)

where Hp
(0) sp, : = Hp

(0) with other elements being zeros and λ is a regularization parameter 

to trade of clustering and imputation.

Though the model in Eq.(9) is simple, it admits the following advantages: 1) our objective 

function is more direct and well targets the ultimate goal, i.e., clustering, by integrating 

imputation and clustering into one unified learning framework, where the imputation is 

treated as a byproduct; 2) our formulation utilizes H to complete each incomplete base 
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clustering matrix rather than the incomplete base kernels matrices as in [30], which is more 

natural since both H and Hp p = 1
m

 reside in clustering partition space; 3) our algorithm is 

able to naturally deal with a large number of base clustering matrices and adaptively 

combine them for clustering; 4) our algorithm does not require any views to be completely 

observed, which is however necessary for some of the existing imputation algorithms such 

as [25].

3.2 Alternative Optimization

Simultaneously optimizing H, Hp p = 1
m

 and Wp p = 1
m

 in Eq.(9) is difficult. In the 

following, we design a simple and computationally efficient three-step algorithm to solve it 

alternatively. At each step, the resultant optimization is reduced to a SVD, which can be 

efficiently solved by off the-shelf packages.

3.2.1 Solving H with fixed Wp p = 1
m  and Hp p = 1

m —Given Wp p = 1
m

 and Hp p = 1
m

, 

the optimization w.r.t H in Eq.(9) is equivalent to

max
H

Tr H⊤T s . t . H ∈ ℝn × k, H⊤H = Ik, (10)

where T = ∑p = 1
m HpWp. It is a singular value decomposition (SVD) problem and can be 

efficiently solved with computational complexity 𝒪 nk2 , where k is the number of clusters.

3.2.2 Solving Wp p = 1
m  with fixed Hp p = 1

m  and H—Given Hp p = 1
m

 and H, the 

optimization w.r.t permutation matrix Wp in Eq.(9) equivalently reduces to the following 

one,

max
Wp

Tr Wp
⊤Qp s . t . Wp ∈ ℝk × k, Wp

⊤Wp = Ik, (11)

where Qp = Hp
⊤H. Again, it is a SVD optimization problem with computational complexity 

𝒪 k3 .

3.2.3 Solving Hp p = 1
m  with fixed H and Wp p = 1

m —Given H and Wp p = 1
m

, the 

optimization w.r.t Hp in Eq.(9) is equivalent to

max
Hp

Tr Hp
⊤Zp s . t . Hp ∈ ℝn × k, Hp

⊤Hp = Ik, (12)
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where Zp = HWp
⊤ + λHp

(0). Once again, it is a SVD problem and can be efficiently solved 

with computational complexity 𝒪 nk2 .

Algorithm 1

The Proposed LF-IMVC

1:
Input: Hp

(0)
p = 1
m

, k, λ and ϵ0.

2: Output: H and β.

3:
Initialize Wp

(0)
p = 1
m

, Hp
(0)

p = 1
m

 and t = 1.

4: repeat

5:
 Update H(t) by solving Eq.(10) with Wp

(t − 1)
p = 1
m

 and Hp
(t − 1)

p = 1
m

 (An SVD problem).

6:
 Update Wp

(t)
p = 1
m

 with H(t) and Hp
(t − 1)

p = 1
m

 by Eq.(11) (An SVD problem).

7:
 Update Hp

(t)
p = 1
m

 with H(t) and Hp
(t)

p = 1
m

 by Eq.(12) (An SVD problem).

8:  t = t + 1

9: until obj(t) − obj(t − 1) /obj(t − 1) ≤ ϵ0

In sum, our algorithm for solving Eq.(9) is outlined in Algorithm 1, where the absent entries 

of Hp
(0)

p = 1
m

 are initially imputed with zeros and obj(t) denotes the objective value at the t-

th iteration. The following Theorem 1 shows Algorithm 1 is guaranteed to converge.

Theorem 1. Algorithm 1 is guaranteed to converge to a local optimum.

Proof. Note that for 

1 ≤ p, q ≤ m, Tr HpWp
⊤ HqWq ≤ 1

2 Tr HpWp
⊤ HpWp + Tr HqWq

⊤ HqWq = k. 

Based on this inequality, we derive the upper bound of the objective in Eq.(9). Note that 

Tr H⊤∑p = 1
m HpWp ≤ 1

2 Tr H⊤H + Tr ∑p = 1
m HpWp

⊤ ∑p = 1
m HpWp

= 1
2 Tr H⊤H + ∑p, q = 1

m Tr HpWp
⊤ HqWq = ≤ k

2 m2 + 1

. Also, 

∑p = 1
m Tr(Hp

⊤Hp
(0)) ≤ 1

2 ∑p = 1
m (Tr H⊤H) + Tr((Hp

(0))
⊤Hp

(0))) = 1
2 ∑p = 1

m (k + Tr ((Hp
(0))

⊤Hp
(0))). 

Therefore, the objective in Eq.(9) is upper bounded. Meanwhile, it is worth pointing out that 

the optimization with one variable while keeping the other two is a SVD, which is a strictly 

convex optimization and the optimum can be achieved. Therefore, the objective of 

Algorithm 1 is guaranteed to be monotonically increased when optimizing one variable with 

others fixed at each iteration. At the same time, the objective is upper-bounded by 
k
2 (m2 + 1) + λ

2 ∑p = 1
m (k + Tr ((Hp

(0))
⊤Hp

(0))). As a result, our algorithm is guaranteed to 

converge to a local minimum.
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3.3 Discussion and Extension

We end up this section by firstly analyzing the computational and storage complexities, 

initialization of Hp
(0), and then discussing some potential extensions of LF-IMVC.

Computational complexity: As seen from Algorithm 1, the computational complexity of 

LF-IMVC is 𝒪(nk2 + m(k3 + nk2)) per iteration, where n, m and k are the number of samples, 

views and clusters, respectively. Therefore, LFIMVC has a linear computational complexity 

with number of samples, which enables it more efficiently to handle large scale clustering 

tasks when compared with MKKM-IK [30].

Storage complexity: During the learning procedure, Algorithm 1 needs to store H and 

Hp, Wp, Hp
(0)

p = 1
m

. Its storage complexity is 𝒪 nk + 2mnk + mk2 , which is much less than 

that of MKKM-IK with 𝒪 mn2  since n ≫ k.

Initialization of Hp, Wp p = 1
m : In our implementation, each p is generated by solving a 

conventional kernel k-means with K (sp, sp), where Kp sp, sp ∈ ℝ
np × np is a kernel matrix 

calculated with np observed samples of the p-view. Its computational complexity is 𝒪 np
3 . 

Note that this procedure is required to perform only once. O As a result, the computational 
cost in this initialization can be treated as a constant. Note that any technique that can boost 

the scalability of kernel k-means (or spectral clustering) such as [33] can be directly applied 

to ours to shorten this initialization. We simply initialize the incomplete part of Hp
(0)

p = 1
m

as zeros, and Wp
(0)

p = 1
m

 as identity matrix. This initialization has well demonstrated 

superior clustering performance of LFIMVC in our experiments.

Extentions: LF-IMVC inherits the advantage of MKKMIK [30] which unifies the 

imputation and clustering into a single procedure. Instead of completing kernel matrices, 

LF-IMVC imputes the incomplete base clustering matrices which are generated by 

performing kernel k-means with incomplete base kernel matrices. The algorithm in this 

work can be extended from the following aspects. Firstly, LFIMVC could be further 

improved by sufficiently considering the correlation among Hp p = 1
m

. For example, we may 

build this correlation by other criteria such as Kullback-Leibler (KL) divergence [34], 

maximum mean discrepancy [35], Hilbert-Schmidt independence criteria (HSIC), to name 

just a few. This prior knowledge could provide a good regularization on mutual base 

clustering matrix completion, and would be helpful to improve the clustering performance. 

Secondly, the weights of base clustering matrices Hp p = 1
m

 could be adaptively adjusted in 

order to find the better consensus clustering matrix H, making it better serve for clustering. 

Thirdly, the way in generating Hp
(0)

p = 1
m

 could be readily extendable to other similarity 

based clustering algorithms, such us spectral clustering [36], [37]. It could further improve 
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the clustering performance. Last but not least, the idea of joint imputation and clustering is 

so natural that can be generalized to other learning task such as classification, feature 

selection/extraction, etc.

4 Experiments

4.1 Experimental settings

The proposed algorithm is experimentally evaluated on eleven widely used multiple kernel 

benchmarkdata sets shown in Table 4, where each kernel matrix corresponds to one view. 

They are Oxford Flower17 and Flower1021, Caltech1022, UCI-Digital3, Protein Fold 

Prediction4 and Columbia Consumer Video (CCV)5. For these datasets, all kernel matrices 

are pre-computed and can be publicly downloaded from the above websites. Meanwhile, 

Caltech102–5 means the number of samples belonging to each cluster is 5, and so on.

We compare the proposed algorithm with several commonly used imputation methods, 

including zero filling (ZF), mean filling (MF), k-nearest-neighbor filling (KNN) and the 

alignment-maximization filling (AF) proposed in [25]. The widely used MKKM [21] is 

applied with these imputed base kernels. These two-stage methods are termed MKKM+ZF, 

MKKM+MF, MKKM+KNN and MKKM+AF, respectively. In addition, some recently 

proposed MKKM based method MKKM-IK [30], late fusion method [14] and NMF based 

method [27] are also incorporated into comparison.

For all data sets, it is assumed that the true number of clusters k is known and it is set as the 

true number of classes. We follow the approach in [30] to generate the missing vectors 

sp p = 1
m

 as follows. We first randomly select round(ε * n) samples, where round(·) denotes 

a rounding function. For each selected sample, a random vector v = (υ1, ⋯ , υm) ∊ [0, 1]m 

and a scalar υ0 (υ0 ∊ [0, 1]) are then generated, respectively. The p-th view will be present 

for this sample if υp ≥ υ0 is satisfied. In case none of υ1, ⋯ , υm can satisfy this condition, 

we will generate a new v to ensure that at least one view is available for a sample. Note that 

this does not mean that we require a complete view across all the samples. After the above 

step, we will be able to obtain the index vector sp listing the samples whose p-th view is 

present. The parameter ε, termed missing ratio in this experiment, controls the percentage of 

samples that have absent views, and it affects the performance of the algorithms in 

comparison. In order to show this point in depth, we compare these algorithms with respect 

to ε. Specifically, ε on all the datasets is set as [0.1 : 0.1 : 0.9].

The widely used clustering accuracy (ACC), normalized mutual information (NMI) and 

purity are applied to evaluate the clustering performance. Specifically, ACC is defined as 

follows,

1.http://www.robots.ox.ac.uk/~vgg/data/flowers/
2.http://files.is.tue.mpg.de/pgehler/projects/iccv09/
3.http://ss.sysu.edu.cn/~py/
4.http://mkl.ucsd.edu/dataset/protein-fold-prediction/
5.http://www.ee.columbia.edu/ln/dvmm/CCV/
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ACC =
∑i = 1

n δ yi, map ci
n , (13)

where ci and yi represent the obtained cluster label and the provided ground-truth label of xi 

(1 ≤ i ≤ n), n is the number of samples, δ(u, υ) is the delta function that equals one if u = υ 
and equals zero otherwise, and map(ci) is the permutation mapping function that maps each 

cluster label ci to the equivalent label from data. The best mapping can be found by using the 

Kuhn-Munkres algorithm [38]. Similarly, NMI is defined as follows. Let y and c denote the 

set of clusters obtained from the ground truth and a clustering algorithm, respectively. Their 

mutual information metric MI(y, c) is defined as follows:

MI(y, c) = ∑yi ∈ y, c j ∈ c p yi, c j log2
p yi, c j

p yi p c j
, (14)

where p(yi) and p(cj) are the probabilities that a sample arbitrarily selected from data 

belongs to the clusters yi and cj, respectively, and p(yi, cj) is the joint probability that the 

arbitrarily selected samples belongs to the clusters yi and cj at the same time. The 

normalized mutual information (NMI) is then defined as follows:

NMI(y, c) = MI(y, c)
max(H(y), H(c)) , (15)

where H(y) and H(c) are the entropies of y and c, respectively.

For all algorithms, we repeat each experiment for 50 times with random initialization to 

reduce the affect of randomness caused by k-means, and report the best result. Meanwhile, 

we randomly generate the “incomplete” patterns for 30 times in the above-mentioned way 

and report the statistical results. The aggregated ACC, NMI and purity are used to evaluate 

the goodness of the algorithms in comparison. Taking the aggregated ACC for example, it is 

obtained by averaging the averaged ACC achieved by an algorithm over different ε.

In the following parts, we conduct comprehensive experiments to study the properties of LF-

IMVC from six aspects: clustering performance, running time, the advantage of joint 

imputation and clustering in a late fusion manner, the evolution of the learned consensus 

clustering matrix, parameter sensitivity and convergence.

4.2 Clustering Performance

4.2.1 Experimental Results on Flower17 and Flower102—Figure 1 presents the 

ACC, NMI and purity comparison of the above algorithms with different missing ratios on 

the Flower17 and Flower102 datasets. We have the following observations: 1) The recently 

proposed MKKMIK [30] (in green) significantly outperforms existing two-stage imputation 

methods. For example, it exceeds the best two-stage imputation method (AF+MKKM) by 
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0.1%, 0.6%, 2.5%, 2.8%, 4.1%, 4.7%, 6.0%, 8.5%, 8.2% in terms of clustering accuracy, 

with the variation of missing ratios in [0.1, ⋯, 0.9] on Flower17. These results verify the 

effectiveness of its joint optimization on imputation and clustering. 2) The proposed 

LFIMVC significantly and consistently outperforms MKKM-IK. Specifically, it improves 

the latter by 13.0%, 10.7%, 9.7%, 8.5%, 9.4%, 7.3%, 7.3%, 7.6%, 8.6% with the variation of 

missing ratios in [0.1⋯, 0.9] on Flower17. These results verify the effectiveness of imputing 

base clustering matrices rather than kernel matrices. 3) The superiority of LF-IMVC is more 

significant when the missing ratio is relatively small. For example, LF-IMVC improves the 

second best algorithm (MKKM-IK) by 13% on Flower17 in terms of clustering accuracy 

when the missing ratio is 0.1 (see Figure 1a).

We also report the aggregated ACC, NMI and purity, and the standard deviation in Table 1, 

where the one with the highest performance is shown in bold. Again, we observe that the 

proposed algorithm significantly outperforms MKKM+ZF, MKKM+MF, MKKM+KNN, 

MKKM+AF and MKKM-IK. For example, LF-IMVC exceeds the second best one 

(MKKM-IK) by 9.1% and 14.8% in terms of clustering accuracy on Flower17 and 

Flower102, respectively. These results are consistent with our observations in Figure 1.

4.2.2 Experimental Results on Caltech102—Caltech102 has been widely used as a 

benchmark dataset to evaluate the performance of multi-view clustering [6]. Here we also 

compare all the above-mentioned algorithms on this data set where the number of samples 

for each cluster varies in the range of 5, 10, ⋯, 30. The clustering results of different 

algorithms with the variation of missing ratio are reported in Figure 2. The results on 

Caltech102–5 dataset are omitted due to space limit.

As can be seen, compared with existing two-stage imputation algorithms, the curve with 

green color corresponding to the recently proposed MKKM-IK [30] is on the top when the 

missing ratio varies from 0.1 to 0.9 in terms of ACC, NMI and purity, indicating its superior 

clustering performance. Meanwhile, the proposed LF-IMVC further significantly improves 

the performance of MKKM-IK. Taking the results in Figure 2 for example. MKKM-IK 

demonstrates the overall satisfying performance. However, LF-IMVC further significantly 

and consistently improves its performance. Moreover, from the sub-figures 2a-2m, we 

clearly see that the improvement of LF-IMVC over the compared ones is more significant 

with the increase of number of samples. The aggregated ACC, NMI and purity are also 

reported in Table 2. We again clearly see the advantages of our algorithms over the other 

ones in terms of ACC, NMI and purity. These results have well demonstrated the 

effectiveness and advantages of incorporating base clustering matrix reconstruction in 

clustering.

4.2.3 Experimental Results on UCI-Digital—UCI-Digital dataset has been widely 

used as a benchmark in multi-view clustering. We also compare the clustering performance 

of the aforementioned algorithms on this dataset. The clustering accuracy, NMI and purity of 

these algorithms with the variation of missing ratio are plotted in Figure 3. From Figure 3a, 

we observe that the newly proposed MKKM-IK gives poor performance on this dataset, 

which is clearly inferior to the MKKM+KNN. The proposed LF-IMVC significantly 

improves this situation, demonstrating superior clustering performance. For example, it 
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exceeds the second best one (MKKM+KNN) by 7.9%, 8.4%, 8.2%, 5.9%, 6.2%, 5.6%, 

8.0%, 12.4%, 13.6% in terms of ACC. Similar results can be observed by aggregated 

clustering results in Table 3.

4.2.4 Experimental Results on Protein Fold—We have evaluated the 

aforementioned algorithms on Protein Fold dataset, which is a benchmark with 12 views. 

The clustering performance of these algorithms with the variation of missing is plotted in 

Figure 4 and the corresponding aggregated clustering accuracy, NMI and purity are reported 

in Table 5. From Table 4, we again see that the proposed LF-IMVC significantly and 

consistently outperforms the compared ones with the variation of missing ratio. This 

superiority coincides with the results in Table 5.

4.2.5 Experimental Results on CCV—We finally evaluate the performance of LF-

IMVC on CCV dataset, and report the results in Figure 5 and Table 6. We once again 

observe that the proposed LF-IMVC significantly outperforms the compared ones in terms 

of ACC, NMI and purity. These results further verify the effectiveness of LFIMVC.

The above experimental results on Flower17, Flower102, Caltech102, Protein Fold, UCI-

Digital and CCV have well demonstrated that LF-IMVC is superior to some state-of the-art 

in terms of clustering accuracy, NMI and purity. We attribute the superiority of LF-IMVC as 

two aspects: i) The joint optimization on imputation and clustering. On one hand, the 

imputation is guided by the clustering results, which makes the imputation more directly 

targeted at the ultimate goal. On the other hand, this meaningful imputation is beneficial to 

refine the clustering results. These two learning processes negotiate with each other, leading 

to improved clustering performance. In contrast, MKKM+ZF, MKKM+MF, MKKM+KNN, 

MKKM+AF and MIC [27] do not fully take advantage of the connection between the 

imputation and clustering procedures. This could produce imputation that does not well 

serve the subsequent clustering as originally expected, affecting the clustering performance. 

ii) Completing the incomplete base clustering matrices with the consensus one. Different 

from MKKM-IK where the consensus clustering matrix H is utilized to fill incomplete base 

kernels, LF-IMVC imputes each incomplete base clustering matrix with H. The latter is 

more natural and reasonable since both H and incomplete base clustering matrices reside in 

the same clustering space, leading to more suitable imputation. These factors bring forth the 

significant improvements on clustering performance.

4.3 Running Time

To compare the computational complexity of the abovementioned algorithms, we record the 

running time of these algorithms on these benchmark datasets and report them in Table 7. As 

can be seen, LF-IMVC has the shortest running time on all datasets except Caltech102–5 

and Caltech102–10, demonstrating the high computational efficiency. In particular, LF-

IMVC is much more computationally efficient than the recently proposed MKKM-IK [30], 

both of which work in the “one-stage” style to jointly optimize clustering and imputation. 

Meanwhile, we observe that the running time of LF-IMVC on Caltech102–5 and 

Caltech102–10 is slightly longer than that of MKKM. This is because the two datasets have 
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relatively small number of samples and large number of clusters. In such case, the 

computational complexity of LF-IMVC and MKKM is comparable.

We then design an extra experiment to study the relationship between running time and the 

number of samples. To see this point in depth, we randomly select samples from three 

largest datasets, i.e., Flower102, CCV and Caltech102–30, run the aforementioned 

algorithms and then record their running time. The running time of these algorithms with the 

number of selected samples are plotted in Figure 6. We have the following observations from 

these figures: 1) The running time of LF-IMVC is nearly linear with the number of samples. 

2) The superiority of LF-IMVC is more significant with the increase of samples, indicating 

its computational efficiency in handling large-scale clustering tasks.

In sum, the experimental results in Table 7 and Figure 6 have well demonstrated the 

computational advantage of LF-IMVC.

4.4 Advantages of Late Fusion MVC

Though both MKKM-IK [30] and the proposed LF-IMVC unify the imputation and 

clustering into a single optimization, they are different in the manner of imputation: the 

former is early fusion (or kernel-level imputation), while the latter is a kind of late fusion (or 

decision-level imputation). Specifically, MKKM-IK [30] initializes the incomplete parts of 

each Kp with zeros, and jointly performs MKKM clustering and imputation until 

convergence. Differently, late fusion MVC with zero-filling (LF-MVC+ZF)6 firstly imputes 

the incomplete parts of each Hp with zeros, and learns a consensus clustering matrix H from 

Hp p = 1
m

. As seen, H obtained by MKKM-IK and LF-MVC+ZF are significantly different. 

This difference would lead to dramatic difference in clustering performance.

To clearly demonstrate the advantages of late fusion MVC, we conduct an extra experiment 

to empirically compare MKKM-IK and LF-MVC+ZF on Flower17, as reported in Figure 

10. As observed, the clustering performance of LF-MVC+ZF is much better than that of 

MKKM-IK. This clearly demonstrates the advantages and effectiveness of the proposed late 

fusion MVC.

4.5 Evolution of the Learned Consensus Clustering Matrix

In this section, we conduct experiments to show the evolution of the learned consensus 

clustering matrix H during the learning procedure. Specifically, we evaluate the NMI of LF-

IMVC based on the H learned at each iteration on all datasets and plot the curves in Figure 

7. From these figures, we observe that the NMI on all datasets gradually increases to a 

maximum and generally maintains it up to slight variation. Other curves in terms of 

clustering accuracy and purity have similar trend and are omitted due to space limit. These 

experiments have clearly demonstrated the effectiveness of learned consensus clustering 

matrix, indicating the advantage of imputing incomplete base clustering matrices.

6.Note that the proposed LF-IMVC reduces to LF-MVC+ZF when λ in Eq. (9) approaches +∞.
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4.6 Parameter Sensitivity Analysis

As can be seen in Eq. (9), LF-IMVC introduces the regularization parameter λ to trade off 

the clustering and imputation. In the following, we conduct experiments to show the effect 

of this parameter on the clustering performance on all datasets. Figure 8 presents the NMI of 

LF-IMVC by varying λ from 2−15 to 215, where the MKKM-IK is also provided as a 

baseline. From these figures, we observe that the NMI first increases to a high value and 

generally maintains it up to slight variation with the increasing value of λ. LF-IMVC 

demonstrates stable performance across a wide range of λ. These experiments have well 

shown that LF-IMVC is not very sensitive to the variation of the parameter.

4.7 Convergence

Our algorithms are theoretically guaranteed to converge according to Theorem 1. We record 

the objective values of LF-IMVC with iterations on all datasets and plot them in Figure 9. 

As observed, the objective value of LF-IMVC does monotonically increase at each iteration 

and that it usually converges in less than 200 iterations.

5 Conclusion

While the recently proposed MKKM-IK [30] is able to handle incomplete multi-view 

clustering, the relatively high computational and space complexities prevent it from large 

scale clustering tasks. This paper proposes a late fusion approach to simultaneously 

clustering and imputing the incomplete base clustering matrices. The proposed algorithm 

effectively and efficiently solves the resultant optimization problem, and demonstrates well 

improved clustering performance via extensive experiments on benchmark datasets. In the 

future, instead of uniformly integrating each base clustering matrix, we plan to further 

improve the clustering performance by automatically updating them during the learning 

course. Moreover, we are going to explore the correlation among base clustering matrices 

and use it to further improve the imputation.
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Fig. 1: 
Clustering accuracy, NMI and purity comparison with various missing ratios on Flower17 

and Flower102. The results of MVEC [14] on Flower102 are not reported due to the “out of 

memory” error.
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Fig. 2: 
Clustering accuracy, NMI and purity comparison with various missing ratios on Caltech102. 

The results of MVEC [14] on Caltech102–20, Caltech102–25 and Caltech102–30 are not 

reported due to the “out of memory” error.
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Fig. 3: 
Clustering accuracy, NMI and purity comparison with various missing ratios on UCI-Digital.
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Fig. 4: 
Clustering accuracy, NMI and purity comparison with various missing ratios on Protein 

Fold.
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Fig. 5: 
Clustering accuracy, NMI and purity comparison with various missing ratios on CCV. The 

results of MVEC [14] on CCV are not reported due to the “out of memory” error.
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Fig. 6: 
Running time comparison of different algorithms with various number of samples on 

Flower102, CCV and Caltech102–30 datasets.
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Fig. 7: 
The clustering results by the learned H of LF-IMVC with iterations, where λ is set as 2−3 on 

Flower17, Flower102, CCV, UCI-digtal and Caltech102–30 datasets in this experiment. The 

results in terms of ACC and purity with other missing ratios are similar and omitted due to 

space limit.
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Fig. 8: 
The sensitivity of LF-IMVC with the variation of λ on Flower17, Flower102, CCV, UCI-

digtal and Caltech102–30 datasets. The results in terms of ACC and purity with other 

missing ratios are similar and omitted due to space limit.
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Fig. 9: 
The objective value of LF-IMVC with iterations on Flower17, Flower102, CCV, UCI-digtal 

and Caltech102–30 datasets. The curves with other missing ratios are similar and omitted 

due to space limit.
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Fig. 10: 
Clustering accuracy, NMI and purity comparison of MKKM-IK [30] and LF-MVC+ZF with 

various missing ratios on Flower17.
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TABLE 4:

Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

Flower17 1360 7 17

Flower102 8189 4 102

Caltech102–5 510 48 102

Caltech102–10 1020 48 102

Caltech102–15 1530 48 102

Caltech102–20 2040 48 102

Caltech102–25 2550 48 102

Caltech102–30 3060 48 102

UCI-Digital 2000 3 10

ProteinFold 694 12 27

CCV 6773 6 20
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