Skip to main content
. Author manuscript; available in PMC: 2019 Oct 1.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2018 Nov 1;41(10):2410–2423. doi: 10.1109/TPAMI.2018.2879108

TABLE 7:

Aggregated running time comparison (mean±std) of different clustering algorithms on benchmark datasets (in seconds). All experiments are conducted on a PC machine with an Intel(R) Core(TM)-i7–5820, 3.3 GHz CPU and 16G RAM in MATLAB environment. The results of MVEC [14] on CCV, Flower102, Caltech102–20, Caltech102–25 and Caltech102–30 are not reported due to the “out of memory” error.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK MIC MVEC LF-IMVC
[25] [30] [27] [14] Proposed
ProteinFold 1.6 ± 0.2 1.5 ± 0.1 2.3 ± 0.2 1.8 ± 0.2 4.1 ± 0.6 192.1 ± 2.8 163.0 ± 1.4 1.1 ± 0.1
CCV 83.7 ± 10.8 85.9 ± 10.7 124.1 ± 14.5 106.4 ± 11.3 130.8 ± 5.2 2070.8 ± 15.1 23.0 ± 4.8
Flower17 2.8 ± 0.3 2.8 ± 0.3 3.9 ± 0.5 3.5 ± 0.4 5.4 ± 0.6 186.4 ± 6.5 603.3 ± 13.1 1.5 ± 0.2
Flower102 230.0 ± 17.4 239.3 ± 27.9 340.7 ± 17.1 279.4 ± 28.1 322.1 ± 31.0 5161.9 ± 94.1 117.2 ± 10.0
UCI-Digital 4.3 ± 0.4 4.2 ± 0.5 4.4 ± 0.5 5.0 ± 0.6 7.8 ± 0.9 153.4 ± 3.6 906.1 ± 30.0 1.3 ± 0.2
Caltech102–5 4.4 ± 0.2 4.4 ± 0.1 6.8 ± 0.2 4.8 ± 0.2 31.6 ± 3.3 1204.3 ± 330.4 187.4 ± 1.0 16.6 ± 0.4
Caltech102–10 17.3 ± 0.7 17.2 ± 0.7 29.5 ± 0.7 18.9 ± 0.6 74.3 ± 17.0 2211.3 ± 668.1 809.7 ± 14.0 25.8 ± 0.6
Caltech102–15 55.6 ± 0.7 55.8 ± 0.7 84.1 ± 2.3 58.1 ± 2.1 197.1 ± 28.4 3379.8 ± 867.8 2226.4 ± 46.1 44.9 ± 0.6
Caltech102–20 111.0 ± 4.7 111.3 ± 4.6 199.7 ± 25.3 120.6 ± 4.8 320.3 ± 37.6 5370.2 ± 1753.1 75.5 ± 0.7
Caltech102–25 207.3 ± 14.8 209.2 ± 19.7 362.7 ± 18.7 200.6 ± 4.6 566.1 ± 71.0 9265.5 ± 1465.2 32.4 ± 2.4
Caltech102–30 357.2 ± 21.5 364.5 ± 24.4 616.4 ± 36.9 360.2 ± 16.8 828.2 ± 33.4 11896.0 ± 1875.8 139.2 ± 0.8