
ARTICLE OPEN

RNAMethyPro: a biologically conserved signature of N6-
methyladenosine regulators for predicting survival at pan-
cancer level
Raju Kandimalla1, Feng Gao2,3, Ying Li2, Hao Huang2, Jia Ke3, Xin Deng2, Linjie Zhao4, Shengtao Zhou4, Ajay Goel1 and Xin Wang 2,5

Accumulating evidence indicates the role of N6-methyladenosine (m6A) regulator-mediated RNA methylation in cancer progression
and metastasis; yet its potential clinical significance, if any, remains unclear. In this first-of-its-kind study, we systematically
evaluated the role of m6A regulators as potential disease biomarkers based on comprehensive analysis of gene expression profiles
of 9770 cancer cell lines and clinical specimens from 25 publicly available datasets, encompassing 13 human cancers. We
developed and established RNAMethyPro—a gene expression signature of seven m6A regulators, which robustly predicted patient
survival in multiple human cancers. Pan-cancer analysis identified activated epithelial–mesenchymal transition (EMT), as a highly
conserved pathway in high-risk patients predicted by RNAMethyPro in 10 of the 13 cancer types. A network-based analysis revealed
an intimate functional interplay between m6A regulators and EMT-associated factors via druggable targets such as XPO1 and
NTRK1. Finally, the clinical significance of RNAMethyPro was further exemplified in colorectal cancer, where high-risk patients
demonstrated strong associations with a mesenchymal subtype, activated stromal infiltration, and poor therapeutic response to
targeted anti-EGFR therapy. In summary, RNAMethyPro is a novel, EMT-associated prognostic gene-expression signature in multiple
human cancers and may offer an important clinical decision-making tool in the future.

npj Precision Oncology            (2019) 3:13 ; https://doi.org/10.1038/s41698-019-0085-2

INTRODUCTION
Among >100 types of known posttranscriptional modifications,
N6-methyladenosine (m6A) represents the most prevalent internal
modification in mammalian mRNAs,1 which is primarily predomi-
nant in the vicinity of stop codons, 3′-untranslated regions (UTRs),
within long internal exons, and at 5′-UTRs.2–4 These m6A
modifications are posttranscriptionally installed, erased, and
recognized by m6A writers [METTL3, METTL14 (methyltransfer-
ase-like 3, 14) and WTAP1 (Wilms’ tumor 1-associating protein)],5–7

erasers [FTO (fat mass and obesity-associated protein), ALKBH5
(alkylated DNA repair protein AlkB homolog 5)]1,8,9 and readers
[YTHDF1, YTHDF2, and YTHDF3 (YTH N6-Methyladenosine RNA
Binding Protein)],10–12 respectively. The functional consequence of
such m6A modifications includes reduced RNA stability, transla-
tional inefficiency, altered subcellular localization, and imperfect
alternate splicing.10,13,14 While low m6A levels maintain the cells in
a state of pluripotency, their overexpression results in cellular
differentiation, suggesting their potential role in the establishment
of a “stem cell phenotype” in human cancer.15

Recent functional studies in glioblastoma (GBM), breast cancer,
hepatocellular carcinoma (HCC), lung cancer, and acute myeloid
leukemia (AML), involving either the knockdown or overexpres-
sion of m6A methyl transferases (METTL3, METTL14) or demethy-
lases (FTO, ALKBH5), have revealed their critical biological role in

driving cellular proliferation, migration, invasion, apoptosis, and
metastasis.16–19 In addition, low expression of METTL14 in HCC20

and overexpression of FTO in breast and gastric cancer has been
shown to associate with poor prognosis.21,22 Interestingly, MLL-
rearranged leukemic subtype and HER2-overexpressing breast
cancer subtypes associated with upregulation of FTO,23 indicating
the role of these genes in driving poor prognosis-related
molecular subtypes in these malignancies.
Although studies to date have provided important insights into

the role of m6A regulators in cancer pathogenesis, these efforts
have heavily relied on the use of cancer cell lines and/or small
cohorts of patient specimens, making them unreliable for fully
appreciating their clinical significance. For instance, METTL3 and
METTL14 were shown to be oncogenic in AML24–26 but tumor
suppressive in GBM.16 Curiously, even for the same cancer type
(e.g., GBM), the role of the same gene (e.g., METTL3) was reported
to be discordant in independent studies.16,27 These studies
highlight the imperative need for undertaking systematic, large-
scale studies in independent patient cohorts to unravel the true
clinical potential of m6A regulators in human cancers.
Herein, using a systematic, pan-cancer approach, we developed

RNAMethyPro, a novel and robust gene expression signature
based upon m6A regulators, for predicting the prognosis of
patients in 13 different human cancer types. Interestingly,
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Fig. 1 Internal and external validations in colorectal cancer (CRC), gastric cancer (GC), breast cancer (BRCA) and ovarian cancer (OV)
demonstrated the robust prognostic value of RNAMethyPro. Kaplan–Meier curves show significant associations between RNAMethyPro
stratified risk groups and disease-free survival or overall survival for a CRC training cohort, TCGA-COADREAD (n= 509); b CRC validation
cohort, CIT (n= 566); c GC training cohort, TCGA-STAD (n= 202); d GC validation cohort, ACRG-GC (n= 282); e BRCA training cohort,
METABRIC discovery (n= 995); f BRCA validation cohort, METABRIC validation (n= 986); g OV training cohort, MAYO-OV (n= 174); h OV
validation cohort, TCGA-OV (n= 511). Only patients with available survival information were included in the analyses. Patients classified to
RNAMethyPro high-, intermediate- and low-risk groups are colored in red, gray, and blue, respectively
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RNAMethyPro not only allowed identification of high-risk cancer
patients with poor prognosis but also led to the recognition that
de-regulated expression of m6A-regulators was intimately asso-
ciated with an epithelial–mesenchymal transition (EMT) pheno-
type, which was highly conserved across ten cancer types. More
specifically, in colorectal cancer (CRC) patients, RNAMethyPro-led
identification of the high-risk group significantly associated with
the mesenchymal subtype, demonstrated activation of EMT and
transforming growth factor beta (TGFβ) pathway, increased cancer
stemness and higher overall stromal and immune content. Further
a network-based analysis suggested strong physical and func-
tional crosstalk between m6A machinery and key EMT-associated
proteins such as XPO1 and NTRK1—for which therapeutic
interventions have already been approved by the Food and Drug
Administration (FDA) or are currently being explored in various
clinical trials. In addition to its prognostic utility, RNAMethyPro
also emerged as a robust predictor of response to anti-epidermal
growth factor receptor (anti-EGFR) therapy in colorectal patients
with metastatic disease. Taken together, our findings provide
compelling data for the clinical significance of m6A regulators and
set the stage for future validation and further in-depth mechan-
istic studies in future.

RESULTS
A panel of seven m6A regulator genes predicts patient survival in
various cancers
We systematically evaluated the prognostic significance of m6A
regulatory machinery, focusing on a panel of 3 m6A “writers”
(METTL3, METTL14 and WTAP), 2 “erasers” (FTO and ALKBH5), and
2 “readers” (YTHDF1 and YTHDF2). We performed comprehensive
bioinformatics analysis of 25 public gene expression datasets
comprising a total of >9000 patients across 13 cancer types (Table
1, Supplementary Material and Methods). For each type of cancer,

a multivariate Cox regression model was first trained using the
corresponding training dataset, and the derived formula (hereafter
referred to as “RNAMethyPro”) was subsequently used to calculate
risk scores predictive of overall survival (OS; for ovarian and
pancreatic cancer) or relapse-free survival (for the other 11 cancer
types). Using cutoff thresholds on the 25th and 75th percentiles of
the risk scores, patients in each cohort were stratified into low-,
intermediate-, and high-risk groups. We observed that the high-
risk patients had a significantly shorter survival compared to low-
risk patients (Fig. 1a, c, e, g, Supplementary Fig. S1, Table 2),
indicating that the prognostic power of RNAMethyPro was
successfully validated in all the 13 cancer types.
For four cancer types (colorectal, gastric, breast, and ovarian)

where additional independent patient cohorts were available, we
next sought to externally validate the prognostic potential of
RNAMethyPro. For CRC, the risk scoring formula trained using the
TCGA-COADREAD cohort was subsequently applied to the CIT
cohort (n= 566), followed by stratification of the patients based
by applying the same cutoff thresholds determined in the training
cohort. Consistent with the TCGA-COADREAD cohort, in the CIT
cohort, we also observed that the high-risk patients had a
significantly shorter disease-free survival (DFS) vs low-risk patients
(P= 0.00153, log-rank test) with a corresponding hazard ratio (HR)
of 2.24 (1.34–3.74; Fig. 1b, Table 2). Similarly, the m6A signature
showed robust potential for predicting survival in validation
cohorts in gastric (Fig. 1d, ACRG-GC cohort: HR, 1.78 [1.12–2.83], P
= 0.0136), breast (Fig. 1f, METABRIC validation cohort: HR, 1.73
[1.14–2.63], P= 0.00946), and ovarian cancer (Fig. 1h, TCGA-OV
cohort: HR, 1.56 [1.04–2.35], P= 0.0317). Taken together, by using
systematic statistical approaches on both the internal and external
validation cohorts, we were able to demonstrate the robust
prognostic significance of RNAMethyPro in various cancers.

Table 2. Log-rank test and univariate analysis of RNAMethyPro risk score in each cohort analyzed for internal or external validation

Cancer type Cohort P valuea HRa (95% CI) P valueb P value of risk scorec

Colorectal cancer TCGA-COADREAD 8.14E−03 2.15 (1.20–33.83) 9.25E−03 3.06E−03

Colorectal cancer CIT 1.53E−03 2.24 (1.34–3.74) 4.68E−03 4.17E−03

Gastric cancer TCGA-STAD 1.95E−05 11.98 (2.81–51.07) 2.41E−04 3.22E−05

Gastric cancer ACRG-GC 1.36E−02 1.78 (1.12–2.83) 3.83E−02 3.23E−03

Breast cancer METABRIC Discovery 2.10E−09 3.96 (2.43–6.44) 2.04E−09 1.09E−09

Breast cancer METABRIC Validation 9.46E−03 1.73 (1.14–2.63) 2.17E−02 3.95E−03

Ovarian cancer MAYO-OV 4.21E−03 1.91 (1.22–2.99) 1.24E−02 1.81E−03

Ovarian cancer TCGA-OV 3.17E−02 1.56 (1.04–2.35) 8.22E−02 5.37E−01

Pancreatic adenocarcinoma TCGA-PAAD 2.19E−03 4.48 (1.59–12.65) 6.62E−03 2.80E−03

Hepatocellular carcinoma TCGA-LIHC 4.36E−04 2.25 (1.42–3.57) 1.19E−04 4.27E−06

Lung adenocarcinoma TCGA-LUAD 4.97E−04 2.51 (1.47–4.28) 3.97E−04 4.25E−05

Bladder urothelial carcinoma TCGA-BLCA 2.83E−04 3.08 (1.63–5.84) 1.32E−03 4.73E−03

Head and neck squamous cell carcinoma TCGA-HNSC 2.18E−07 3.27 (2.04–5.24) 1.42E−07 2.35E−05

Acute myeloid leukemia TARGET-AML 1.32E−04 2.2 (1.45–3.32) 1.29E−04 1.99E−06

Lung squamous cell carcinoma TCGA-LUSC 2.35E−02 4.79 (1.07–21.42) 5.00E−02 2.26E−02

Esophageal adenocarcinoma TCGA-ESCA(EAC) 1.78E−02 NAd 5.51E−02 5.31E−03

Esophageal squamous cell carcinoma TCGA-ESCA(ESCC) 1.25E−02 6 (1.23–29.31) 5.48E−02 1.39E−02

CI confidence interval, HR hazard ratio, NA not applicable
aLog-rank test (high-risk vs low-risk groups)
bLog-rank test (three groups)
cUnivariate Cox regression
dHR cannot be accurately estimated owing to insufficient sample size

R. Kandimalla et al.

4

npj Precision Oncology (2019)    13 Published in partnership with The Hormel Institute, University of Minnesota



Identification of highly conserved biological processes associated
with cancer metastasis in high-risk patients identified by
RNAMethyPro
To gain insight into the mechanistic underpinnings of
high-risk patients identified by RNAMethyPro, we systematically

interrogated various key biological processes dysregulated across
the 13 cancer types. More specifically, for each cancer type, we
analyzed the corresponding gene expression datasets (Table 1) for
gene set enrichment analysis (GSEA) on 50 hallmark gene sets
obtained from MSigDB using HTSanalyzeR.28 Unsupervised
hierarchical clustering on the obtained matrix of gene set
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enrichment scores identified two distinct clusters of cancers—a
small cluster comprising of breast (BRCA), pancreatic (PDAC), and
acute myeloid leukemia (AML) and a major cluster of ten other
cancer types. Interestingly, the major cluster was primarily
enriched for gastrointestinal (GI) cancers typified by specific
biological processes related to EMT, angiogenesis, and cancer
stemness (Fig. 2a). Interestingly, different from other GI cancers,
activation of MYC and pancreatic beta cells emerged as major
drivers of disease pathogenesis in PDAC.29–31 Breast cancer
patients with poor prognosis were characterized by basal
subtype-specific features such as MYC and E2F activation,32

whereas high-risk AML subgroup associated with heme metabo-
lism and interferon-alpha response, in line with previous
reports.33,34

To further dissect the biological properties associated with
RNAMethyPro high-risk groups, we constructed a comprehensive
enrichment map and identified a subnetwork of highly conserved
biological processes associated with cancer progression and
metastasis (Fig. 2b). Central to this functional network of pathways
was EMT, which was significantly upregulated in the RNAMethyPro
high-risk group in all the ten cancer types within the major cluster
(Supplementary Fig. S2). Core signature genes for EMT, matrix
remodeling processes, and TGF-β were mostly significantly
upregulated in RNAMethyPro-identified high-risk patients in all
GI cancers (except PDAC) and lung adenocarcinoma (LUAD; Fig.
2c). Interestingly, lung squamous cell carcinoma (LUSC), which is
another major type of non-small-cell lung carcinoma, did not
show any significant upregulation of these signature genes in the
RNAMethyPro high-risk subgroup (Fig. 2c)—highlighting the
specificity of our m6A signature for different cancer types.
To identify functionally conserved modules underlying the

dysregulated biological processes associated with the RNAMethy-
Pro high-risk groups, we employed a network-based approach by
integrating human interactome and gene expression data.
Interestingly, the conserved subnetwork of protein–protein
interactions (PPIs) we identified were enriched for a number of
EMT signature genes (Fig. 2d). Central to the network were four
hub proteins including, APP,35 XPO1,36 NTRK1,37 and ELAVL1 (or
HuR),38 which have been previously implicated for their regulatory
roles in tumorigenesis and/or metastasis. Taken together, our
findings revealed that upregulation of EMT is a key common
mechanism associated with high-risk cancer patients, highlighting
potential interactions between m6A regulatory machinery and
cancer metastasis.

The RNAMethyPro high-risk group in CRC associates with the
mesenchymal subtype
By using CRC as a case study, we next performed integrative
analysis to further elucidate the biological and clinical character-
istics associated with the RNAMethyPro risk groups. Using TCGA-
COADREAD dataset, we first trained a multivariate Cox regression

model and obtained the following risk scoring formula:
0.24 ×METTL3− 0.14 ×METTL14+ 0.09 ×WTAP− 0.14 × YTHDF1
− 0.22 × YTHDF2+ 0.22 × FTO+ 0.03 × ALKBH5. Based on this for-
mula, we calculated risk scores and stratified patients in the CIT
cohort (n= 566) using the 25th and 75th percentiles in the
training cohort patients into low-, intermediate-, and high-risk
groups. Interestingly, we found that the high-risk group was
significantly enriched for patients with cancer relapse or death (P
= 0.00095, Fisher’s exact test), while the low risk group
significantly comprised of patients with CIN, CIMP, MSI, and BRAF
mutations (P= 0.00034, 0.0063, 8.59e−11, 0.0013, respectively,
Fisher’s exact tests; Fig. 3a). Notably, we found that both the low-
and high-risk groups were significantly associated with unique
consensus molecular subtypes (CMSs) previously defined by the
CRC subtyping consortium (CRCSC)39 (Fig. 3a, P < 1e-16, Fisher’s
exact test). More specifically, CMS4 patients had the highest risk
scores, while CMS1 subgroup had the lowest, and CMS2 and CMS3
patients possessed in between risk scores (Fig. 3b). Hypergeo-
metric tests further confirmed that the RNAMethyPro high-,
intermediate- and low-risk groups were significantly overrepre-
sented for patients classified to CMS4, CMS2, and CMS1,
respectively (Fig. 3c, P= 5.30e−10 and 9.95e−08). These results
are consistent with previously reported findings that patients with
CMS1 tumors had the best prognosis, while CMS4 tumors resulted
in the worst DFS.39 Furthermore, we found that indeed the
RNAMethyPro high-risk group showed significant upregulation in
gene sets related to the EMT, matrix remodeling, TGFβ pathway,
and cancer stem cell, with concurrent downregulation of the WNT
signaling pathway, MYC targets, and mesenchymal–epithelial
transition (Supplementary Fig. S3), which were described as the
key molecular characteristics of CMS4 CRCs.39

Integrative analysis revealed complex physical and functional
crosstalk between m6A regulators and EMT in CRC
For a better understanding of the biological processes associated
with RNAMethyPro high-risk groups specifically in CRC, we
systematically analyzed gene expression data for CRC cell lines
from the CCLE cohort (n= 58) and patients from CRC Meta-
validation cohort (n= 841),40 which was generated by merging six
independent public datasets (Table 1). Cell lines classified to the
high-risk group showed in general higher expression levels of 11
EMT signature genes than those classified to the low-risk group
(Supplementary Fig. S4a). GSEA confirmed significant enrichment
of EMT hallmark genes (in total 200 genes in the EMT hallmark
gene set of MSigDB database) in CRC cell lines classified to the
high-risk group (Supplementary Fig. S4b, P < 0.001). More strik-
ingly, in the CRC Meta-validation cohort patients classified to the
high-risk group had significantly higher expression levels of all
EMT signature genes (Supplementary Fig. S4c, P < 0.05 in all
comparisons, one-tailed Student’s t tests). Similarly, significant
enrichment of EMT hallmark genes was also observed in patients

Fig. 2 Pan-cancer functional analyses identified conserved biological processes and protein–protein interaction (PPI) subnetwork
dysregulated in RNAMethyPro high-risk patients. a Heatmap of enrichment scores of hallmark gene sets across 13 cancer types. Hierarchical
clustering on the enrichment score matrix identified a small cluster consisting of BRCA, AML, and PDAC and a major cluster of the other ten
cancer types. b An enrichment map illustrating associations between hallmark gene sets with different degrees of conservation across various
cancer types. Node size represents the number of genes in a gene set. Nodes are colored in proportion to the conservation scores of gene sets
across ten cancer types of the major cluster. Edges between gene sets showed their association quantified by Jaccard index. To make the
network relatively sparse, edges with extremely low Jaccard indices (<0.03) were removed. c Heatmaps showing the average log2 fold
difference of the indicated genes (rows) in core gene sets for epithelial–mesenchymal transition (EMT), matrix remodeling, and transforming
growth factor-β pathway between RNAMethyPro high- and low-risk groups across the 13 different cancer types. d Conserved PPI subnetwork
underlying the RNAMethyPro high-risk patients across the 10 cancer types identified using BioNet (false discovery rate <1e−4). Node size is
proportionate to the degree of each node in the network. Node color represents the conservation score calculated by the number of times
(out of the total 10 cancer types) that the corresponding gene is differentially expressed in the high-risk group compared to the low-risk
group (Benjamini–Hochberg adjusted P < 0.05). Nodes with labels represent EMT signature genes. Hub proteins (NTRK1, XPO1, ELAVL1, and
APP) in the network are highlighted with bold labels. Edges represent physical PPIs between genes obtained from BioGRID database (version
3.4.134). Edges colored in dark black represent interactions between the four hub proteins and EMT signature gene products
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classified to the high-risk group (Supplementary Fig. S4d, P <
0.001).
Interestingly, among all the seven m6A regulators studied,

WTAP, METTL3, FTO, and ALKBH5 were all significantly upregulated
in the high-risk group vis-à-vis low and intermediate groups (Fig.
4a, P < 0.001, Student’s t tests), while YTHDF1, YTHDF2, and

METTL14 were all significantly downregulated in the high-risk
group in the CRC Meta-validation cohort (Fig. 4a, P < 0.001,
Student’s t tests). Based on the observation of upregulated EMT
(Supplementary Fig. S3) and associated key signature genes such
as TGFB2, TGFBR2, SMAD2, and ZEB1 (Fig. 4a) in the high-risk
patients, we infer that m6A regulatory machinery must interact
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with EMT to regulate cancer metastasis in various human
malignancies.
To systematically investigate any potential physical and

functional crosstalk, we constructed a PPI network based on
BioGRID database (Fig. 4b) and a coexpression network (Supple-
mentary Fig. S5), which involved EMT signature genes, m6A
regulators, and the four hub genes in the conserved subnetwork
described earlier (Fig. 2d). Interestingly, in the PPI network, we
found direct interaction between YTHDF2 and SMAD3 (Fig. 4b), in
addition to the recently identified interaction between SMAD2/3
and METTL3-METTL14-WTAP complex induced by TGFβ signal-
ing.41 More strikingly, most m6A regulators directly or indirectly
interacted with the EMT gene products via hub proteins such as
ELAV1 and APP (Fig. 4b). Although FTO was not found to
physically interact with the EMT machinery, its gene expression
was significantly correlated with ZEB1 (Pearson correlation
coefficient: 0.323, P= 3.55e−15), as well as SMAD3, TGFB2, and
TGFBR2 (Fig. 4c, Supplementary Fig. S5, Supplementary Table S1).
Besides FTO, other m6A regulators were also intimately inter-
connected with hub genes in the conserved subnetwork and EMT
signature genes (Supplementary Fig. S5), highlighting their
intensive functional crosstalk in mediating cancer metastasis.
Furthermore, compared to the RNAMethyPro intermediate- and
low-risk groups, we also observed significantly higher stromal and
immune infiltration (Fig. 4d, e) in the high-risk group, which is
consistent with recent studies that poor prognosis CRC is a
primarily a consequence of abundant stromal content with TGFβ
activation.42,43

RNAMethyPro is predictive of therapeutic response to anti-EGFR
drugs in CRC
Molecular subtypes of CRC are associated with response to anti-
EGFR therapies independent of KRAS mutations.44 In this study, we
were able to demonstrate that the RNAMethyPro risk groups were
significantly associated with various CRC subtypes and accordingly
hypothesized that risk scores derived from this signature may also
be predictive of therapeutic response to anti-EGFR drugs. To
validate our hypothesis, we first analyzed a public cohort of 151
CRC cell lines with gene expression and cetuximab sensitivity data
(GSE59857).45 To avoid any potential confounding factors, we
focused on 28 microsatellite stable cell lines without KRAS, NRAS,
HRAS, BRAF, and PIK3CA mutations, which have been shown to be
significantly associated with refractory cetuximab response.46

Using the established scoring formula for CRC, we calculated risk
scores followed by stratification of all cell lines into low-,
intermediate-, and high-risk groups. Meanwhile, based on
arbitrary indices of cetuximab effect (median-centered, as
described previously45), all cell lines could also be successfully
classified into cetuximab-resistant and -sensitive groups. Indeed,
we found that the predicted RNAMethyPro risk was significantly
associated with cetuximab resistance (Fig. 5a, P= 0.00086, Fisher’s
exact test). More specifically, cell lines classified into the low-risk
group were significantly more resistant to cetuximab than those in
the intermediate- and high-risk groups (Fig. 5b, P < 0.05 and P <
0.001, one-tailed Student’s t tests).

To further investigate the predictive potential of RNAMethyPro,
we classified 80 metastatic CRC patients treated with cetuximab in
the Khambata–Ford cohort47 into low-, intermediate-, and high-
risk groups. Similar to the CIT cohort with mostly stage II/III
patients, we observed that in the Khambata–Ford cohort CMS4
tumors also had higher risk scores compared to non-CMS4 tumors
(P= 0.0018, one-tailed Student’s t test, Fig. 5d), and the high-risk
group was significantly associated with CMS4 CRC subtype (P=
0.0417, hypergeometric test, Fig. 5e). Compared to the low-risk
group, we found the high-risk group of patients may be more
resistant to cetuximab treatment (progressive disease vs stable
disease/partial response/complete response, P= 0.06, Fisher’s
exact test, Fig. 5f) and were associated with significantly poorer
DFS (HR 1.98, [1.03–3.80], P= 0.036, log-rank test, Fig. 5g).
Interestingly, univariate and multivariate Cox regression analysis
showed that RNAMethyPro-derived risk scores were significantly
associated with poor DFS (P= 0.0373 and 0.0295, respectively,
Supplementary Table S2), whereas KRAS mutation, a well-
established determinant of anti-EGFR drug response, failed to
show any significance (P= 0.213 and 0.177, respectively, Supple-
mentary Table S2). Collectively, these results also highlight the
additional potential for using RNAMethyPro as a tool for
predicting therapeutic response to anti-EGFR therapy, which will
refine and further optimize treatment decision-making in meta-
static CRC patients.

DISCUSSION
Earlier studies have revealed the critical role of m6A regulators,
particularly METTL3, METTL14, FTO and ALKBH5 in driving cancer
progression and metastasis. In many cancers, m6A modifications
can also be disrupted by genetic variants, and bioinformatic tools,
represented by m6ASNP,48 have been developed for identification
of genetic variants that target m6A modification sites. However, to
the best of our knowledge, to date there are no systematic studies
that have comprehensively analyzed the true clinical potential of
the expression levels of m6A regulator genes in clinical decision-
making. Here we have performed the most comprehensive pan-
cancer analysis on the role of m6A regulators in multiple cancer
types. The overall strengths of our study include: (1) analysis of
data from >9700 cell lines and clinical specimens encompassing
13 cancer types, which represents thus far the most comprehen-
sive analysis in the field to date; (2) the use of a network-based
pan-cancer analysis to identify key pathways and protein subnet-
works associated with m6A deregulation; (3) integrative analysis of
gene expression, molecular, and clinicopathological characteris-
tics, as well as drug response data, demonstrating the very first
associations between m6A modifications and clinical outcomes in
proof-of-principle analysis in CRC.
Our identification for the promising clinical significance of m6A

regulators motivated us to dissect the underlying functional
determinants that are potentially shared across multiple cancer
types. Based on the GSEA and conservation enrichment map, we
identified that biological processes such as EMT, angiogenesis,
and cancer stemness were commonly upregulated in
RNAMethyPro-identified high-risk patients across ten different

Fig. 4 Integrative analysis revealed complex physical and functional interactions between m6A regulators and epithelial–mesenchymal
transition (EMT). a Bar plot compares normalized expression levels of m6A regulators and EMT signature genes, showing significant
differences between RNAMethyPro high- and low-risk groups (P < 0.01 in all comparisons, Wilcoxon rank-sum tests). b Protein–protein
interactions between m6A regulators (red nodes), hub proteins in the conserved subnetwork (green nodes), and EMT key factors (blue nodes).
c Scatter plot showing significant Pearson correlations between the FTO and ZEB1 expression in CRC Meta-validation cohort (r= 0.322, P < 1e
−22). Dots in the scatter plots are colored by RNAMethyPro risk groups. d, e Bar plots illustrate stromal and immune scores in CRC Meta-
validation cohort calculated by ESTIMATE, indicating stronger d stromal and e immune infiltration in the RNAMethyPro high-risk group (P <
0.001, Kruskal–Wallis test. **P < 0.01, ***P < 0.001, ****P < 0.0001, one-tailed Student’s t tests). Error bar: standard error of the mean. n= 445 for
the low-risk group, n= 563 for the intermediate-risk group, n= 398 for the high-risk group
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cancers. Although the association between m6A regulators and
EMT was proposed previously, our findings for the first time
highlight this to be a key shared pathway that is highly conserved
in multiple major malignancies. Interestingly, our network analysis
identified a conserved functional module of protein-protein
interactions enriched for EMT signature gene products, which

further led us to identify four hub proteins, APP, ELAVL1 (HuR),
XPO1, and NTRK1, whose roles in predicting adjuvant therapy
benefit, cancer progression and metastasis have been suggested
previously.35–38 More importantly, our discovery for the strong
functional and physical interactions between these four hub
proteins, m6A regulators and EMT signature genes suggests that
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the m6A machinery facilitates the EMT process directly or
indirectly via these hub proteins in various human cancers.
Furthermore, the identification of the hub proteins is clinically
relevant, since they are druggable and several inhibitors are
already approved by the US FDA (e.g., Entrectinib targeting
NTRK1) or are currently being evaluated in clinical trials (e.g., KPT-
330 targeting XPO1). Based on the observation that key EMT
drivers such as SMAD2, SMAD3, ZEB1, TGFB2, and TGFBR2 were all
significantly upregulated in RNAMethyPro-identified high-risk
tumors, we hypothesized that m6A regulators may functionally
interact with EMT induced by activated TGFβ pathway in the
stromal cells. This is in line with a recent study that showed TGFβ
pathway as a major driver of m6A mRNA methylation.41

Although earlier studies have reported oncogenic and tumor-
suppressive roles of different m6A regulators in various malig-
nancies, no studies have yet been performed in CRC. Ours is the
first comprehensive research interrogating association between
m6A regulatory machinery and clinical outcomes in CRC. Clinically,
in addition to demonstrating the robust prognostic value of
RNAMethyPro, we also showed its association with anti-EGFR drug
response in cell lines and metastatic CRC patients, though the
statistical significance needs to be confirmed by further large-scale
validations. In addition to facilitating selection of appropriate
patients for anti-EGFR therapy, the ability to stratify cell lines for
anti-EGFR response with allow us to test novel targets and drug
combinations to sensitize the cell lines for anti-EGFR therapy and
other novel treatments. Biologically, we found RNAMethyPro-
stratified risk groups were significantly associated with MSI/MSS,
CIMP status, BRAF mutations, and more importantly, CMSs of CRC.
This is in line with previous biological findings, where FTO was
shown to be associated with poor prognosis molecular subtypes
of breast cancer and AML.
We would like to acknowledge that our findings are based on in

silico analysis, which are critical for obtaining a global overview of
the biological and clinical characteristics associated with m6A
machinery, as well as in determining the specific functional
modules dysregulated in high-risk patients. Further mechanistic
and independent clinical validation studies are needed to validate
the significance of RNAMethyPro as a robust prognostic and
predictive signature in various human cancers.
In conclusion, we developed RNAMethyPro, a novel gene

expression signature comprised of seven m6A regulators for
prognosis in multiple cancers. Using comprehensive pan-cancer
analysis, we identified activated EMT as a highly conserved
biological process across multiple cancer types. Further investiga-
tion on CRC revealed the association of RNAMethyPro high-risk
group with the mesenchymal subtype and poor anti-EGFR
response. With future validation and in-depth mechanistic studies,
RNAMethyPro may offer an important clinical decision-making
tool in the future.

METHODS
Development and validation of m6A prognostic classifiers
In order to develop m6A prognostic classifiers and evaluate the
prognostic performance, we collected and analyzed a total of
9770 specimens, which comprised of 25 datasets for 13 different types
of cancers (Table 1, Supplementary Material and Methods). For
colorectal, gastric, breast, and ovarian cancers, we analyzed data from
two independent patient cohorts for the internal and external
validations. To make gene expression levels comparable, z-normal-
ization was performed in each dataset. For each cancer type, a
multivariate Cox regression model was trained on the corresponding
training set, and the trained model was subsequently used to calculate
risk scores for both the training and validation (if available) datasets.
Patients were subsequently stratified into low-, intermediate-, and high-
risk groups, using the 25th and 75th percentile risk scores derived from
the training sets as the cutoff thresholds. To evaluate the prognostic
performance, 5-year DFS was considered as an indicator for colorectal,
gastric, and breast cancers, while OS was used for ovarian cancer due to
limited clinical records and relatively short follow-up. For other cancers,
the three risk groups were stratified using the same cutoff thresholds at
25th and 75th percentiles of risk scores, derived from the Cox regression
model trained on the corresponding dataset. Only patients with valid
survival information available were used in the analyses.

Gene set enrichment analysis
Based on RNAMethyPro risk stratification, differentially expressed genes
between low- and high-risk groups were identified based on TCGA
datasets from 13 cancer types, using “LIMMA” R package. GSEA was
performed using HTSanalyzeR28 with 5000 permutations for 50 hallmark
gene sets (≥15 genes) obtained from MSigDB v6.1. To illustrate the
association between these 50 hallmark gene sets, we constructed an
enrichment map, where nodes encoded gene set size and edges encodes
the strength of association quantified by Jaccard similarity coefficient (or
Jaccard index). Node color represented conservation scores, defined by the
frequency that a gene set is significantly enriched (P < 0.05) in the
RNAMethyPro high-risk group in each of the cancer types studied.

ESTIMATE analysis of stromal and immune content
In order to confirm the hypothesis that CRC patients in the RNAMethyPro
high-risk group had higher stromal and immune content, gene expression
profiles from TCGA-COADREAD cohort were used for calculating stromal
and immune scores with ESTIMATE.49 The statistical significance of
differences between the high- and intermediate-/low-risk groups were
evaluated using Kruskal–Wallis tests.

Network analysis
To identify functional modules dysregulated in the RNAMethyPro high-risk
groups conserved across the ten cancer types (OV, HCC, LUSC, LUAD,
HNSC, GC, ESCC, EAC, CRC, and BLCA), we employed BioNet, a model-
based network approach previously published.50 Specifically, we aggre-
gated P values derived from differential gene expression analysis using
“LIMMA” R package between RNAMethyPro high- and low-risk groups in
the ten cancer types by tenth order statistic. After successfully fitting the
aggregated P values to a beta-uniform mixture model, signal-to-noise

Fig. 5 RNAMethyPro is predictive of anti-epidermal growth factor receptor therapy response in CRC cell lines and metastatic patients. a
Waterfall plot comparing cetuximab sensitivities of 28 MSS cell lines without KRAS, NRAS, BRAF, and PIK3CA mutations.45 Bars represent
arbitrary indices of cetuximab effects (median-centered) on cell lines as described in ref. 45 Cell lines sensitive to cetuximab are shown with a
negative index. Cell lines classified to RNAMethyPro high-, intermediate-, and low-risk groups are colored in red, gray, and blue, respectively. b
Barplot showing that cell lines belonging to the RNAMethyPro low-risk group are significantly more sensitive to cetuximab than those
classified to the intermediate- and high-risk groups (*P < 0.05 and ***P < 0.001, one-tailed Student’s t tests. Error bar: standard error of the
mean. n= 8 for the low-risk group, n= 10 for the intermediate-risk group, n= 10 for the high-risk group.). c Heatmap showing the expression
levels of m6A signature genes and KRAS mutations in the Khambata–Ford cohort with 80 patients with metastatic cancer, ordered by
RNAMethyPro risk score. d Boxplot showing that RNAMethyPro risk scores are significantly higher in CMS4 tumors than in non-CMS4 tumors
(P= 0.00065, one-tailed Student’s t test. The median was marked as the center line in each box, the box ends indicate 25th and 75th quantiles,
and the whiskers extending from the box represent 1.5 interquartile ranges of the samples. e Heatmap showing pairwise associations
between the RNAMethyPro risk groups and consensus molecular subtype (CMS) subtypes, colored by −log10-transformed P values derived
from hypergeometric tests. f Bar plot illustrating the difference in Cetuximab response between the RNAMethyPro high- and low-risk groups
(P= 0.06, Fisher’s exact test, PD vs SD/PR/CR). CR complete response, PR partial response, SD stable disease, PD progressive disease. g
Kaplan–Meier graph of patients stratified for RNAMethyPro risk (high-risk group vs low-risk group, P= 0.036, log-rank test)
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ratios were calculated to score gene products in the human interactome
retrieved from BioGRID database (version 3.4.134), followed by identifica-
tion of enriched subnetwork using “BioNet” R package50 (false discovery
rate <1e−4). The obtained subnetwork of PPIs is visualized using “RedeR” R
package.

Statistical analysis
Statistical analyses were performed using R (version 3.4.3, www.r-project.
org). Continuous variables were expressed as mean and standard error of
the mean and were compared using Student’s t tests or Wilcoxon rank-
sum tests. Categorical variables were compared using one-tailed Fisher’s
exact tests or hypergeometric tests. Survival analyses were performed
using the Kaplan–Meier method and compared with log-rank tests using
“survival” package. Multivariate Cox regression models were trained using
“coxph” function in “survival” package. HRs were calculated using function
“hazard.ratio” in “survcomp” package. P < 0.05 was considered as
significant for all tests.

Reporting Summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The authors declare that the data supporting our findings are all accessible from
public repositories, and their accession codes can be found in Table 1.

ACKNOWLEDGEMENTS
This work was supported by R01 (CA72851, CA181572, CA184792, CA202797) and
U01 (CA187956, CA214254) grants from the National Cancer Institute, National
Institutes of Health; RP140784 from the Cancer Prevention Research Institute of
Texas; grants from the Sammons Cancer Center and Baylor Foundation, as well as
funds from the Baylor Scott & White Research Institute, Dallas, TX, USA awarded to A.
G., and a VPRT grant (9610337) from the City University of Hong Kong, grants from
the Research Grants Council of the Hong Kong Special Administrative Region, China
(Project No. CityU 21101115, 11102317, 11103718), as well as a grant from The
Science Technology and Innovation Committee of Shenzhen Municipality
(JCYJ20170307091256048) awarded to X.W.

AUTHOR CONTRIBUTIONS
X.W., R.K., F.G. and Y.L. are involved in acquisition of data analysis, and interpretation
of data. H.H., J.K., X.D., L.Z. and S.Z. are involved in assisting data analysis, critical
revision of the manuscript for important intellectual content. and material support. X.
W., R.K. and A.G. are involved in study concept and design, drafting of the
manuscript, and critical revision of the manuscript for important intellectual content.
X.W. and A.G. are involved in obtained funding, material support. and study
supervision.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Precision Oncology
website (https://doi.org/10.1038/s41698-019-0085-2).

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated

through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).
2. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes

revealed by m6A-seq. Nature 485, 201–206 (2012).
3. Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread,

dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421
(2013).

4. Luo, G.-Z. et al. Unique features of the m6A methylome in Arabidopsis thaliana.
Nat. Commun. 5, 5630 (2014).

5. Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G. & Rottman, F. M. Pur-
ification and cDNA cloning of the AdoMet-binding subunit of the human mRNA
(N6-adenosine)-methyltransferase. RNA 3, 1233–1247 (1997).

6. Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-
adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

7. Ping, X.-L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-
methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

8. Jia, G. et al. N6-Methyladenosine in nuclear RNA is a major substrate of the
obesity-associated FTO. Nat. Chem. Biol. 7, 885 (2011).

9. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA
metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

10. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA
stability. Nature 505, 117 (2013).

11. Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation
efficiency. Cell 161, 1388–1399 (2015).

12. Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-
modified RNA. Cell Res. 27, 315–328 (2017).

13. Meyer, K. D. et al. 5’ UTR m(6)A promotes cap-independent translation. Cell 163,
999–1010 (2015).

14. Jaffrey, S. R. & Kharas, M. G. Emerging links between m6A and misregulated
mRNA methylation in cancer. Genome Med. 9, 2 (2017).

15. Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve
pluripotency toward differentiation. Science 347, 1002–1006 (2015).

16. Cui, Q. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis
of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

17. Zhang, S. et al. m6A demethylase ALKBH5 maintains tumorigenicity of glio-
blastoma stem-like cells by sustaining FOXM1 expression and cell proliferation
program. Cancer Cell 31, 591–606.e6 (2017).

18. Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m(6)A methyltransferase
METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).

19. Zhang, C. et al. Hypoxia-inducible factors regulate pluripotency factor expression
by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast
cancer cells. Oncotarget 7, 64527–64542 (2016).

20. Ma, J.-Z. et al. METTL14 suppresses the metastatic potential of hepatocellular
carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA
processing. Hepatology 65, 529–543 (2017).

21. Tan, A., Dang, Y., Chen, G. & Mo, Z. Overexpression of the fat mass and obesity
associated gene (FTO) in breast cancer and its clinical implications. Int. J. Clin. Exp.
Pathol. 8, 13405–13410 (2015).

22. Xu, D. et al. FTO expression is associated with the occurrence of gastric cancer
and prognosis. Oncol. Rep. 38, 2285–2292 (2017).

23. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-
methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

24. Weng, H. et al. METTL14 Inhibits hematopoietic stem/progenitor differentiation
and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22,
191–205.e9 (2018).

25. Vu, L. P. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls
myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23,
1369–1376 (2017).

26. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-
dependent translation control. Nature 552, 126–131 (2017).

27. Visvanathan, A. et al. Essential role of METTL3-mediated m6A modification in
glioma stem-like cells maintenance and radioresistance. Oncogene 37, 522–533
(2018).

28. Wang, X., Terfve, C., Rose, J. C. & Markowetz, F. HTSanalyzeR: an R/Bioconductor
package for integrated network analysis of high-throughput screens. Bioinfor-
matics 27, 879–880 (2011).

29. Ding, X., Flatt, P. R., Permert, J. & Adrian, T. E. Pancreatic cancer cells
selectively stimulate islet beta cells to secrete amylin. Gastroenterology 114,
130–138 (1998).

30. Farrell, A. S. et al. MYC regulates ductal-neuroendocrine lineage plasticity in
pancreatic ductal adenocarcinoma associated with poor outcome and che-
moresistance. Nat. Commun. 8, 1728 (2017).

31. Sánchez-Arévalo Lobo, V. J. et al. c-Myc downregulation is required for preacinar
to acinar maturation and pancreatic homeostasis. Gut 67, 707–718 (2018).

32. Alles, M. C. et al. Meta-analysis and gene set enrichment relative to er status
reveal elevated activity of MYC and E2F in the ‘basal’ breast cancer subgroup.
PLoS ONE 4, e4710 (2009).

33. Fukuda, Y. et al. Upregulated heme biosynthesis, an exploitable vulnerability in
MYCN-driven leukemogenesis. JCI Insight 2, pii: 92409 (2017).

34. Anguille, S. et al. Interferon-α in acute myeloid leukemia: an old drug revisited.
Leukemia 25, 739–748 (2011).

35. Pandey, P. et al. Amyloid precursor protein and amyloid precursor-like protein 2
in cancer. Oncotarget 7, 19430–19444 (2016).

R. Kandimalla et al.

12

npj Precision Oncology (2019)    13 Published in partnership with The Hormel Institute, University of Minnesota

http://www.r-project.org
http://www.r-project.org
https://doi.org/10.1038/s41698-019-0085-2


36. Azmi, A. S. Unveiling the role of nuclear transport in epithelial-to-mesenchymal
transition. Curr. Cancer Drug Targets 13, 906–914 (2013).

37. Vaishnavi, A. et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung
cancer. Nat. Med. 19, 1469–1472 (2013).

38. Blanco, F. F. et al. Impact of HuR inhibition by the small molecule MS-444 on
colorectal cancer cell tumorigenesis. Oncotarget 7, 74043–74058
(2016).

39. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat.
Med. 21, 1350–1356 (2015).

40. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling
of anticancer drug sensitivity. Nature 483, 603–607 (2012).

41. Bertero, A. et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA
methylation in pluripotency. Nature 555, 256–259 (2018).

42. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in
colorectal cancer. Nat. Genet. 47, 320–329 (2015).

43. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat.
Genet. 47, 312–319 (2015).

44. De Sousa E Melo, F. et al. Poor-prognosis colon cancer is defined by a molecularly
distinct subtype and develops from serrated precursor lesions. Nat. Med. 19,
614–618 (2013).

45. Medico, E. et al. The molecular landscape of colorectal cancer cell lines unveils
clinically actionable kinase targets. Nat. Commun. 6, 7002 (2015).

46. De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the
efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic
colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11, 753–762
(2010).

47. Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras
mutation status predict disease control in metastatic colorectal cancer patients
treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

48. Jiang, S. et al. m6ASNP: a tool for annotating genetic variants by m6A function.
Gigascience 7, https://doi.org/10.1093/gigascience/giy035 (2018).

49. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612 (2013).

50. Beisser, D., Klau, G. W., Dandekar, T., Müller, T. & Dittrich, M. T. BioNet: an R-
Package for the functional analysis of biological networks. Bioinformatics 26,
1129–1130 (2010).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

R. Kandimalla et al.

13

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2019)    13 

https://doi.org/10.1093/gigascience/giy035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	RNAMethyPro: a biologically conserved signature of N6-methyladenosine regulators for predicting survival at pan-cancer level
	Introduction
	Results
	A panel of seven m6A regulator genes predicts patient survival in various cancers
	Identification of highly conserved biological processes associated with cancer metastasis in high-risk patients identified by RNAMethyPro
	The RNAMethyPro high-risk group in CRC associates with the mesenchymal subtype
	Integrative analysis revealed complex physical and functional crosstalk between m6A regulators and EMT in CRC
	RNAMethyPro is predictive of therapeutic response to anti-EGFR drugs in CRC

	Discussion
	Methods
	Development and validation of m6A prognostic classifiers
	Gene set enrichment analysis
	ESTIMATE analysis of stromal and immune content
	Network analysis
	Statistical analysis
	Reporting Summary

	Supplementary information
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




