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Abstract
Neuronal nitric oxide synthase (nNOS) plays a crucial role in the maintenance of correct skeletal muscle function due,
at least in part, to S-nitrosylation of specific protein targets. Similarly, we recently provided evidence for a muscular
phenotype in mice lacking the denitrosylase S-nitrosoglutathione reductase (GSNOR). Here, we demonstrate that
nNOS and GSNOR are concomitantly expressed during differentiation of C2C12. They colocalizes at the sarcolemma
and co-immunoprecipitate in cells and in myofibers. We also provide evidence that GSNOR expression decreases in
mouse models of muscular dystrophies and of muscle atrophy and wasting, i.e., aging and amyotrophic lateral
sclerosis, suggesting a more general regulatory role of GSNOR in skeletal muscle homeostasis.

Introduction
The role of nitric oxide (NO) in skeletal muscle

homeostasis has been deeply investigated, and findings of
the last decades support the hypothesis that it is involved
in both muscle contraction and atrophy1–4. In rat models
of denervation- and disuse-induced atrophy5, and in
dystrophin-null (mdx) mouse models of genetic dystro-
phy2,6,7, it has been observed that the skeletal muscle
specific form of neuronal NO synthase (nNOS) dislocates
from the dystrophin glycoprotein complex (DGC) located
at the sarcolemma8. This leads first to the loss of NO
beneficial effects, mostly exerted via cGMP signaling (e.g.,
vasodilation and satellite cell proliferation)1,9, and second
to nitration and hyper-S-nitrosylation of several proteins,
including those involved in Ca2+ release (i.e., type 1

ryanodin receptor, RyR1)10, in stress response and apop-
tosis (e.g. NF-κB and FoxO3)5,11.
We previously demonstrated that mice lacking the

denitrosylase S-nitrosoglutathione reductase (GSNOR)
show muscular atrophy characterized by atrogenes
expression, mitochondrial alteration, and apoptosis12,
suggesting that defective denitrosylation affects skeletal
muscle function. Interestingly, we also observed that two
mouse models of genetic dystrophies, namely the mdx13

and α-sarcoglycan-deficient (α-SG−/−) mice14, showed
excessive levels of S-nitrosylated proteins (PSNOs) similar
to those detected in GSNOR-null (Gsnor−/−) mice, sug-
gesting that aberrant S-nitrosylation is a hallmark of
muscle wasting.
It has been reported that GSNOR and nNOS co-localize

with type 2 ryanodine receptor (RyR2) along the T-
tubular invaginations of cardiac myocytes, this being
crucial for regulation of vascular tone and cardiac con-
tractility15–17. These results strongly suggest that GSNOR
and nNOS act in concert to dynamically regulate NO flux
and convey it on specific targets.
Here we provide evidence that GSNOR and nNOS co-

immunoprecipitate and co-localize, reasonably at the
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sarcolemma, and that GSNOR expression is required for
correct skeletal muscle differentiation and homeostasis.

Results and discussions
S-nitrosylation increase and GSNOR reduction are events
associated with muscular atrophy and aging
We previously reported that skeletal muscles from mdx

and αSG−/− dystrophic mice show PSNOs increase that
correlates with a decrease in GSNOR expression12. To
give strength to this observation, we evaluated PSNOs and
GSNOR levels in another in vivo model of progressive
muscle atrophy. Particularly, we focused on mouse
models of familial amyotrophic lateral sclerosis (fALS)
expressing the G93A-SOD1 mutant18, either systemically
or exclusively in the skeletal muscle (MLC-SOD1G93A)19.
Biotin switch assays and western blot analyses of gastro-
cnemius indicate that, similarly to Gsnor−/− (KO) and
mdx mice, both fALS models show an increase of PSNOs
(Fig. 1a). These results inversely correlate with GSNOR
levels (Fig. 1b, c), supporting the idea that decreased
GSNOR expression and the resulting excessive S-nitro-
sylation are two signatures of atrophic muscle.
Muscular atrophy is a condition usually associated

with physio-pathological states related to disuse
(e.g. aging), in which regeneration rate is decreased and
skeletal muscle size and performance coherently
reduced20,21. We also have recently demonstrated that
GSNOR expression levels are reduced during aging. As a
consequence, protein S-nitrosylation increases, this
being a distinctive feature of aging in mammals22. Real-
time qPCR and western blot analyses performed in
skeletal muscle from 2-to-12 months old WT mice
indicate that GSNOR mRNA and protein levels decrease
with age also in this tissue (Fig. 2a–c). Coherently,
PSNOs increase (Fig. 2d), suggesting that GSNOR hypo-
expression is generally associated with a dysfunctional/
aged skeletal muscle.

GSNOR and nNOS co-localize and co-immunoprecipitate in
the skeletal muscle and in myoblasts
S-nitrosylation is a posttranslational modification whose

extent depends on the balance between the rates of NO
production and denitrosylation, with the latter reaction
largely catalyzed by GSNOR23–25. In the skeletal muscle,
nNOS is the main enzyme responsible for NO production,
which predominantly shows a sarcolemmal distribution26.
Based on previous results suggesting an interaction
between GSNOR and nNOS in cardiomyocytes16,27, we
hypothesized that, even in the skeletal muscle, GSNOR
regulates S-nitrosylation extent by positioning in close
contact with nNOS. Therefore, we first investigated the
localization of GSNOR. Immunofluorescence analyses of
tibialis anterior sections show that GSNOR localizes at the
sarcolemma (Fig. 3a), where also Collagen III is located.

We previously showed that GSNOR deficiency did not
produce any alterations in sarcolemmal nNOS distribu-
tion12. This suggests that, notwithstanding the same
localization, GSNOR does not apparently affect nNOS
attachment to DGC and, in turn, subcellular localization
of NO production.

Fig. 1 Evaluation of S-nitrosylation and GSNOR expression in
mouse models of neuromuscular diseases. Total homogenates of
gastrocnemius from 2-month-old wild-type (WT), Gsnor−/− (KO), mdx
mice, and mouse models of fALS expressing the G93A-SOD1 mutant,
either systemically (SOD1G93A), or exclusively in the skeletal muscle
(MLC-SOD1G93A) were used for: a Biotin-switch assays of S-nitrosylated
proteins (PSNOs) revealed, upon biotynilation, by incubation with
horseradish peroxidase (HRP)-conjugated streptavidin. b Western blot
analyses of GSNOR levels. Lactate dehydrogenase (LDH) was selected
as a loading control both in (a) and (b). Results shown are
representative of 3 that gave similar results. (c) Densitometry of
GSNOR bands shown in (B), calculated by FiJi analysis software. Values
shown are the means±SD of n= 3 different experiments
normalized to LDH
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On the basis of this result, we performed co-
immunoprecipitations in tibialis anterior lysates and in
differentiating C2C12 mouse myoblasts. Results shown in
Fig. 3b, c indicate, for the first time, that the two proteins
were present in the same complex, suggesting that
GSNOR – although not affecting nNOS localization –
may still modulate NO effects on proteins located at the
DGC. Interestingly, we were not able to observe any co-
immunoprecptation in C2C12 cells before 4 days of dif-
ferentiation, time at which the process of myogenesis is in
an advanced state. This suggests that the presence of
GSNOR and nNOS in the same complex might play a role
in the late phases of differentiation. In support to these
results, immunofluorescence analyses of human speci-
mens of rectus abdominis confirmed that GSNOR co-
localizes with nNOS (Fig. 3d) and, in line with previous
reports28, also shows a (peri)nuclear distribution (Fig. 3e).

GSNOR contributes to muscle cell differentiation
To verify the hypothesis that GSNOR is directly

involved in skeletal muscle differentiation and home-
ostasis, we investigated about the existence of an inte-
grated regulation between GSNOR and nNOS. To this
end, we evaluated their levels by western blot analysis in
differentiating C2C12 mouse myoblasts. Figure 4a shows
that nNOS and GSNOR increase time-dependently in
parallel with syntrophin (used as marker of differentia-
tion). Next, we downregulated GSNOR by short-hairpin
RNA (shRNA) (Fig. 4b), and analyzed if this induced any
alterations in C2C12 differentiation. Western blot ana-
lyses of myogenin and myosin heavy chain (MHC) – two
proteins required respectively for commitment and dif-
ferentiation of myogenic precursor cells29 – indicate that
their expression is decreased upon GSNOR knocking-
down (Fig. 4c). Of note, GSNOR-depleted (shGSNOR)
C2C12 cells display a reduction in nNOS levels (Fig. 4d),
exhibit a decreased number of myotubes and a lower

Fig. 2 Age-dependent modulation of S-nitrosylation and GSNOR
expression. a Representative western blot of GSNOR levels in
gastrocnemius homogenates from 2-, 6-, and 12-months-old WT mice.
Homogenates obtained from 2-months-old Gsnor−/− (KO) muscle are
shown as negative control of GSNOR expression. Lactate
dehydrogenase (LDH) was selected as a loading control. b
Densitometry of GSNOR bands shown in a, calculated by FiJi analysis
software. Values shown are the means±SD of n= 3 different
experiments normalized to LDH. c RT q-PCR analysis of GSNOR
performed in gastrocnemius homogenates from 2- and 12-months-
old WT mice. Results shown are the means±s.e.m. of n= 6 animals for
each group. ***p < 0.001. d Representative biotin-switch assay of S-
nitrosylated proteins (PSNOs) performed in total homogenates of
gastrocnemius obtained from 2-months-old Gsnor−/− (KO), and from
2-, 6-, and 12-months-old WT mice (WT)
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fusion index with respect to the control (shScr) counter-
parts (Fig. 4e).
These results strongly argue for GSNOR playing a role

in myogenesis, this being in perfect agreement with recent
data30 and previous evidence showing that Gsnor−/− mice
show a delayed muscle regeneration following injury12.

Conclusion
The role of NO and S-nitrosylation in skeletal muscle

homeostasis has been exhaustively studied. However, the
implication of GSNOR and denitrosylation remains con-
troversial12,31. Here, we provide evidence that, in the same
way of kinases and phosphatases (and/or ligases and de-
ubiquitinylases), the denitrosylating enzyme GSNOR co-
localizes with the source of NO, nNOS, to precisely
control S-nitrosylation. Together with recent data indi-
cating that, at least in E.coli, S-nitrosylation is an enzy-
matically driven process32, our results represents a further
evidence that S-nitrosylation is a finely controlled

posttranslational modification which is required, in the
skeletal muscle, to maintain correct myofiber function
and homeostasis. Such a fine regulation is lost when
nNOS dislocates from sarcolemma, or – as here reported
– when GSNOR is downregulated. Actually, besides
excessive S-nitrosylation, other NO-mediated mechan-
isms concur to muscular atrophy, which we cannot
exclude might also play a role in GSNOR-deficient sys-
tems, such as: (1) deactivation of cGMP signaling, which
is extremely important to sustain vasodilation1,26 and
stimulate satellite cells proliferation9; (2) deregulation of
Ca2+ uptake/release for sarcoplasmic reticulum1,33; (3)
impairment of mitochondrial biogenesis and
metabolism34.
In line with data arguing for a pivotal role of GSNOR and

S-nitrosylation in myoblast differentiation30 and muscle
regeneration12,31, we also observed that GSNOR is involved
in myogenesis. This is probably due to its recruitment in the
same complex with nNOS, which becomes detectable at

Fig. 3 GSNOR localization in skeletal muscle. a Representative fluorescence microscopy images of tibialis anterior sections from wild-type (WT)
mice stained with anti-GSNOR and anti-collagen III (Col III) antibodies. b Immunoprecipitation (IP) of tibialis anterior homogenates from 2-months-old
WT and Gsnor−/− (KO) mice performed with an anti-nNOS antibody and revealed by western blot (IB) for GSNOR and nNOS. Gsnor−/− (KO) muscles
were selected as control. c Immunoprecipitation (IP), as described in b, of lysates from C2C12 myoblasts induced to differentiate upon 4 days of
serum deprivation. d Representative fluorescence microscopy images of human specimens of rectus abdominis stained with anti-GSNOR and anti-
nNOS antibodies, or e with anti-GSNOR and DAPI to highlight the nuclear/perinuclear localization
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day 4 when other markers of differentiation are still
expressed (Fig. 5). This evidence suggests that nNOS and
GSNOR start to functionally interact close to the sarco-
lemma in the late phases of muscle differentiation. GSNOR
is found decreased in aging and in genetic models of
muscular atrophy, this allowing to speculate that this phe-
nomenon contributes to skeletal muscle homeostasis by
conveying NO signal on specific protein thiols located
underneath the sarcolemma (Fig. 5). Linked to this, it has

been demonstrated that mesenchymal stem cells from
Gsnor−/− mice exhibit lower adipogenic versus higher
osteogenic differentiation, due to an inhibitory S-nitrosyla-
tion at Cys139 in PPARγ35. However, Gsnor−/− mice are
smaller than WT counterparts and exhibit bone loss due to
an increased number of osteoclasts36. This suggests that
selective S-nitrosylation underlies skeletal muscle home-
ostasis by means of at least two different mechanisms: (i)
directly, as above mentioned, by affecting stem cell

Fig. 4 GSNOR effects on C2C12 differentiation. a Representative western blot analysis of GSNOR and nNOS in cell lysates from C2C12 upon serum
deprivation-induced differentiation. Undifferentiated myoblasts (day 0); differentiating myotubes (day 1–4). Syntrophin and superoxide dismutase 1
(SOD1) were selected as differentiation and loading control, respectively. b, c Representative western blot analysis of nNOS, GSNOR (b) and myogenin
and myosin heavy chain (MHC) (c) in non-differentiated shGSNOR and shScr C2C12 (day 0), or in the same cells after 4-days of serum deprivation-
induced differentiation (day 4). SOD1 and LDH were selected as a loading control. Densitometry of each lane intensity is shown beneath the western
blots. It was calculated by FiJi analysis software, normalized to LDH and arbitrarily set to 1.0 in shScr cells. d Immunofluorescence analysis of shGSNOR
and shScr myoblasts (day 0), or 4-days differentiated myotubes (day 4). Nuclei were visualized upon staining with Hoechst 33342. Transfected cells
were visualized taking advantage of the green-fluorescence of shRNAs. Superimposition (Merge) was used to calculate the fusion index, shown on
the right. e Quantification of the data. Results are expressed as number of nuclei per fiber and represent the means±s.d. of n= 30 fibers (myotubes).
***p < 0.001
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differentiation and tissue regeneration; (ii) indirectly, at
systemic level, by interfering with the mechanic stimuli
aimed at inducing an appropriate skeletal muscle implant
into the bone.
In agreement with these observations, two-month-old

Gsnor−/− mice exhibit both osteopenia35 and sarcope-
nia12, which represent pathological states related to
aging. We recently reported that GSNOR is physiolo-
gically silenced in mouse and human aging due to
downregulation of the DNA demethylase, ten-eleven
translocation protein 1 (Tet1)22. Remarkably, Tet1−/−

mice are smaller than WT animals, resembling, in such
an aspect, Gsnor−/− mice. This feature is associated with
developmental skeletal muscle defects and deregulated
expression of muscle contraction genes, which correlate
with an augmented methylation status of the DNA37.
Here, we have coherently provided evidence that in
mouse models of muscular dystrophies, or physio-
pathological states associated with skeletal muscle
wasting (i.e. aging and ALS), GSNOR expression is
decreased. These results argue for GSNOR being a
molecular determinant of skeletal muscle homeostasis,
with any dysregulations of its expression potentially
affecting muscle healthy state.

Materials and methods
Animals
Mouse experiments were carried out in accordance with

the European Community guidelines and with the
approval of relevant National and local ethical commit-
tees. The Gsnor−/− mouse strain was generated by Prof.
Stamler15,38, while the C57BL/6 wild-type were purchased
from Charles River. mdx and α-SG−/− mice were from
Jackson Laboratories. G93A-SOD1mice B6.Cg-Tg(SOD1
G93A)1Gur/J were purchased from The Jackson Labora-
tory and were kept on C57BL/6 J background. Mouse
models of fALS expressing the mutant SOD1G93A selec-
tively in skeletal muscle (MLC-SOD1G93A) were gener-
ated by Prof. Musarò19. Mice were housed in an
environmentally controlled room (23 °C, 12 h light–dark
cycle) and provided with food and water ad libitum.

Detection of PSNOs
Protein S-nitrosylation extent was evaluated by biotin-

switch assay as previously described12,39. In brief, muscles
were homogenized in HEN buffer (25 mM HEPES,
50 mM NaCl, 0.1 mM EDTA1% NP-40, protease inhibi-
tors, pH 7.4). Free cysteine residues were blocked with S-
methyl methanethiosulfonate (MMTS, Sigma) and

Fig. 5 Schematic model of GSNOR function in skeletal muscle differentiation and homeostasis. Our data indicate that GSNOR and nNOS are
co-expressed and reasonably part of the same complex (co-immunoprecipitate) during myogenesis. In this way, they sustain differentiation (left). Co-
immunoprecipitation and co-localization analyses indicate that GSNOR and nNOS might be recruited in the same complex close to the sarcolemma.
This, along with the correct activation of NO/cGMP signaling induced by sarcolemmatic nNOS, should allow the nitrosylation of specific targets (e.g.
RyR1) and contribute to the correct physiology of the skeletal muscle (e.g., vasodilation and regeberation) (middle). During aging, or in dystrophic
muscles, GSNOR levels are found to be reduced and, coherently, the extent of S-nitrosylated protein (PSNO) increased (right). GSNOR decrease is a
hallmark of patho-physiological states associated with muscle wasting. However, we still do not know if this event is associated with nNOS
translocation into the sarcoplasm, as reported in different pathological models of atrophy. Although reasonable, so far there is no evidence
supporting this hypothesis
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protein pellets, collected upon precipitation in cold acet-
one, were re-suspended in HENS buffer (HEN buffer with
1% SDS) and let react with biotin-HPDP, with or without
ascorbate. Biotinylated proteins were revealed using the
Amersham ECL detection system after incubation with
the HRP-conjugated streptavidin (Merck).

Immunoprecipitation assays
Immunoprecipitations were performed adding 1 μg of

anti-nNOS antibody (Santa Cruz), or IgG, to 10 μl of
prewashed Dynabeads®-protein G (Invitrogen). Five
hundred microgram of whole tibialis anterior extracts,
or 800 μg of C2C12 cell extracts, were incubated for 3 h
with Dynabeads®-Ab complex and washed with 0.15 M
NaCl, 10 mM HEPES pH 7.5. Immunoprecipitated
proteins were detached from beads by boiling in sample
buffer, separated by SDS-PAGE, transferred to nitro-
cellulose membranes (Amersham) and then incubated
with anti-GSNOR or anti-nNOS antibody. IgG were
used as negative control.

RT q-PCR
Gastrocnemius was homogenized in TRI-Reagent

(Sigma) and RNA was extracted in accordance with
the manufacturer’s protocol. cDNA was generated using
the GoScript Reverse Transcription System (Promega).
RT q-PCR was performed using the iTAQ Universal
SYBR Green Supermix (Bio-Rad) on ViiA 7 Real-Time
PCR System (Thermo-Fisher Scientific) and data were
analyzed using the second derivative maximum method.
All reactions were run as triplicates and normalized to
the internal standard ribosomal protein L34. Primers
used are the following:
GSNOR FW-tcacttcatggggactagca, RV-ccgagggatcgatttt

agca;
L34 FW-ggtgctcagaggcactcaggatg, RV- gtgctttcccaaccttctt

ggtgt.

Cell culture and transfection
C2C12 cells were grown in DMEM (Thermo-Fisher

Scientific) supplemented with 10% FBS, 1000 U/mL
penicillin-streptomycin at 37 °C in 5% CO2, or in 2% horse
serum-containing DMEM to induce differentiation. When
stated, 24 h after plating, C2C12 cells were transfected
with short-hairpin RNAs against GSNOR designed in our
laboratory and synthesized by Sigma.
Top strand:

5′-tgctgctcccactaccacactga-
cacgttttggccactgactgacgtgtcagtggtagtgggag-3′;
Bottom strand:

5′-cctgctcccactaccactga-
cacgtcagtcagtggccaaaacgtgtcagtgtggtagtgggagc-3′. The

oligonucleotides were cloned in the pcDNA6.2-GW/
EmGFP-miR vector (Thermo-Fisher Scientific) using the
BLOCK-iT™ Pol II miR RNAi Expression Vector Kit with
EmGFP (Thermo-Fisher Scientific) in according to man-
ufacturer’s instructions.

Immunofluorescence
Human tissues: muscle biopsy specimens were derived

from a previous study (https://doi.org/10.1038/
srep30340). They were obtained from the M.G. Vannini
Hospital in Rome (Italy), from patients who signed an
informed consent, after clearance by the local ethical
committee. Biopsy specimens were obtained during the
initial phase of the operation from the rectus abdominis
muscle of patients undergoing abdominal surgery for
non-neoplastic reasons, and used as controls in the pre-
vious study. Reasons for abdominal surgery in controls
were incisional hernia, cholelithiasis, benign prostatic
hyperplasia, epigastric hernia and mesenteric cyst. Biopsy
specimens were immediately frozen in liquid nitrogen and
stored at –80 °C until analysis. Mouse tissues: tibialis
anterior and gastrocnemius were embedded in O.C.T.
(Bio-Optica) and flash-frozen in liquid nitrogen-cooled
isopentane (VWR). All sections were cut to a thickness of
8 μm using a Leika cryostat; fixed in 4% paraformalde-
hyde; permeabilized in 0.2% Triton X-100/1% BSA
(Sigma); blocked in 10% horse serum (Sigma); and incu-
bated for 1 h with: anti-GSNOR (Sigma, 1:100) and anti-
Collagen III (Sigma, 1:100). Afterwards, cryosections were
incubated with labeled secondary antibodies (Thermo-
Fisher Scientific) and examined by a Leica TCS-SP5
confocal microscopy. Fluorescence images were adjusted
for brightness, contrast, and color balance using Fiji40.
Cells: undifferentiated myoblasts (day 0) and differ-
entiated myotubes (day 4) were fixed in 4% paraf-
ormaldehyde, stained with Hoechst 33342 (to visualize
nuclei) and analyzed using an EVOS Floid Cell Imaging
Station (Thermo-Fisher Scientific). Only cells/fibers
expressing the GFP-tagged shRNAs were considered to
quantify the fusion index, which has been evaluated by
counting the number of nuclei in each fiber with Fiji
analysis software40.

Western blotting
Samples from gastrocnemius were homogenized, and

C2C12 cells were lysed in lysis buffer containing 0.15M
NaCl, 10 mM HEPES (pH 7.5). Antibodies used: anti-
nNOS, anti-SOD1, anti-LDH, anti-α-syntrophyn, anti-
myogenin, anti-MHC (Santa Cruz), and anti-GSNOR
(Millipore). Immune-reactive bands were revealed by
Chemidoc System (Bio-Rad) and quantified by densito-
metry using Fiji40.
Protein concentration was determined by the DC™

Protein Assay (Bio-Rad).
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