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The Firing Rate Speed Code of Entorhinal Speed Cells Differs
across Behaviorally Relevant Time Scales and Does Not
Depend on Medial Septum Inputs
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The firing rate of speed cells, a dedicated subpopulation of neurons in the medial entorhinal cortex (MEC), is correlated with running
speed. This correlation has been interpreted as a speed code used in various computational models for path integration. These models
consider firing rate to be linearly tuned by running speed in real-time. However, estimation of firing rates requires integration of spiking
events over time, setting constraints on the temporal accuracy of the proposed speed code. We therefore tested whether the proposed
speed code by firing rate is accurate at short time scales using data obtained from open-field recordings in male rats and mice. We applied
a novel filtering approach differentiating between speed codes at multiple time scales ranging from deciseconds to minutes. In addition,
we determined the optimal integration time window for firing-rate estimation using a general likelihood framework and calculated the
integration time window that maximizes the correlation between firing rate and running speed. Data show that these time windows are on
the order of seconds, setting constraints on real-time speed coding by firing rate. We further show that optogenetic inhibition of either
cholinergic, GABAergic, or glutamatergic neurons in the medial septum/diagonal band of Broca does not affect modulation of firing rates
by running speed at each time scale tested. These results are relevant for models of path integration and for our understanding of how
behavioral activity states may modulate firing rates and likely information processing in the MEC.
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Introduction
Path integration (or dead reckoning) is a very basic form of nav-
igation that is highly conserved across species and relies on self-
motion cues (Mittelstaedt and Mittelstaedt, 1980; Etienne et al.,

1998; Etienne and Jeffery, 2004). Path integration relies on con-
tinuously updating memory of the animal’s location by integrat-
ing speed and running direction. The neuronal correlate of such
a path integrator has been hypothesized to be the regular hexag-
onal spatial firing pattern of grid cells in the medial entorhinal
cortex (MEC; Fyhn et al., 2004, 2008; Hafting et al., 2005). Mod-
ulation of conjunctive grid cells by head direction and running
speed (Sargolini et al., 2006) supports the hypothesis of grid
cells functioning as path integrators (McNaughton et al.,
2006). The emergence of the periodic grid-cell firing pattern
has been modeled using continuous attractor models (Mc-
Naughton et al., 1991; Fuhs and Touretzky, 2006; Burak and
Fiete, 2009) or oscillatory interference models (Burgess et al.,
2007; Burgess, 2008).
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Significance Statement

Path integration is the most basic form of navigation relying on self-motion cues. Models of path integration use medial septum/
diagonal band of Broca (MSDB)-dependent MEC grid-cell firing patterns as the neurophysiological substrate of path integration.
These models use a linear speed code by firing rate, but do not consider temporal constraints of integration over time for
firing-rate estimation. We show that firing-rate estimation for speed cells requires integration over seconds. Using optogenetics,
we show that modulation of firing rates by running speed is independent of MSDB inputs. These results enhance our understand-
ing of path integration mechanisms and the role of the MSDB for information processing in the MEC.

3434 • The Journal of Neuroscience, May 1, 2019 • 39(18):3434 –3453

mailto:hasselmo@bu.edu
mailto:hdannenb@gmail.com


Oscillatory interference and attractor dynamics models both
require a linear running speed signal to update position contin-
uously in time. The running speed of an animal has been shown
to positively modulate the spiking rates of a number of different
functional classes of neurons in the hippocampus (McNaughton
et al., 1983; O’Keefe et al., 1998) and MEC (Sargolini et al., 2006;
Wills et al., 2012; Kropff et al., 2015; Hinman et al., 2016). A
functionally dedicated population of neurons in the MEC has
been proposed to code running speed by firing rate in a linear and
context-invariant manner and have been termed “speed cells”
(Kropff et al., 2015), which are generally assumed to provide the
linear speed signal required for path integration by grid cells.
However, many speed-modulated cells in the MEC have been
shown to be better fit by a saturating exponential than a linear
speed tuning curve (Hinman et al., 2016). Moreover, speed tun-
ing curves are generated by integration over long time periods,
thus leaving the question unanswered whether the animal’s posi-
tion in space is continuously and accurately updated at every
moment in time. Data presented here demonstrate (1) the firing-
rate modulation by running speed is linear at each time scale,
even if the overall speed tuning curve appears to be exponentially
saturating; (2) speed modulation of firing rates differs across time
scales, with steeper speed tuning curves at longer time scales com-
pared with shorter time scales; (3) firing-rate estimation for most
speed cells requires integration over seconds; and (4) the speed
scores of most speed cells peak when firing rates are computed
over second-long time windows. Because of these temporal con-
straints required for accurate firing-rate estimation, we conclude
that the firing modulation by running speed observed in speed
cells reflects different activity states on a seconds-long time scale
rather than providing an accurate moment-to-moment speed
code on the subsecond time scale.

The speed signal has been hypothesized to be conveyed by
speed-modulated activity of neurons in the medial septum/diag-
onal band of Broca (MSDB), which has major projections to the
entorhinal cortex (Alonso and Köhler, 1984). The theta burst
frequency of the majority of MSDB neurons correlate with run-
ning speed (King et al., 1998). Lesions and pharmacological in-
activation of the MSDB disrupt theta (6 –10 Hz) rhythm in the
hippocampal formation (Rawlins et al., 1979; Mitchell et al.,
1982; Mizumori et al., 1990), and inputs from the MSDB pace
theta oscillations (Buzsáki, 2002; Hangya et al., 2009). Theta os-
cillation frequency and amplitude correlate with running speed
in rodents (Jeewajee et al., 2008; Hinman et al., 2011). Oscillatory
interference models of path integration hypothesize that the
slope of the theta frequency versus running speed correlation
reflects the presence of velocity-controlled oscillators whose fre-
quencies increase with running speed (Burgess, 2008). Compu-
tational models suggest a possible role of cholinergic modulation
in coding of novelty, spatial location, and running speed in the
entorhinal cortex (Hasselmo et al., 2017). The y-intercept of the
theta frequency versus running speed relationship is affected by
anxiolytic drugs (Wells et al., 2013; Monaghan et al., 2017),
whereas environmental novelty (Wells et al., 2013) and musca-
rinic cholinergic signaling (Newman et al., 2013) have been
shown to specifically affect the slope of the theta frequency to
running speed relationship. Cholinergic modulation has been
shown to increase visual cue detection (Gritton et al., 2016) and
to enhance sensory processing by nicotinic enhancement of af-
ferent input (Gil et al., 1997; Hsieh et al., 2000; Disney et al., 2007;
Niell and Stryker, 2010; Fu et al., 2014). Furthermore, acetylcho-
line contributes to the integration of idiothetic cues in head di-
rection cells (Yoder et al., 2017). However, pharmacogenetic

activation of medial septum cholinergic neurons (Carpenter et
al., 2017) did not affect firing-rate modulation by running speed,
whereas pharmacological inactivation of the whole MSDB de-
creased speed modulation of intrinsic theta frequency while fir-
ing rates of MEC neurons became more strongly modulated by
running speed (Hinman et al., 2016). To test the role of cholin-
ergic modulation on speed tuning, we used an optogenetic silenc-
ing approach to inactivate the cholinergic MSDB subpopulations
or the whole MSDB in mice with high temporal precision during
voluntary exploration of an open-field environment. Our data
show that firing-rate modulation by running speed in MEC does
not depend on MSDB inputs.

Materials and Methods
Subjects. Before surgery, mice and rats were habituated to the experi-
menter and testing room. All experimental procedures were approved by
the Institutional Animal Care and Use Committee for the Charles River
Campus at Boston University.

The data from rats used for analysis in this study were previously
acquired (Monaghan et al., 2017). Adult male Long–Evans rats (350 – 450
g at day of surgery; Charles River Laboratories) were housed individually
in Plexiglas cages and maintained on a 12 h light/dark cycle at 85% of
their ad libitum weight during the data collection period.

The data from mice were collected for the purpose of this study. Mice
were purchased from The Jackson Laboratory (wild-type, C57BL/6J;
ChAT-IRES-Cre, B6;129S6-Chat tm2(cre)Lowl/J; PV-IRES-Cre, B6;129P2-
Pvalb tm1(cre)Arbr/J; vGluT2-IRES-Cre, Slc17a6 tm2(cre)Lowl/J). Transgenic
mice were maintained as homozygous, and both homozygous and
heterozygous mice were used for experiments. For data collection, adult
male mice were housed in Plexiglas cages together with their siblings
before surgery, but separated for individual housing after surgery, and
maintained on a reversed 12 h light/dark cycle.

Viral transduction. For cell-type-specific targeting of either cholin-
ergic, GABAergic, or glutamatergic MSDB neurons for optogenetic si-
lencing, we used stereotactically targeted virus injections of rAAV S9
FLEX-CAG-ArchT-GFP (Lot AV6222b, UNC Vector Core) into the
MSDB of either ChAT-Cre, PV-Cre, or vesicular glutamate transporter 2
(vGluT2)-Cre mice. For targeting the whole MSDB, an unconditional
version of the same construct was used (rAAV S9 CAG-ArchT-GFP, Lot
AV6221D, UNC Vector Core). For control experiments with mock-
silencing, Cre-transgenic mice were injected with a conditional rAAV
coding for GFP (rAAV S9 FLEX-CAG-GFP, Lot AV5220b, UNC Vector
Core), and wild-type mice were injected with the unconditional version
of the same construct (rAAV S9 CAG-GFP, Lot AV5221, UNC Vector
Core). Virus injection was performed under isoflurane anesthesia two
weeks before the microdrive implantation to allow for sufficient opsin
expression. Virus solution (2 � 250 nl) was injected at two ventral sites
within the MSDB. To that end, a craniotomy was performed 1 mm
anterior and 0.7 mm lateral to bregma, and the injection needle was
lowered 4.8 and 4.4 mm at a 10° polar and �90° azimuth angle, following
stereotactic coordinates from Paxinos and Franklin (2008). The injection
needle (34 g, beveled; WPI) was left in place for 3 and 5 min after the first
and second injections (100 nl/min; UMP3 electrical pump, WPI) to pre-
vent backflow of the injected virus solution.

Surgery for microdrive implantation in rats. Rats were implanted with
recording drives housing up to 20 individually moveable tetrodes, of
which four were used as reference tetrodes, targeted to the deep and
superficial layers of MEC. The details of surgical procedures for neural
recordings in rats are given by Monaghan et al. (2017). Briefly, rats were
anesthetized with isoflurane and an initial injection of ketamine/xyla-
zine/acepromazine mixture (ketamine: 12.92 mg/kg, acepromazine: 0.1
mg/kg, xylazine: 1.31 mg/kg) and buprenorphine (50 �g/kg). Two
craniotomies were performed: one for implantation of a drug delivery
cannula aimed toward the MSDB for use in another set of experiments
(0.5 mm anterior, 3.0 mm lateral to bregma, lowered 6.0 mm from brain
surface at a 25° polar and �90° azimuth angle), and one for implantation
of the microdrive just anterior of the transverse sinus (most lateral and
posterior corner, where the left bone ridge and lambda suture meet,
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angled 25° in the posterior direction (25° polar, 180° azimuth angle). One
to two ground screws were implanted above the cerebellum, and 10
anchoring screws were positioned across the skull. Once the implant was
firmly secured with dental cement, tetrodes were lowered 2–3 mm from
the dorsal brain surface at surgery. Animals were allowed 1 week to
recover fully after surgery before beginning of recordings.

Surgery for light fiber and microdrive implantation in mice. Mice were
injected with buprenorphine (0.1 mg/kg, s.c.) and atropine (0.1 mg/kg,
i.p.), and chronically implanted under isoflurane anesthesia with
8-channel Axona microdrives carrying two movable tetrodes.

One ground screw was implanted above the cerebellum, five anchor-
ing screws were positioned across the skull, and two craniotomies were
performed for implantation of the light fiber (200 �m core, NA: 0.22;
MFC_200/240-0.22_8mm_SMR_FLT, Doric Lenses), 1.0 mm anterior
and 0.7 mm lateral to bregma, and for implantation of the microdrive,
0.3 mm anterior to the edge of the transverse sinus, 3.3 mm lateral to the
midline. The light fiber was lowered 4.0 mm from the brain surface at an
8° polar and �90° azimuth angle and cemented on the animal’s skull.
Tetrodes were then implanted with a 4° polar and 0° azimuth angle,
lowered 0.6 mm into the brain, and cemented onto the skull. Animals
were given buprenorphine (0.1 mg/kg, i.p.), enrofloxacin (7.5 mg/kg,
i.p.), and ketoprofen (3 mg/kg, i.p.) during a 5 d postsurgical care period
and allowed 1 week in total to fully recover after surgery before beginning
of recordings.

In vivo electrophysiological recordings. Before implantation, impedance
of tetrodes [12.7 �m nichrome wire (California Fine Wires) for rats, 17
�m platinum wires (California Fine Wires) for mice] was adjusted by
electroplating to � 150 k�. Recordings were performed on the left hemi-
sphere. Tetrodes were lowered daily by 35 �m in rats or 50 �m in mice,
until theta rhythmic cells could be recorded indicating that tetrode tips
were located in the deep or superficial cell layers of MEC, and recording
sessions began. After each recording day, tetrodes were lowered further
to advance through the cell layer until no further spiking activity could be
recorded. Neural signals were pre-amplified by unity-gain operational
amplifiers located on each animal’s head.

For rats, signals were AC-coupled to digital amplifiers of the 64-
channel Cheetah Digital Lynx acquisition system (NeuraLynx). When a
signal crossed threshold, all four channels of the tetrode were digi-
tized at 32 kHz and recorded. Information about position and head
direction of the rat was obtained at 30 Hz via an overhead video
camera that monitored a red (anterior) and green (posterior) LED
attached to the headstage.

For mice, signals were AC-coupled to an Axona recording system.
When a signal crossed threshold all four channels of the tetrode were
digitized at 48 kHz and recorded. Information about position and head
direction of the mouse was obtained at 50 Hz via an overhead video
camera that monitored a small (right) and big (left) infrared LED at-
tached to the headstage. EEG signal was recorded single-ended with the
ground screw as reference at a 4800 Hz sampling rate.

Spikes were clustered using spike clustering software (for mice: Dac-
qUSB/Tint, Axona; for rats: Offline sorter, Plexon). All further off-line
analyses were performed using MATLAB (MathWorks) and custom-
written MATLAB scripts.

Behavioral testing. All recordings were performed while animals for-
aged for small pieces of Froot Loops (Kellogg) in the open-field environ-
ment. A typical recording session lasted 20 min for rats and 46 min for
mice.

Rats were familiarized with foraging for pieces of Froot Loops in an
open-field environment (1 � 1.5 m) with three black and one white
painted wall. Distal cues surrounding the environment were visible to the
rat.

Mice were trained to forage for pieces of Froot Loops in an open-field
environment (1 � 1 m) with 60 cm high black walls and a white letter-
size cue card at one wall. The recording environment was surrounded by
black curtains.

Laser stimulation for optogenetic silencing of MSDB neurons. For laser
stimulation in mice, we used a fiber-coupled 532 nm laser (OBIS FP,
Coherent), which was digitally modulated via the recording software.
Laser light was delivered into the brain via a system of fiber patch cords

(Thorlabs) and a rotary joint (FRJ_1�1_FC-FC, Doric Lenses). The last
connection was a magnetic connection to the implanted light fiber. The
laser light power entering the implanted light fiber was measured before
and after every recording session and adjusted before the recording ses-
sion to yield an estimate of 15–25 mW laser power delivered into the
MSDB. Laser stimulation was applied in alternating 120 s Laser OFF and
145 s Laser ON periods until the end of the recording session (a typical
recording session lasted 2770 s with 11 Laser OFF and 10 Laser ON
periods).

Histology. After the end of electrophysiological data collection, ani-
mals were deeply anesthetized by isoflurane or intraperitoneal injection
of Euthasol (390 mg/kg), followed by electro-lesions (20 �A, 16 s)
through one channel of each tetrode and subsequent transcardial perfu-
sion with saline followed by 10% buffered formalin (SF100-4, Thermo-
Fisher Scientific). Brains were extracted and stored in fixative for 1 d.
Cresyl violet staining was performed on 50 �m sagittal slices of MEC to
visualize tetrode tracks.

For immunolabeling of ArchT-GFP and ChAT in the MSDB, 50 �m
coronal sections of the MSDB were incubated with first antibodies (goat
anti-ChAT affinity purified polyclonal antibody, catalog #AB 144P,
Merck Millipore, diluted 1:500; rabbit anti-GFP affinity purified poly-
clonal antibody, catalog #ab6556 OR ab290, Abcam, diluted 1:1000),
followed by secondary antibodies (Cy3-conjugated donkey anti-goat-
IgG polyclonal antibody, catalog #AP180C, Merck Millipore, diluted
1:1000; FITC-conjugated donkey anti-rabbit-IgG polyclonal antibody,
catalog #711-096-152, Dianova, diluted 1:1000).

Calculation of running speed, instantaneous firing rate, and speed scores.
The animal’s running speed was estimated by applying a Kalman filter to
the positional data obtained from the video tracking (Fyhn et al., 2004;
Kropff et al., 2015). To obtain an instantaneous firing rate signal, we
calculated the instantaneous firing rate as the number of spikes per video
frame period (33 ms for rats, 20 ms for mice), and smoothed this signal
with a 125 ms Gaussian filter. Speed tuning curves (STCs) were created
by binning the firing rate into 1 cm/s speed bins ranging from zero to the
99th percentile of running speeds.

The speed score was calculated as the Pearson’s product moment cor-
relation between firing rate and running speed (Kropff et al., 2015).

Filtering of running speed and firing rate to obtain speed tuning at differ-
ent time scales. To analyze speed tuning at different time scales in the
range from 0.125– 0.25 s up to 256 –512 s in rats or 512–1024 s in mice, we
applied time-domain filters to the running speed and instantaneous
firing-rate signals. For filtering at a time scale [t1, t2], the signal
smoothed with a t1-sized window was subtracted from the signal
smoothed with a t2-sized window. This results in a demeaned time-
domain filtered signal. Time scale-dependent STCs were then calculated
for the filtered running speed and filtered firing-rate signal.

Classification of speed-modulated neurons. In a first step, time scale-
dependent speed scores were calculated for each cell at time scales rang-
ing from 1 to 2 s up to 256 –512 s in rats or 512–1024 s in mice. In a second
step, hierarchical clustering of cells based on the Euclidean distance be-
tween time scale-dependent speed scores was computed using the clus-
tergram function of the bioinformatics toolbox in MATLAB. The
minimal linkage distance for separation of clusters was arbitrarily set to
0.9 (mouse dataset) or 0.95 (rat dataset) to create a reasonable number of
clusters. The results of this hierarchical clustering approach for identifi-
cation of speed-modulated neurons were compared with the classifica-
tion results of a more classical shuffling procedure: chance-level statistics
for determination of significant speed modulation were constructed by a
shuffling procedure where the 20 ms (mouse data) or 33 ms (rat data)
binned spike train of a given cell was randomly shifted in time in a
circular manner, so that spikes exceeding the recording length after shift-
ing were added at the beginning of the shifted spike train (Ye et al., 2018).
The shuffling procedure was repeated 1000 times for each cell to create a
null distribution of overall speed scores. A cell was classified as signifi-
cantly speed modulated (negatively or positively) if its speed score was
below the first or above the 99th percentile of that null distribution,
respectively.

Maximum likelihood estimates of linear and exponentially saturating
speed tuning curves. Maximum likelihood estimates (MLEs) of linear and

3436 • J. Neurosci., May 1, 2019 • 39(18):3434 –3453 Dannenberg et al. • Firing-Rate Modulation by Running Speed



exponentially saturating fits were obtained as previously described in
detail (Hinman et al., 2016) for all speed-modulated neurons using the
mle function in MATLAB. If a speed-modulated cell’s firing rate was
significantly better predicted by the exponentially saturating fit com-
pared with the linear fit at an � level of 0.05, the cell was classified as
saturating exponentially tuned. Otherwise, it was classified as linearly
tuned.

Calculation of Poisson-distributed spike trains. For each cell and for
each time point (20 ms time bins) a random number of spikes was drawn
from a Poisson distribution with the parameter � set to the expected
firing rate given the animal’s running speed at that time point based on
the linear fit STC for that cell.

Decoding of running speed from firing rates of speed-modulated neurons.
We implemented a linear decoder as described in detail by Kropff et al.
(2015) for decoding running speed from the firing rates of simultane-
ously recorded speed-modulated neurons. The linear decoder was
trained on the first half of the dataset and tested on the second half of the
dataset. To decode the raw running speed signal, we used the instanta-
neous firing-rate signal and the raw running speed signal as inputs. To
decode time-scale-dependent running-speed signals, we used the time-
scale filtered firing-rate signals and time-scale filtered running-speed
signals as inputs. Accuracy of decoding was measured as the Pearson
product-moment correlation coefficient between the decoded and ob-
served speed signals.

General likelihood framework for estimation of firing rates. To compute
a firing rate, a spike train has to be smoothed using a kernel with a given
bandwidth. The choice of the bandwidth parameter artificially imposes
assumptions regarding the time scale of meaningful changes in firing rate
(Prerau and Eden, 2011). To find the bandwidth that most accurately
integrates spike times in a given spike train to create a firing-rate esti-
mate, we used the general likelihood framework for characterizing the
time course of neural activity developed by Prerau and Eden (2011). This
method requires selection of a kernel and a bandwidth parameter which
determines the temporal range over which the kernel smoothing proce-
dure integrates information about the spike train to convert a discontin-
uous spike train into a continuous firing-rate estimate. For each spike in
the spike train, a firing-rate estimate is computed by kernel smoothing
over the surrounding spikes leaving the data point in the center out. The
firing-rate estimate obtained from this procedure is then used to calcu-
late the log-likelihood of a spiking event at the omitted time point. The
log-likelihoods for all time points in the spike train are summed and the
whole process is repeated for another bandwidth parameter. The band-
width parameter which maximizes the summed log-likelihood is consid-
ered the optimal bandwidth for firing-rate estimation. We used a Hann
kernel w, as follows:

w�t;k� � �1

2 �1 � cos� 2�t

k � 1�� for �
k

2
	 t 


k

2
, and t � 0,

0 otherwise
,

where k is the bandwidth parameter (length of the kernel) in units of
time t.

Oscillatory interference model of grid cell firing. To model the impact of
integrating running speed over time on grid cell spatial periodicity, we
used the oscillatory interference model of grid cell firing developed by
Burgess et al. (2007) and studied further by Hasselmo et al. (2007) and
Giocomo et al. (2007). This model depends on appropriate speed- and
direction-dependent inputs to generate a grid-like firing pattern in two-
dimensional space.

LFP analysis. LFP data were downsampled to 600 Hz and power spec-
tral density analyses were performed using custom written MATLAB
scripts and the FieldTrip toolbox (Oostenveld et al., 2011).

Time-frequency analysis. Time-frequency analysis of LFP power was
performed using the FieldTrip multitaper method based on Slepian se-
quences with adjustable time windows containing 10 numbers of cycles
per frequency in 0.2 Hz steps, and time increments of 0.1 s.

To analyze effects of rhythmic optogenetic silencing on LFPs, time-
frequency analysis was performed (see above), and z-scores were as-
signed to each time and frequency bin of the resulting spectrograms using

the full-epoch-length single-trial baseline correction method developed
by Grandchamp and Delorme (2011). For each stimulation frequency,
we computed the differences of the z-scores at those stimulation frequen-
cies and the mean z-scores of the adjacent frequencies (�10% of the
stimulation frequencies) and averaged the resulting values across ses-
sions. To assess significance, we tested whether LFP effects were signifi-
cantly locked to the time of rhythmic stimulation. To that end, we
computed a surrogate distribution of all possible 120 s epochs, and com-
puted p values based on the rank of the observed data within that surro-
gate distribution.

Quantification of theta peak power. The theta peak power in the
smoothed power spectrum was measured relative to a baseline defined by
the linear interpolation between the values at frequencies surrounding
the theta peak.

Instantaneous theta frequency versus running speed. A theta frequency
range was determined for each animal based on the range of the theta
peak in the power spectral density plot (lower bound: 6.22 � 0.82 Hz,
higher bound: 10.21 � 0.67 Hz). The LFP signal was then bandpass
filtered at this theta frequency range with a third-order Butterworth
filter, and the instantaneous theta amplitude and phase were determined
via a Hilbert transform. Based on the instantaneous theta phase informa-
tion, an instantaneous theta frequency was calculated for each point in
time and matched with running speed information. To analyze changes
in the theta frequency versus running speed relationship, we binned theta
frequency by running speed at a bin width of 1 cm/s, and calculated the
y-intercept and slope of the linear regression.

Experimental design and statistical analysis. Details on statistical anal-
yses on each experiment are reported in Results or Materials and Meth-
ods. Details on the MLE linear and saturating exponential fits were
provided by Hinman et al. (2016). Details on data collection from rats
were provided by Monaghan et al. (2017). In experiments using optoge-
netic silencing, if not mentioned otherwise, we excluded the first 5 s after
laser offset and the first 30 s after laser onset from analyses to account for
activation and deactivation kinetics of effects mediated by G-protein-
coupled receptors.

Code accessibility. Custom MATLAB code used for data analysis can be
found at https://github.com/hasselmonians or can be made available
upon request.

Results
Firing-rate modulation by running speed in entorhinal cortex
speed cells differs across time scales
To study firing-rate modulation by running speed of entorhinal
cortex speed cells at different time scales, we recorded activity
from single units (n 	 665) in the medial entorhinal cortex of rats
(n 	 11) during exploration of an open-field environment (1 �
1.5 m; see Materials and Methods) and applied a novel filtering
approach (see Materials and Methods) to differentiate between
time scale-dependent changes in running speed and firing rate at
time scales ranging from 0.125– 0.25 s up to 256 –512 s (Fig. 1).
Using the convention introduced by Kropff et al. (2015) we de-
fined a speed score as the Pearson correlation coefficient between
the animal’s running speed and a cell’s firing rate. However, this
speed score does not reflect possible differences of speed modu-
lation across time scales. Therefore, in addition to an overall
speed score, we calculated time scale-specific speed scores for
each time scale. This allowed us to use an unbiased hierarchical
clustering approach (see Materials and Methods) to identify clus-
ters of cells with similar time scale-dependent speed scores. Using
this hierarchical clustering approach, we identified a set of neu-
rons showing clear positive speed modulation of firing rate (n 	
182 of 665 cells, 27.4%, Clusters A and B; Fig. 2A,B) with a
smaller fraction (n 	 6 of 665 cells, 1%, Cluster A) of very
strongly speed-modulated neurons and a larger fraction (n 	 176
of 665 cells, 26.5%, Cluster B) of moderately to strongly speed-
modulated neurons. Together, these cells formed a smaller, but
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more precisely defined speed-cell cluster compared with the re-
sult of a classification method that uses an arbitrarily set thresh-
old of the 99th percentile of a null distribution of speed scores
from spike trains randomly shifted in time (n 	 282 cells of 665,

42.4%; see Materials and Methods). Yet, n 	 181 cells of 182
(99.5%) identified as speed-modulated using the clustering ap-
proach were also classified as speed-modulated by the speed score
threshold approach. Consistent with earlier reports (Kropff et al.,

Figure 1. Filtering of speed and firing-rate signals distinguishes between speed modulation at different time scales. Speed modulation of firing rate at different time scales shown for an example
neuron of the rat dataset (same example neuron in Fig. 2). The top row shows unfiltered data (instantaneous running speed and firing-rate signal). The following rows show time scale-filtered data
with the time scales indicated on the left . Speed scores calculated at each time scale are given at the bottom right of each row. For better comparison of running speed and firing rate, data are
presented as z-scores. Blue traces represent z-scores of time-scale filtered running speed; red traces represent z-scores of time-scale filtered firing rate. The top four rows show 100 s of data, the
middle four rows show 200 s of data, and the bottom five rows show data on the entire 20 min recording session.
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Figure 2. Firing-rate tuning by running speed in the entorhinal cortex of rats differs across time scales. Time scale-dependent speed scores allow clustering of neurons recorded in the rat
entorhinal cortex into different speed-cell categories. A, Clustergram showing hierarchical clustering of 665 single units recorded in MEC of 11 rats. Each row depicts color-coded speed scores
calculated for each time scale ranging, exponentially increasing, from 1 to 2 s up to 256 –512 s (see Materials and Methods). Distinct clusters of clearly speed-modulated neurons can be identified.
B, Mean � SEM of time scale-dependent speed scores of clusters identified in A. C–E, Data on one speed-modulated example cell in Cluster B. C, Time scale-dependent speed tuning. Black dots show
binned data (time-scale filtered firing rate vs time-scale filtered running speed); red lines show the least-square linear fits to binned data, r 	 Pearson correlation coefficient. D, The overall speed
tuning curve of the example cell. Black dots and gray shading show mean values and 95% confidence intervals of speed-binned firing-rate data; blue and red lines show (Figure legend continues.)
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2015; Hinman et al., 2016) we also identified a smaller fraction of
neurons showing negative speed modulation of firing rate (n 	
45 of 665 cells, 6.8%; Fig. 2A,B, Cluster F).

Our data demonstrate that the absolute speed scores increase
with time scales for all identified clusters (Fig. 2B) indicating that
speed modulation by firing rate becomes more accurate when
integrating a speed-modulated cell’s firing rate over longer peri-
ods of time. Speed modulation by firing rate is generally assumed
to be reflected in the cell’s STC (Fig. 2D). However, STCs are
generated by integrating over the whole recording time, which
typically ranges from several minutes up to 1 h (Wills et al., 2012;
Kropff et al., 2015; Hinman et al., 2016). Therefore, STCs do not
differentiate between fast changes of firing rates on short time
scales, which can be assumed to be important for path integration
mechanisms versus slow changes of firing rates on longer time
scales, which may reflect changes of metabotropic neuromodu-
latory input associated with different behavioral activity states.

The observed increase in time-scale-dependent speed scores
with longer time scales raises the question whether a proposed
speed code by firing rate, as reflected by a cell’s STC, is accurate at
shorter time scales. To address this, we calculated an STC for each
time scale by binning time scale-dependent firing rate by time
scale-dependent running speed to investigate whether STCs
change across time scales. Interestingly, the slopes of time scale-
dependent STCs become steeper at longer time scales (Fig. 2E,F
for mean-normalized slopes) indicating less accurate coding of
running speed at short time scales.

Speed coding by firing rate becomes inaccurate at short
time scales
One possible explanation for less-accurate speed coding at
shorter time scales may be Poisson noise of spike timing. To
determine whether our findings of flatter STC slopes and lower
speed scores at shorter time scales are simply due to Poisson noise
or instead reflect a genuine lack of speed tuning accuracy at
shorter time scales, we simulated Poisson-distributed artificial
spike trains based on the MLE linear fits of the speed-modulated
cells. These artificial Poisson distributed spike trains were thus
designed to be perfectly speed modulated with their STCs match-
ing the MLE linear fits given by the observed data. Notably, STC
slopes approached zero at subsecond time scales in both the ob-
served and simulated data, indicating the dominance of noise at
subsecond time scales. In contrast to the observed data, the sim-
ulated Poisson-distributed spike trains did not show differential
speed coding for second-long time scales as revealed by similar
normalized STC slopes across second-long time scales (Fig.
2E,F). The difference between the observed data and the simu-
lated control data was highly significant (two-way ANOVA inter-
action effect, F(11,4344) 	 26.00, p 	 0.0000) indicating that the

observed increases in time scale-dependent STCs are real and not
an artifact of our filtering approach.

In summary, these data show that (1) speed tuning is linear at
each individual time scale, (2) STC slopes of most speed-
modulated cells become steeper at longer time scales indicating
that a proposed speed code by firing rate is less accurate at short
time scales, and (3) this lack of accuracy at short time scales
cannot be explained by the Poisson nature of neuronal firing.

The smoothing parameter maximizing the prediction of
spiking events given the firing rate is on the order of seconds
Firing rate is a convenient mathematical construct rather than a
biologically observable signal and thus it is impossible to empir-
ically evaluate the accuracy of a firing-rate estimate (Prerau and
Eden, 2011). To overcome this problem, we used the general
likelihood framework for estimation of firing rates from neural
spike train data developed by Prerau and Eden (2011). This gen-
eral likelihood framework identifies the smoothing parameter
(bandwidth of a Hann kernel; see Materials and Methods) for a
firing-rate estimate, which allows the best statistical prediction of
spiking events. This parameter is thus solely based on the spike
train itself. The optimal bandwidth is found by maximizing the
log-likelihood of the firing-rate estimate. The optimal band-
widths for firing-rate estimation in the rat dataset followed a
log-normal distribution with a median of 4.97 s (Fig. 2G, left).
Likewise, the bandwidth-dependent log-likelihoods of firing-rate
estimates peaked on average at 4.80 s (Fig. 2G, right). These data
indicate that second to subsecond short time scales are too short
for providing a meaningful readout of firing rates.

The smoothing parameter maximizing the correlation of
firing rate and running speed is on the order of seconds
The general likelihood framework described above is indepen-
dent of any external physical world variable. Because we were
specifically interested in the relationship between firing rate and
running speed, we additionally asked which smoothing parame-
ter (bandwidth) maximizes the correlation between firing rate
and running speed. To that end, we calculated a speed score for a
range of bandwidths. The speed scores of speed-modulated neu-
rons in rat MEC peaked on average at 3.25 s (Fig. 2H).

The entorhinal speed code by firing rate differs across
time scales
The previous data indicate that the running speed code by firing
rates of speed-modulated neurons in the MEC differs across time
scales and reflects changes of running speed at second-long, but
not subsecond-long time scales. To test this hypothesis further,
we tested whether running speed can be decoded separately at
each time scale. To that end, we used a linear decoder (see Mate-
rials and Methods) to decode running speed from the firing rates
of 12 simultaneously recorded speed-modulated MEC neurons
(Fig. 3A). We applied the same linear decoder to the time scale-
filtered firing rates. Decoding of running speed was poor at short
time scales (Fig. 3B). Notably, decoding of running speed works
best at second-long time scales.

Together, these data show that the speed code by firing rate
differs across time scales and can only provide accurate informa-
tion for decoding of running speed at seconds-long, but not
subsecond-long time scales.

4

(Figure legend continued.) the best MLE linear (blue) and saturating exponential (red) fit
functions obtained by temporal binning of firing rate, shadings indicate 95% confidence inter-
vals. E, Slopes of observed time scale-dependent speed tuning curves for the example cell
(orange curve) compared with mean � SEM of slopes derived from 100 artificially created
linearly tuned Poisson-distributed spike trains (blue line, SEM within line). F, Mean � SEM of
mean-normalized speed tuning curve slopes across all cells (orange, positively speed-
modulated cells of Clusters A and B; blue, artificially created Poisson-distributed spike trains,
one Poisson train per cell, n 	 182). Observed spike trains differ significantly from artificial
ones, F(11,4344) 	 26.00, p 	 0.0000, two-way ANOVA interaction effect. G, Left, Distribution of
optimal bandwidths for firing-rate estimation. Right, Population average (mean � SEM) of
bandwidth-dependent log-likelihoods of firing-rate estimates. H, Population average
(mean � SEM) of bandwidth-dependent speed-score distributions.
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The speed code by firing rate is too slow to maintain grid cell
spatial periodicity in an oscillatory interference model of
grid-cell firing
Speed cells in the MEC have been proposed to be the source of the
linear running-speed signal required for path integration by grid
cells. However, models of path integration and grid-cell firing do
not consider the temporal constraints of integrating firing rates
over time for accurate decoding of running speed. We therefore
asked how smoothing the running speed signal affects the spatial
periodicity of grid-cell firing in the oscillatory interference model
(Burgess et al., 2007). We demonstrate that smoothing of the
running speed signal with boxcar filters 
�200 ms severely dis-
rupts the hexagonal firing pattern of grid cells (Fig. 4). These
results indicate that the speed code by firing rate is too slow to
provide an accurate running-speed signal needed for grid-cell
firing in a model based on integration of velocity.

Using optogenetics to investigate the contribution of the
medial septum to speed coding by firing rate in the entorhinal
cortex
Our finding of steeper time scale-dependent STC slopes at longer
compared with shorter time scales supports the hypothesis that
the slower time scale of metabotropic receptor-mediated neuro-
modulatory effects, in particular cholinergic signaling, might
play a central role in affecting firing rates of speed-modulated
neurons in the entorhinal cortex. Because lesion studies and
pharmacological inactivation of MSDB activity used in previous

studies lack temporal precision and cell-type specificity, we
decided to use an optogenetic silencing approach using rAAV
transduction of medial septum cholinergic neurons with Cre-
dependent Archaerhodopsin T (ArchT) 3.0 in mice expressing
Cre recombinase under the control of the choline acetyltrans-
ferase (ChAT) promoter (Fig. 5). After viral transduction, mice
were implanted with a 200 �m core light fiber to deliver light of
532 nm (15–25 mW) into the MSDB to silence ArchT-expressing
neurons in the MSDB (see Materials and Methods). Because we
could not exclude that visual effects of scattered laser light may
affect the mouse behavior or electrophysiological data, we per-
formed control recordings, in which laser light was prevented
from entering the brain to mimic effects of scattered laser light on
vision without directly affecting MSDB neurons. In the follow-
ing, we refer to this group as the laser control group. In addition
to visual effects, delivery of laser light into brain tissue results in
local heating of brain tissue (Arias-Gil et al., 2016; Shin et al.,
2016), which can affect brain activity, most likely resulting in a
local increase of neuronal firing rates. To control for heating and
other possible unwanted effects of laser light delivery into the
brain, we performed control experiments in ChAT-Cre mice
conditionally expressing green fluorescent protein (GFP) in cho-
linergic MSDB neurons, mimicking the sparse expression of vi-
rally transduced protein observed in the experimental groups for
optogenetic silencing of MSDB subpopulations. In the following,
we refer to this group as the GFP control group. To exclude that
laser stimulation or optogenetic manipulation of cholinergic

A

B

Figure 3. Running speed can be decoded separately at each time scale. Running speed is decoded from the firing-rate information of n 	 12 simultaneously recorded speed-modulated neurons
in MEC. Blue traces show the observed running speed; brown traces show decoded running speeds. Speed scores are given in top left corners. A, Running speed decoded from the instantaneous firing
rate. B, Time scale-dependent running speeds decoded at time scales ranging from 0.125 to 0.25 s up to 256 –512 s.
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MSDB neurons affect exploratory behavior, in particular running
speed, we computed the mean running speed across sessions for
each mouse and compared a 60 s baseline period with the 145 s
laser stimulation and a 60 s poststimulation baseline period.
When data contained at least five mice per group, we also com-
puted the average across mice. Running speed was not affected in
any group tested (Table 1) and no other behavioral effects of laser
stimulation were observed.

Having confirmed that laser stimulation or optogenetic si-
lencing of cholinergic MSDB neurons does not affect behavioral
running speed, we investigated the effects of laser stimulation and
optogenetic silencing on LFP dynamics in the MEC. One well
known major electrophysiological effect of MSDB manipulations
are changes in theta rhythmic activity. In particular, theta rhyth-
mic activity is strongly reduced in animals with MSDB lesions as
well as during pharmacological inactivation of the MSDB. We

Figure 4. Grid-cell spatial periodicity cannot be maintained in an oscillatory interference model of grid cell firing, when running speed is integrated over
�200 ms. Grid-cell firing was modeled
using the oscillatory interference model (see Materials and Methods). Left, Random trajectory (gray lines) of an animal exploring a rectangular arena (1�1 m in size); red dots indicate spiking events
of the modeled grid cell. Right, The unsmoothed running speed signal (blue) compared with smoothed running speed signals (green). A, No smoothing; B, 60 ms smoothing; C, 100 ms smoothing;
D, 200 ms smoothing; E, 400 ms smoothing; F, 1000 ms smoothing of running speed.
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therefore investigated how continuous optogenetic silencing of
cholinergic MSDB neurons affected theta rhythmic activity. To
that end, we computed spectrograms to visualize changes of theta
frequency and power over time during continuous laser stimula-
tion (Fig. 6, first column) and computed the relative theta peak
power during baseline and optogenetic silencing epochs for

quantification purposes (see Materials and Methods). Theta
power was not affected by laser stimulation in animals of the laser
control and GFP control groups (Fig. 6A; Table 2). However,
theta frequency was slightly increased during laser stimulation in
the GFP control as well as the cholinergic inhibition group (Table 3),
presumably caused by heating of tissue. This change in theta

Figure 5. Optogenetic silencing of MSDB neurons in combination with single-unit recordings in the MEC. A, Schematic of laser stimulation in MSDB and single-unit recordings in MEC of the left
hemisphere (top left). Positional data and single-unit recordings are acquired while the mouse is freely moving in a 1 m 2 open-field environment (bottom right). Baseline (Laser OFF; gray) periods
(120 s) are alternating with laser stimulation (Laser ON; green) periods (145 s); see Materials and Methods for details of laser stimulation. A typical recording session lasts 46 min. Only the last 115 s
of each baseline or laser stimulation period are analyzed in account of slow time scales of muscarinic receptor-mediated effects. Tetrode positions are confirmed by post hoc electro-lesions and
cresyl-violet staining (top right). B, Unconditional ArchT-GFP expression (ArchT) in the MSDB of one example mouse, and schema of light fiber placement to deliver light into the MSDB. Scale bar,
100 �m. Schematic adapted from Paxinos and Franklin (2008). C–E, Immunofluorescence data showing expression of GFP or ArchT-GFP (FITC; green signal, left), and ChAT (Cy3; red signal, middle),
and merged signals (right). C, Example data showing cell-type-specific expression of GFP in cholinergic neurons of the MSDB of a ChAT-Cre mouse. Scale bars, 100 �m. D, Example data showing
cell-type-specific expression of ArchT-GFP in cholinergic MSDB neurons of a ChAT-Cre mouse. Scale bars, 200 �m. E, Example data showing no overlap of GFP and Cy3 signals in PV-Cre mice,
indicating ArchT is conditionally expressed in GABAergic MSDB neurons after viral transduction of PV-Cre mice. Scale bars, 200 �m. F, Example data showing no overlap of GFP and Cy3 signals in
vGluT2-Cre mice, indicating ArchT is conditionally expressed in glutamatergic MSDB neurons after viral transduction of vGluT2-Cre mice. Scale bars, 200 �m.

Table 1. Running speed is not affected by optogenetic silencing of MSDB neurons

Mean � SD

Group
Running speed before laser
stimulation, cm/s

Running speed during laser
stimulation, cm/s

Running speed after laser
stimulation, cm/s n Df; factor, error F statistic p

Average across mice Laser control 8.24 � 3.23 8.09 � 3.36 8.74 � 3.82 7 2, 18 0.07 0.93
GFP control 6.35 � 1.11 6.44 � 1.41 6.32 � 1.06 5 2, 12 0.01 0.99
ChAT-Cre 8.41 � 3.62 8.76 � 3.27 8.72 � 3.73 10 2, 27 0.03 0.97

Average across sessions Wild-type, ArchT 7.29 � 3.65 7.25 � 3.84 7.51 � 3.63 15 2, 42 0.02 0.98
3.43 � 1.34 3.23 � 1.08 4.57 � 1.97 11 2, 30 2.53 0.10

10.53 � 1.84 12.26 � 2.49 12.13 � 2.88 9 2, 24 1.41 0.26
9.51 � 3.43 8.06 � 2.31 11.99 � 6.97 9 2, 24 1.63 0.22

PV-Cre 9.67 � 4.95 10.00 � 5.45 9.73 � 4.74 4 2, 9 0 1.00
10.27 � 3.17 10.94 � 2.92 10.46 � 2.94 9 2, 24 0.12 0.89
13.43 � 4.98 11.03 � 3.33 11.70 � 3.82 5 2, 12 0.46 0.65

vGluT2-Cre 6.73 � 1.91 6.19 � 1.69 5.61 � 1.49 5 2, 12 0.53 0.60
7.77 � 2.17 7.13 � 1.20 6.89 � 1.88 24 2, 69 1.55 0.22
6.04 � 1.90 5.07 � 2.01 5.78 � 1.32 10 2, 27 0.80 0.46

Df, Degrees of freedom; n, sample size. Statistics were performed across mice if the number of mice �5, otherwise across sessions per mouse.

Dannenberg et al. • Firing-Rate Modulation by Running Speed J. Neurosci., May 1, 2019 • 39(18):3434 –3453 • 3443



Figure 6. Effects of optogenetic silencing of MSDB neurons on LFP dynamics in entorhinal cortex. First column, Spectrograms of theta oscillatory power in MEC during baseline and continuous
light stimulation of MSDB. Thirty second baseline activity followed by 145 s continuous laser stimulation, followed by 30 s poststimulation baseline activity. Color scale reflects power in arbitrary
units. Panels show averages across mice; see Table 2 for statistics. Second column, Instantaneous theta frequency versus running speed plots, baseline (black) compared with continuous laser
stimulation (Laser ON; green), data depicted as mean � SEM across mice; see Table 3 for statistics. Third column, Spectrograms of LFPs in MEC during baseline (first 60 s) and rhythmic laser
stimulation in the range of 6 –12 Hz (four 60 s periods of stimulation at 6, 8, 10, and 12 Hz). Color scale reflects logarithmic power in arbitrary units; see Table 4 for statistics. Fourth column,
Spectrograms of LFPs in MEC during baseline (first 60 s) and rhythmic laser stimulation in the range of 20 –50 Hz (four 60 s periods of stimulation at 20, 30, 40, and 50 Hz). Color scale reflects
logarithmic power in arbitrary units; see Table 4 for statistics. A, Data on control groups and cholinergic silencing. First row, Data for recording sessions, where the laser light was prevented from
entering the brain to control for laser stimulation effects on vision (laser control group), mice pooled across different transgenic backgrounds. Visual effects of scattered laser light does not affect
theta power (first panel), nor theta frequency (second panel), and has no or little effects on LFP dynamics in MEC (third and fourth panels; Table 2). Second row, Control data from mice in which only
GFP was conditionally expressed in ChAT-Cre neurons (GFP control group). Laser light delivery into the MSDB slightly increases theta frequency (first panel) independent of running speed (second
panel). Rhythmic laser stimulation has no or little effects on LFP dynamics in MEC (Table 2). Third row, Data for ChAT-Cre mice conditionally expressing ArchT in cholinergic MSDB neurons. B, Positive
control for optogenetic silencing by manipulations of other than cholinergic MSDB subpopulations. First row, Data for wild-type mice unconditionally expressing (Figure legend continues.)
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frequency was independent of running speed, as evident by the
significant change in y-intercept, but not the slope of the running
speed versus theta frequency relationship (Table 3). In contrast,
y-intercept and slope of the running speed versus theta frequency
relationship was not significantly changed during laser stimula-
tion in the laser control group (Table 3). Cholinergic silencing
showed no detectable effects on LFP theta dynamics, which
prompted us to perform positive control experiments to verify
the effectiveness of optogenetic silencing. Experimental data
show a strong role of GABAergic, but not cholinergic or glutama-
tergic, MSDB neurons in pacing theta rhythmic activity (Dan-
nenberg et al., 2015; Robinson et al., 2016; Zutshi et al., 2018). We
therefore investigated whether optogenetic silencing of either the
whole MSDB, or GABAergic or glutamatergic MSDB neurons
reduce LFP theta power in the MEC. We observed strong reduc-
tions of theta power with either silencing the whole MSDB or the
GABAergic MSDB subpopulations over the entire 145 s time pe-
riod of laser stimulation (Fig. 6B, first column; Table 2). No such
reduction was found in either ChAT-Cre or vGluT2-Cre mice
(Fig. 6; Table 2). As for the GFP control group and the group with
silencing of cholinergic MSDB neurons, we observed an increase
in y-intercepts during inactivation of the whole MSDB as well as
glutamatergic or GABAergic MSDB neurons. Whereas the slope
of the running speed versus theta frequency relationship re-
mained unaltered during inactivation of glutamatergic or
GABAergic MSDB neurons, it was reduced with inactivation of
the whole MSDB (Table 3). These differential effects caused by
silencing different MSDB subpopulations indicate that our
optogenetic silencing approach is (1) effective and (2) cell-
type specific.

Previous studies have shown that rhythmic activation of
GABAergic (Dannenberg et al., 2015; Zutshi et al., 2018) or glu-
tamatergic MSDB neurons (via a GABAergic relay in the MSDB;
Robinson et al., 2016) can drive rhythmic LFP activity in the
hippocampal formation. To further validate the use of optoge-
netics for inhibition of MSDB neurons, we analyzed effects of
rhythmic laser stimulation on LFPs. When applying rhythmic
laser stimulation in form of 2 min long 20 ms laser pulse trains at
either 6, 8, 10, and 12 Hz, or 10 ms pulses at either 20, 30, 40, and
50 Hz, we observed strong rhythmic LFP activity at exactly the
stimulation frequency and its harmonics when rhythmically si-
lencing either the whole MSDB, the GABAergic neurons, or the
glutamatergic neurons (Fig. 6B; Table 4). In contrast, rhythmic
optogenetic silencing showed no or very weak effects on MEC
LFP dynamics in the laser control and GFP control groups (Fig.
6A; Table 4). Interestingly, a small, but statistically significant,
effect was observed at 10 Hz stimulation frequency in both con-
trol groups indicating that visual input alone can affect theta
rhythm dynamics in MEC. Rhythmic silencing of cholinergic
MSDB neurons showed weak effects across the entire range of

stimulation frequencies with effect sizes being larger at lower
stimulation frequencies (Fig. 6A; Table 4). Although these effects
were statistically significant, effect sizes were too small to be
clearly visible in non-normalized spectrograms. In general, stim-
ulation at 12 Hz proved most effective in all groups, and effects
were strongest when targeting the whole MSDB. Beyond that,
rhythmic silencing of glutamatergic MSDB neurons proved more
effective at lower compared with higher stimulation frequencies.
In contrast, rhythmic silencing of GABAergic MSDB neurons
proved more effective at higher compared with lower stimulation
frequencies.

Together, the differential effects observed during continuous
or rhythmic optogenetic silencing of MSDB subpopulations to-
gether with our immunohistochemistry results provide evidence
for cell-type-specific expression of ArchT in genetically defined
cholinergic, GABAergic, or glutamatergic MSDB neurons and
effective optogenetic silencing of MSDB neurons.

Speed coding by firing rate in the entorhinal cortex does not
depend on cholinergic medial septum inputs
Having demonstrated that our optogenetic silencing approach is
both specific and effective, we used it to investigate a contribution
of MSDB cholinergic neurons to speed coding by firing rate in the
MEC. For this purpose, we compared speed scores of identified
speed-modulated neurons during baseline and laser stimulation
periods. Because many effects of acetylcholine in the MEC are
likely to be mediated by activation of G-protein-coupled recep-
tors with estimated onset time constants of 1–2 s and decay con-
stants between 10 and 20 s (Hasselmo and Fehlau, 2001), we
excluded the first 5 s after laser offset and the first 30 s after laser
onset from the analysis.

Surprisingly, silencing of cholinergic MSDB neurons (n 	 212
cells from 9 mice; Fig. 7C) did not affect the speed scores of
entorhinal cortical neurons. This was seen on the population
level [Fig. 7C, histogram; Kolmogorov–Smirnov (KS) test; p 	
0.73] as well as on the level of individual cells (Fig. 7C, scatter
plot). Similar results were obtained for laser control sessions, in
which the laser light was prevented from entering the brain tissue
(n 	 46 cells from 7 mice; Fig. 7A; KS test, p 	 0.99), and in
recordings of GFP control mice (n 	 66 cells from 3 mice; Fig. 7B;
KS test, p 	 0.94).

Speed coding by firing rate in the entorhinal cortex does not
depend on GABAergic or glutamatergic medial septum inputs
The absence of effects of cholinergic silencing on speed scores of
speed-modulated neurons in the MEC prompted us to reject the
cholinergic hypothesis on speed modulation in the MEC. How-
ever, other subpopulations of the MSDB or the MSDB as a whole
might contribute to speed modulation in the MEC. To address
this question, we first performed rAAV injections in parvalbumin
(PV)-Cre and vGluT2-Cre mice for conditional expression of
ArchT in GABAergic and glutamatergic MSDB neurons, respec-
tively, as well as rAAV injections of an unconditional ArchT vari-
ant in wild-type mice for silencing of the whole MSDB (Fig. 2).
We then tested whether silencing of GABAergic or glutamatergic
MSDB neurons (n 	 56 cells from 4 PV-Cre mice, n 	 45 cells
from 2 vGluT2-Cre mice, respectively), or the whole MSDB (n 	
101 cells from 2 WT mice) affects speed scores of speed-
modulated neurons in the MEC. No effects were observed in any
condition tested. (Fig. 7D–F). This was seen on the population
level (Fig. 7D–F, histograms; KS test; p 	 0.97, p 	 0.93, p 	 0.99
for silencing PV�, vGluT2�, or whole medial septum cell pop-

4

(Figure legend continued.) ArchT in the MSDB. Optogenetic silencing of the whole MSDB
decreases theta power during continuous laser stimulation (first panel). Rhythmic laser stimu-
lation induces LFP oscillations in MEC exactly at the stimulation frequency for all frequencies
tested (third and fourth panels). Second row, Data on PV-Cre mice conditionally expressing
ArchT in GABAergic MSDB neurons. Silencing of GABAergic MSDB neurons decreases theta
power during continuous laser stimulation (first panel). Rhythmic laser stimulation induces LFP
oscillations in MEC, particularly at higher frequencies (third and fourth panels). Third row, Data
for vGluT2-Cre mice conditionally expressing ArchT in glutamatergic MSDB neurons. As the case
for GFP control mice, laser light delivery into the MSDB slightly increases theta frequency during
continuous light stimulation (first panel) independent of running speed (second panel). Rhyth-
mic laser stimulation induces LFP oscillations in MEC, particularly at lower frequencies.
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ulations, respectively) as well as on the level of individual cells
(Fig. 7D–F, scatter plots).

Because our earlier results showed that speed tuning can differ
across time scales, MSDB inputs might differentially affect speed
tuning at different time scales. We therefore analyzed whether
optogenetic silencing of MSDB subpopulations affected speed
scores at individual time scales. Neither silencing of cholinergic,
GABAergic, or glutamatergic MSDB neurons, nor silencing the
whole MSDB showed differential effects on time scale-dependent
speed tuning (Fig. 7, far right column, and plots a–h). Together,
our findings using optogenetic silencing of medial septum sub-
populations demonstrate that speed tuning of speed-modulated
neurons in the MEC does not depend on inputs from MSDB
neurons.

Validation of differential time-scale-dependent speed tuning
in mice
Because optogenetic silencing of medial septum subpopulations
did not affect modulation of firing rate by running speed in
speed-modulated MEC neurons in any terms measured in this
study, we pooled all available data on speed-modulated neurons
(Fig. 7G) and used this dataset to validate our earlier results de-
rived from the rat dataset on differential time-scale-dependent
speed tuning. Our mouse dataset included data from n 	 526
cells recorded from n 	 21 mice during exploration of an open-
field environment (1 � 1 m; see Materials and Methods). Because
our recording sessions in mice had a duration of 46 min, we could

extend our analysis of time scales to include an additional 512–
1024 s time scale. Using the same hierarchical clustering ap-
proach as used for the analysis of the rat dataset, we identified
clusters of speed-modulated neurons in mice with very similar
characteristics both in terms of speed-score distribution across
time scales as well as proportions of cells assigned to these clusters
(Fig. 8A,B). A small cluster of cells showed strong speed modu-
lation (1 single cell and Cluster A, n 	 9 cells of 526), and a larger
cluster showed moderate to strong speed modulation (Cluster B,
n 	 128 cells of 526). Notably, Clusters A and B of the mouse
dataset strongly resemble Clusters A and B of the rat dataset. In
total, 138 of 526 cells (26%) were identified as speed modulated
using the hierarchical clustering approach. In comparison, 184 of
526 cells (35%) were identified as speed modulated by defining a
speed score threshold at the 99th percentile of a null distribution
of speed scores from spike trains randomly shifted in time; n 	
113 cells were classified as speed modulated by both the hierar-
chical clustering and the speed score threshold approach. As for
the rat dataset, the cells identified as speed modulated by the
hierarchical clustering approach define a smaller, but more pre-
cisely defined fraction. Yet, n 	 113 of 138 (82%) cells identified
as speed modulated using the clustering approach were also clas-
sified as speed modulated by the speed score threshold approach.
Figure 8C–E shows data on time-scale-dependent speed tuning
for an example cell of Cluster A of the mouse dataset. As in the rat
dataset, the slopes of time-scale-dependent STCs increase at lon-

Table 2. Changes in theta peak power during optogenetic silencing

Change in theta peak amplitude, %

Group Mean � SD n Df t Statistic p Effect size, Cohen’s d

Average across mice Laser control 3.69 � 18.57 6 5 0.487 0.647 0.20
GFP control 12.38 � 28.3 5 4 0.978 0.383 0.44
ChAT-Cre 25.36 � 45.94 10 9 1.746 0.115 0.55

Average across sessions Wild-type, ArchT �19.57 � 29.11 15 14 �2.603 0.021 0.67
�52.95 � 27.38 8 7 �5.470 0.001 1.93
�54.50 � 26.98 9 8 �6.060 0.000 2.02
�61.60 � 16.22 9 8 �11.295 0.000 3.80

PV-Cre �40.49 � 13.13 3 2 �5.341 0.033 3.08
�68.59 � 21.85 6 5 �7.690 0.001 3.14
�27.52 � 11.77 5 4 �5.227 0.006 2.34

vGluT2-Cre �6.97 � 27.19 5 4 �0.573 0.597 0.26
8.49 � 15.39 24 23 2.703 0.013 0.55

18.33 � 19.18 10 9 3.021 0.014 0.96

Df, Degrees of freedom; n, sample size. Statistics were performed across mice if the number of mice �5, otherwise across sessions per mouse.

Table 3. Changes in y-intercept and slope of running speed versus theta frequency relationship during optogenetic silencing

Mean � SD

Group Baseline Laser stimulation Difference n Df t Statistic p Effect size, Cohen’s d

Y-intercept, Hz
Average across mice Laser control 7.63 � 0.25 7.58 � 0.27 �0.06 � 0.09 6 5 �1.597 0.171 �0.652

GFP control 7.68 � 0.58 7.79 � 0.62 0.11 � 0.09 5 4 2.873 0.045 1.285
ChAT-Cre 7.67 � 0.45 7.78 � 0.44 0.11 � 0.09 10 9 3.913 0.004 1.237

Average across sessions Wild-type, ArchT (n 	 4 mice) 8.03 � 0.67 8.17 � 0.67 0.14 � 0.19 38 37 4.409 0.000 0.715
PV-Cre (n 	 3 mice) 8.36 � 0.94 8.50 � 0.89 0.14 � 0.10 12 11 4.946 0.000 1.428
vGluT2-Cre (n 	 3 mice) 8.39 � 0.99 8.53 � 0.91 0.14 � 0.18 39 38 4.647 0.000 0.744

Slope, Hz/(cm/s)
Average across mice Laser control 0.0232 � 0.0067 0.0270 � 0.0059 0.0038 � 0.0060 6 5 �1.542 0.184 �0.629

GFP control 0.0268 � 0.0079 0.0290 � 0.0079 0.0022 � 0.0020 5 4 2.378 0.076 1.064
ChAT-Cre 0.0239 � 0.0109 0.0220 � 0.0111 �0.0019 � 0.0042 10 9 1.435 0.185 0.454

Average across sessions Wild-type, ArchT (n 	 4 mice) 0.0213 � 0.0132 0.0118 � 0.0119 �0.0094 � 0.0135 38 37 �4.291 0.000 �6.96
PV-Cre (n 	 3 mice) 0.0088 � 0.0053 0.0115 � 0.0074 0.0027 � 0.0053 12 11 1.771 0.104 0.511
vGluT2-Cre (n 	 3 mice) 0.0103 � 0.0116 0.0137 � 0.0114 0.0034 � 0.0125 39 38 1.678 0.102 0.269

Df, Degrees of freedom; n, sample size. Statistics were performed across mice if the number of mice �5, otherwise across sessions.
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ger time scales (Fig. 8F), indicating less accurate coding of run-
ning speed by firing rate at short versus long time scales.

Moreover, the median of optimal bandwidths for firing-rate
estimation determined by the general likelihood framework is
4.94 s (Fig. 8G, left) in the mouse dataset. Likewise, the population
average of the log-likelihoods of bandwidths peaks at 4.02 s (Fig. 8G,
right), and the population average of the distribution of bandwidth-
dependent speed scores peaks at 12.13 s (Fig. 8H). Together, these
data on mice validate our finding in rats that subsecond time scales
are too short for providing a meaningful readout of firing rates.

Linear and exponentially saturating speed cells operate at
similar time scales.
It has recently been shown that STCs are often fit better by a
saturating exponential model than a linear model (Hinman et al.,
2016). In the rat dataset, n 	 47 of 182 speed-modulated neurons
(26%) showed exponentially saturating speed tuning at an � level
of 0.05, and consequently n 	 135 of 182 cells (74%) showed
linear speed tuning (Fig. 9A). In the mouse dataset, n 	 117 of
138 speed-modulated neurons (85%) showed tuning curves that
were best fit by an exponentially saturating fit (significance level
� 	 0.05), whereas 21 of 138 cells (15%) showed linear tuning
(Fig. 9B).

We therefore compared the optimal bandwidths for firing-
rate estimation as well as the optimal bandwidths for maximizing
speed scores between linearly and exponentially saturating tuned
cells. In the rat dataset, we found that the distribution of optimal
bandwidths of exponentially saturating tuned cells was slightly
shifted to shorter bandwidths compared with the distribution of
optimal bandwidths of linearly tuned cells (Fig. 9C, left; median

values 3.50 and 5.57 s, respectively, p 	 0.0055, KS test). How-
ever, the distribution of bandwidths maximizing the speed score
for exponentially saturating tuned cells did not significantly differ
from the distribution of bandwidths from linearly tuned cells
(Fig. 9E, left; median values 3.25 and 4.00 s, respectively, p 	
0.1885, KS test). Likewise, no significant differences between ex-
ponentially saturating and linearly tuned cells were found in the
mouse dataset for distributions of optimal bandwidths for firing-
rate estimation (Fig. 9D, left; median values 4.70 and 5.42 s, re-
spectively, p 	 0.9478, KS test), and for the distributions of
bandwidths maximizing the speed score (Fig. 9F, left; median
values 9.85 and 14.93 s, p 	 0.4293, KS test). Similar values were
obtained for the peaks of the population averages of log-
likelihoods for firing-rate estimation as well as bandwidth-
dependent speed-score distributions for both mice and rats (Fig.
9C–E, right). These data show that both linear and exponentially
saturating speed tuning operates at similar slow time scales in the
seconds range.

In summary, these results show that the speed code by firing
rate in the entorhinal cortex differs across time scales and is most
accurate at seconds-long time scales. Alternatively, the firing rates
of most speed cells may be modulated by behavioral activity states
rather than providing an accurate real-time speed code.

Discussion
Data on speed modulation at different time scales presented in
this study show that speed modulation of firing rate happens on a
time scale of seconds. This is consistent with a previous study
showing that MEC neurons dynamically vary their coding prop-
erties to become more informative about position, head direc-

Table 4. Effects of rhythmic optogenetic silencing on LFPs

Group n 6 Hz 8 Hz 10 Hz 12 Hz 20 Hz 30 Hz 40 Hz 50 Hz

Laser control 5 sessions, 4 mice
Mean 0.11 0.04 0.22 0.52 0.06 0.14 �0.01 �0.10
SD 0.26 0.34 0.68 0.60 0.20 0.21 0.13 0.16
p value 0.9020 0.3745 0.0399 0.2840 0.9735 0.0159 0.7464 0.9604
Cohen’s d 0.44 0.12 0.33 0.87 0.30 0.68 �0.07 �0.62

GFP control 18 sessions, 5 mice
Mean 0.16 0.07 0.17 0.21 0.13 0.08 0.03 �0.02
SD 0.36 0.40 0.55 0.62 0.37 0.33 0.17 0.23
p value 0.0539 0.1564 0.0412 0.2673 0.0760 0.6703 0.9194 0.9745
Cohen’s d 0.44 0.17 0.30 0.34 0.35 0.25 0.18 �0.11

ChAT-Cre 11–16 sessions, 6 –7 mice
Mean 0.65 0.34 0.53 0.51 0.19 0.10 0.16 0.18
SD 0.67 0.76 0.68 0.79 0.58 0.53 0.48 0.43
p value 0.0065 0.0095 0.0055 0.0209 0.0032 0.0142 0.3497 0.0098
Cohen’s d 0.97 0.45 0.77 0.64 0.34 0.19 0.32 0.41

Wild-type, ArchT 7– 8 sessions, 4 mice
Mean 0.74 1.18 1.80 2.18 1.26 0.84 1.08 0.81
SD 0.67 0.60 0.39 0.12 0.53 0.63 0.52 0.48
p value 0.008 0.007 0.003 0.010 0.000 0.002 0.000 0.000
Cohen’s d 1.10 1.97 4.58 17.72 2.38 1.35 2.08 1.70

PV-Cre 5 sessions, 5 mice
Mean 0.14 0.12 0.54 0.87 0.57 0.51 0.60 0.40
SD 0.20 0.43 0.50 0.43 0.60 0.25 0.42 0.16
p value 0.0446 0.0576 0.0018 0.0095 0.0139 0.0035 0.0012 0.0082
Cohen’s d 0.69 0.27 1.09 2.01 0.95 2.04 1.42 2.58

vGluT2-Cre 9 –13 sessions, 3 mice
Mean 0.99 0.96 0.87 0.82 1.19 1.38 0.45 0.12
SD 0.77 0.74 0.65 0.61 0.44 0.65 0.74 0.36
p value 0.0062 0.0000 0.0062 0.0082 0.0000 0.0000 0.0038 0.0072
Cohen’s d 1.29 1.29 1.34 1.34 2.67 2.13 0.61 0.34

Statistics on z-scores of spectral power estimates (see Materials and Methods).
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Figure 7. Firing-rate speed tuning does not depend on medial septum inputs. Speed scores of speed-modulated neurons in the MEC do not differ significantly during baseline and optogenetic
silencing of MSDB neurons at each time scale tested. First column, Histogram plots showing the distribution of overall speed scores during baseline (Laser OFF; blue) and laser stimulation (Laser ON;
red) periods. No significant differences exist on the population level, p values of KS test shown in the figure. Second column, Scatter plots showing the speed scores during baseline (Laser OFF) and
laser stimulation (Laser ON) periods for all cells, significant correlations (p � 0.0001) observed for all groups, Pearson correlation coefficient (R) shown in the figure. Third column, Scatter plots of
speed scores during baseline (Laser OFF) and laser stimulation (Laser ON) periods for different time scales, (a) 1–2 s, (b) 2– 4 s, (c) 4 – 8 s, (d) 8 –16 s, (e) 16 –32 s, (f) 32– 64 s, (g) 64 –128 s, (h)
128 –256 s, and (i) 256 –512 s. Pearson correlation coefficients (R) for each time scale shown in figure. A, Laser control data from sessions where the laser light was prevented from entering the brain
tissue. Data from n 	 46 cells from seven mice. B, Control data from mice in which only GFP was expressed in ChAT-Cre neurons, n 	 66 cells from three mice. C, Data from ChAT-Cre mice expressing
ArchT in cholinergic MSDB neurons, n 	 212 cells from nine mice. D, Data from PV-Cre mice expressing ArchT in GABAergic MSDB neurons, n 	 56 cells from four mice. E, Data from vGluT2-Cre mice
expressing ArchT in glutamatergic MSDB neurons, n 	 45 cells from two mice. F, Data from wild-type mice unconditionally expressing ArchT in MSDB neurons, n 	 101 cells from two mice. G, All
cells from all groups pooled together, n 	 526 cells from 21 mice. This is the dataset used for the further investigation of time scale-dependent speed coding.
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Figure 8. Validation of data on time scale-dependent speed tuning curves in mice. A, Clustergram showing hierarchical clustering of 526 neurons recorded in layer II/III of entorhinal cortex of 21
mice. Each row depicts color-coded speed scores calculated for each time scale ranging from 1 to 2 s up to 512–1024 s (see Materials and Methods). As in the rat dataset, distinct clusters of
speed-modulated neurons can be identified. B, Mean � SEM of time scale-dependent speed scores averaged across units of single clusters. A single most positively speed-modulated cell together
with cells of Clusters A and B were defined as positively speed-modulated neurons (138 of 526 cells, 26.2%). Cluster F contains clear negatively speed-modulated neurons (Figure legend continues.)
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tion, or both position and head direction in response to faster
running speeds (Hardcastle et al., 2017). Moreover, the brain’s
response to sensory input as well as plasticity can be improved by
activity and behavioral states of arousal and attentiveness, gener-
ally associated with activation of the basal forebrain neuromodu-
latory system (for review, see Lee and Dan, 2012), as shown in the
primary visual cortex of mice (Goard and Dan, 2009; Niell and
Stryker, 2010; Fu et al., 2014; Kaneko and Stryker, 2014).

The MSDB is a necessary component for critical aspects of
temporal and spatial processing in the hippocampal formation,

most prominently theta oscillations (Buzsáki, 2002). Theta oscil-
lations are the electrophysiological hallmark of running behavior
and are modulated in frequency and amplitude by running speed
(Vanderwolf, 1969; McFarland et al., 1975; Sławińska and Ka-
sicki, 1998; Maurer et al., 2005; Jeewajee et al., 2008; Newman et
al., 2014). Theta rhythmic activity has been proposed to be asso-
ciated with properties of spatial navigation including generation
of grid-cell firing patterns and path integration (Burgess et al.,
2007; Burgess, 2008). Lesions or pharmacological inactivation of
the MSDB reduces theta activity and disrupts grid-cell firing pat-
terns (Brandon et al., 2011; Koenig et al., 2011). Furthermore,
passive transport abolishes both velocity modulation of theta os-
cillations and grid-cell firing patterns (Winter et al., 2015). It is
tempting to speculate that medial septum neurons are a necessary
component for the transfer of a speed signal to the hippocampal
formation. Cholinergic, GABAergic, and glutamatergic septohip-
pocampal projection neurons form a complex network within
the MSDB with potential contributions of each subpopulation to
different aspects of spatial navigation including speed coding (for
review, see Hinman et al., 2018). Optogenetic activation of glu-
tamatergic (Robinson et al., 2016) or cholinergic (Dannenberg et
al., 2015) MSDB neurons in mice can modulate rhythmicity of
hippocampal theta oscillations via activation of GABAergic
MSDB neurons. Furthermore, optogenetic activation of gluta-
matergic MSDB neurons can initiate locomotion (Fuhrmann et
al., 2015), and activity of glutamatergic MSDB neurons has been
hypothesized to provide a speed signal to neurons in the entorhi-
nal cortex (Justus et al., 2017). In fact, firing rates of MSDB neu-
rons are correlated with running speed and 65% of rhythmically
bursting MSDB neurons have been reported to show a significant

4

(Figure legend continued.) (6 of 526 cells, 1.1%). C–F, Data on one speed-modulated exam-
ple cell in Cluster A. C, Time scale-dependent speed tuning curves of the example cell. Black dots
show binned data (time-scale filtered firing rate vs time-scale filtered running speed), red lines
show the least-square linear fits to binned data; r 	 Pearson correlation coefficient. D, The
overall speed tuning curve of the example cell. Black dots and gray shading show mean values
and 95% confidence intervals of speed-binned firing-rate data; blue and red lines show the best
MLE linear (blue) and saturating exponential (red) fit functions obtained by temporal binning of
firing rate, shadings indicate 95% confidence intervals. E, Slopes of observed time scale-
dependent speed tuning curves (orange curve) compared with mean � SEM of slopes derived
from 100 artificially created linearly tuned Poisson-distributed spike trains (blue line; SEM
within line). F, Mean � SEM of mean-normalized speed tuning curve slopes (orange: positively
speed-modulated cells of the single most positively speed-modulated cell, Clusters A, and Clus-
ter B; blue: artificially created Poisson-distributed spike trains, one Poisson train per cell, n 	
138). Observed spike trains differ significantly from artificial ones: F(12,3562) 	 26.25, p 	
1.6 � 10 �57, two-way ANOVA interaction effect. G–I, Mouse data (green) are shown com-
pared with rat data (purple). G, Left, Distribution of optimal bandwidths for firing-rate estima-
tion. Right, Population average (mean � SEM) of bandwidth-dependent log-likelihoods of
firing-rate estimates. H, Population average (mean � SEM) of bandwidth-dependent speed-
score distributions. I, Mean � SEM of mean-normalized speed tuning curve slopes.

A B

C D

E
F

Figure 9. Exponentially saturating and linearly tuned speed-modulated cells operate at similar time scales. A, C, E, Data on rats. B, D, F, Data on mice. Each plot shows data on linearly tuned cells
(blue), and exponentially saturating tuned cells (red). A, B, Average of mean-normalized speed tuning curves; line and shading show mean � SEM. A, Data on mice, n 	 21 linearly tuned and n 	
117 exponentially saturating tuned cells. B, Data on rats, n 	 135 linearly tuned and n 	 47 exponentially saturating tuned cells. C, D, Left, Distributions and median values of optimal bandwidths
for firing-rate estimation determined by a general likelihood framework (Prerau and Eden, 2011). Right, Population average (mean � SEM) and peak values of bandwidth-dependent log-
likelihoods of firing-rate estimates determined by the general likelihood framework. E, F, Left, Distributions and median values of bandwidths maximizing the speed score. Right, Population average
(mean � SEM) and peak values of bandwidth-dependent speed-score distributions. See text for statistics.
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correlation between the interburst frequency and the animal’s
running speed (King et al., 1998). Moreover, medial septum le-
sions disrupt behavior in a path integration experiment, increas-
ing the variability of temporal pacing of linear speeds on
homeward trajectories (Martin et al., 2007), providing evidence
for the involvement of the MSDB in path integration. Pharmaco-
logical inactivation of the MSDB abolishes hypothalamic
stimulation-induced locomotion onset (Oddie et al., 1996), im-
pairs the ability of rats to estimate linear distances based on self-
motion information resembling effects observed after MEC
lesions (Jacob et al., 2017), and disrupts an oscillatory speed sig-
nal based on spiking rhythmicity of MEC neurons (Hinman et al.,
2016). In contrast, pharmacological inactivation of the MSDB
reduced the variability in the firing-rate speed signal of entorhi-
nal speed cells (Hinman et al., 2016).

We tested the hypothesis that the modulation of firing rates
observed in a subset of cells in the MEC (previously described as
speed cells;Kropff et al., 2015) might be because of changes in
sensory or motor input or because of changes in cholinergic neu-
romodulatory signaling associated with running speed or activity
states. To elucidate the latter hypothesis of a specific contribution
of cholinergic signaling arising from the activity of cholinergic
MSDB neurons on speed modulation of firing rates in the MEC,
we used an optogenetic silencing approach. We show that STCs
of speed-modulated neurons in the entorhinal cortex is not af-
fected by transient silencing of either the cholinergic subpopula-
tion of the MSDB, nor by transient silencing of the whole MSDB.
We validated the efficiency of the optogenetic silencing approach
by investigating effects of optogenetic manipulations on the LFP
level after targeting GABAergic and glutamatergic MSDB sub-
populations as well as the whole MSDB as expected from previ-
ous studies (Dannenberg et al., 2015; Robinson et al., 2016;
Zutshi et al., 2018). Our data using transient and temporally
precise optogenetic silencing of medial septum subpopulations
demonstrate that speed tuning of firing rates in the entorhinal
cortex does not depend on medial septum inputs. One caveat of
optogenetic studies is that the delivery of laser light into brain
tissue results in local heating (Arias-Gil et al., 2016; Shin et al.,
2016), which most likely results in a local increase of neuronal
firing rates. Nevertheless, our data using optogenetic silencing of
cholinergic neurons are consistent with previous experimental
data from experiments using less temporally precise pharmaco-
genetic modulation of medial septum cholinergic neurons (Car-
penter et al., 2017). Consistent with our data on the inactivation
of the whole MSDB, a previous study using pharmacological in-
activation of the MSDB (Hinman et al., 2016) also showed no
significant effect of pharmacological MSDB inactivation on the
slope of speed tuning curves of MEC speed cells, although MSDB
inactivation by muscimol infusions did disrupt the speed modu-
lation of theta spiking rhythmicity. Whereas the same study also
reported a slight increase of the firing rate versus running speed
correlation during pharmacological MSDB inactivation, we did
not observe this effect using optogenetic silencing of MSDB neu-
rons. Studies using optogenetic activation of glutamatergic
MSDB neurons suggested that glutamatergic MSDB neurons
convey a firing-rate speed signal to neurons in the entorhinal
cortex (Fuhrmann et al., 2015; Justus et al., 2017). However, op-
togenetic silencing of neither glutamatergic nor the whole MSDB
disrupts speed coding by firing rate in the MEC suggesting that
activity of glutamatergic MSDB neurons is not necessary for con-
veying a speed signal to the entorhinal cortex.

Most animals are able to return to the starting point of a
journey simply relying on signals that derive from their own lo-

comotion (Etienne and Jeffery, 2004). This ability to keep track of
linear and angular self-motion and continuously update the in-
ternal representation of space based on the combined informa-
tion about running direction and running speed has been termed
path integration. Grid cells in the medial entorhinal cortex have
been hypothesized to act as path integrators (McNaughton et al.,
2006), and disruption of grid cells indeed impairs path integra-
tion (Gil et al., 2018). The majority of computational models of
grid cells employ a path integration mechanism to generate the
regularly repeating hexagonal firing patterns of grid cells. Firing-
rate speed signals are found in continuous attractor dynamics
models (McNaughton et al., 2006; Burak and Fiete, 2009; Gio-
como et al., 2011; Widloski and Fiete, 2014). Alternatively, oscil-
latory interference models of grid-cell generation make use of the
frequency of theta-range membrane potential oscillations vary-
ing as a function of running speed (Burgess et al., 2007; Blair et al.,
2008; Burgess, 2008; Hasselmo, 2008). Importantly, both the
continuous attractor and oscillatory interference models require
the speed signal to be linear. This assumption has been recently
challenged by the observation that the firing rates of many speed-
modulated cells are better described by an exponentially saturat-
ing instead of a linear STC (Hinman et al., 2016). Furthermore, a
speed signal by firing rate requires integration of spiking events
over time, yet the time scale of this integration has not been
directly studied so far.

To investigate STC characteristics over short to long time
scales, we applied a novel approach of filtering a cell’s firing rate
and the animal’s running speed signals at different time scales.
We find that many cells show linear speed tuning at multiple time
scales, but the relationship of firing rates and running speed ap-
pears to be most accurate when integrated over seconds. Impor-
tantly, for the majority of speed-modulated cells, the slopes of
STCs increase with longer time scales indicating that the de-
creased speed tuning accuracy at short time scales cannot be at-
tributed to Poisson noise alone. If coding accuracy would be
limited on a short time scale by Poisson noise alone, this limita-
tion could be overcome by fast spiking interneurons or by aver-
aging over a larger population of speed cells. In fact, the majority
of speed cells in the entorhinal cortex are fast-spiking interneu-
rons (Kropff et al., 2015; Hinman et al., 2016; Ye et al., 2018).
However, our findings suggest that the accuracy of firing-rate
modulation by running speed genuinely increases at longer time
scales. Consistently, a study of speed-modulated neurons in rat
hippocampal CA1 found that firing rates of pyramidal cells are
too low to provide a reliable speed code by firing rate, even if
firing rates are correlated with running speed (Góis and Tort,
2018). Our data regarding entorhinal speed cells in mice and
rats indicate that the vast majority of speed cells, including fast
spiking interneurons, are modulated by running speed on a
seconds-long time scale, but do not code for running speed in real-
time. Using the oscillatory interference model of grid cell firing, we
further demonstrate that such long integration time windows would
disrupt the spatial periodicity of grid-cell firing.

These results have important consequences for computa-
tional models of path integration, which face two major chal-
lenges: First, they require a linear speed signal. However, it has
been shown that STCs are often fit better by an exponentially
saturating model than a linear model (Hinman et al., 2016).
Moreover, the linear speed tuning at individual time scales shown
in this study comes at the cost of integrating over second-long
time windows resulting in firing-rate estimates, which cannot be
used for real-time speed coding. Second, current path integration
models require the coding of movement direction, which is often
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assumed to be given by the activity of head direction cells. How-
ever, head direction does not always align with movement direc-
tion, and in these cases, head direction cells primarily code for
head direction, but not movement direction (Raudies et al.,
2016). These results may explain the lower contribution of speed
in predicting the spikes of mixed selectivity cells in the entorhinal
cortex (Hardcastle et al., 2017), because only a small subpopula-
tion of speed-modulated cells might be able to code for speed
accurately on a short time scale. Finally, we hypothesize that
modulation of firing rate by speed on long time scales may reflect
changes of activity states such as attention and arousal rather than
precise real-time coding of speed.
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