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SUMMARY

The human fetal cerebral cortex develops through a series of partially overlapping histoge-

netic events which occur in transient cellular compartments, such as the subplate zone. The

subplate serves as waiting compartment for cortical afferent fibers, the major site of early

synaptogenesis and neuronal differentiation and the hub of the transient fetal cortical cir-

cuitry. Thus, the subplate has an important but hitherto neglected role in the human fetal

cortical connectome. The subplate is also an important compartment for radial and tangen-

tial migration of future cortical neurons. We review the diversity of subplate neuronal phe-

notypes and their involvement in cortical circuitry and discuss the complexity of late

neuronal migration through the subplate as well as its potential relevance for pathogenesis

of migration disorders and cortical dysplasia. While migratory neurons may become mis-

placed within the subplate, they can easily survive by being involved in early subplate cir-

cuitry; this can enhance their subsequent survival even if they have immature or abnormal

physiological activity and misrouted connections and thus survive into adulthood. Thus,

better understanding of subplate developmental history and various subsets of its neurons

may help to elucidate certain types of neuronal disorders, including those accompanied by

epilepsy.

Introduction

Recent advances in studying structural, physiological, and molec-

ular features of the developing cortical circuitry clearly suggest

that there are major organizational differences between fetal, peri-

natal, and postnatal human cerebral cortex and that the cortex

develops through a series of complex reorganizational events

[1–9]. These reorganizational events may underlie complex

changes in motor, sensory, behavioral, and cognitive functions of

human premature infants, newborns, children, and adolescents

[2–4,10–14]. The disturbances of these processes, especially when

they occur during the fetal period, are likely to be involved in etio-

pathogenesis of many developmental brain disorders, such as

cerebral palsy [15], autism [16,17], schizophrenia [18,19], and

epilepsy [20,21].

The prenatal development of the human cerebral cortex is char-

acterized by both sequential and overlapping histogenetic events

[22,23] accompanied by significant changes in gene expression

patterns [6,9]. In addition, the late fetal period (from 22 postcon-

ceptional weeks, PCW, onwards), which corresponds to the period

of prematurely born infants, is characterized by major changes in

development of cortical circuitry and connectivity, synaptogenesis

and physiological features [1–3], including the emergence of rest-

ing state activity. Various developmental disorders, including

cortical dysplasia, probably emerge during this clinically important

period [1–3,20,21,24–26].

The aim of this study is to review major histogenetic events and

processes in the human fetal brain to provide a neurobiological

framework for interpreting and analyzing developmental brain

disorders frequently accompanied by epilepsy, such as disorders of

neuronal migration and cortical dysplasias. We focus on the tran-

sient fetal subplate zone for the following reasons: (1) the subplate

is the site of early synaptogenesis and synaptic interactions with

thalamocortical and other cortical afferent systems [27–32] as well

as the site of early endogenous oscillatory activity, as demon-

strated experimentally in rodents [33–35] and in the human sub-

plate [36]; (2) the transient subplate circuitry co-exists with early

developing permanent cortical circuitry during the late fetal per-

iod [2], when long corticocortical and commissural pathways

continue to grow, and (3) the subplate remnant exists even in the

early postnatal period, when short corticocortical connections

develop [7]. Finally, the subplate also serves as a prominent
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compartment involved in neuronal migration and thus may be

involved in pathogenesis of various migration disorders [37–39].

Sequential Development and Transient
Cellular Compartments of the Human
Fetal Cerebral Wall

The complex cellular, modular, laminar, areal, and regional orga-

nization of the adult human cortical map and connectome devel-

ops through a long series of sequential (but partially overlapping)

histogenetic events which begin during the 4 PCW [23] and termi-

nate during the late adolescence and early adulthood [11,12]. As

there are already extensive reviews of fetal cerebral wall lamina-

tion and development [1–3,22,23,29,40], including the major role

of subplate in cortical development [23,34,41–43] and the history

of the subplate discovery [43], here we mention only the most rel-

evant facts.

The cortical histogenesis begins with proliferation of progenitor

neuroepithelial cells in the ventricular zone (VZ) of paired telen-

cephalic vesicles [23]. Already at 5 PCW, the telencephalic wall

consists of thin dorsal (pallium) and thick basal portion (subpalli-

um). During the 6 and 7 PCW, first postmitotic neurons migrate

from VZ towards the pial surface and form the so-called mantle

layer [45], also described as the primordial plexiform layer [46] or

the preplate [23,47]. The first preplate cells are Cajal-Retzius cells

and early generated subplate neurons, which have no synapses

but communicate through non-synaptic junctions.

During the 7 PCW, the new proliferative zone (subventricular

zone, SVZ) is formed, and during the 8 PCW the cell-dense cortical

plate appears, consisting of postmigratory neurons which migrate

from the VZ along radial glial guides and finally settle in the corti-

cal plate arranged in vertical ontogenetic columns [48]. Thus, the

neocortical anlage consists of three transient fetal zones: the

superficial and cell-poor marginal zone (MZ), the cell-dense corti-

cal plate (CP), and the plexiform pre-subplate [29]. This neocorti-

cal anlage is also characterized by early bilaminar synaptogenesis,

with synapses present in MZ and presubplate, but absent from the

CP [23,27,29]. Between the neocortical anlage and periventricular

proliferative zones (VZ-SVZ), the intermediate zone (IZ) appears

and contains early growing afferent fibers originating from brain

stem (monoaminergic axons [49–52]), basal forebrain (cholinergic

axons [53]) and thalamus (glutamatergic axons [29,54,55]).

Between 12 and 15 PCW, the deep portion of the neocortical CP

gradually transforms into new, prominent and synapse- and fiber-

rich subplate zone [29,56,57]. The subplate becomes the thickest

and most voluminous transient compartment of the human fetal

cerebral wall between 15 and 35 PCW and represents the major

site of synaptogenesis and neuronal maturation and differentia-

tion. The subplate also contains a large amount of hydrophyllic

extracellular matrix and thus can be easily visualized in both in vi-

tro [58,59] and in vivo MRI studies [60–62]. From 15 to 24 PCW,

the subplate serves as the waiting compartment for ingrowing cor-

tical afferents [28,29,40]. From 24 to 28 PCW, there is gradual

relocation of thalamocortical and basal forebrain afferents from

the subplate into the cortical plate [1,3,29,40,53–55] with con-

comitant onset of synaptogenesis within the cortical plate [27,29].

This event represents a milestone in fetal cortical physiology

because peripheral stimulation is for the first time able to synaptic-

ally activate cortical plate neurons [63,64]. Before that period,

afferent axons predominantly activated subplate neurons and

cortical activity was endogenous [1,2,29,34,41]. Between 28 and

34 PCW, the subplate remains at the peak of its development,

because there is continuous growth and relocation of massive cor-

ticocortical pathways; this period is also characterized by extensive

growth of fetal white matter, further formation of cortical convo-

lutions, and exponentially increasing synaptogenesis in the

cortical plate which also begins to develop its six-layered “Grun-

dtypus” of cortical lamination [65]. In addition, dendritic differen-

tiation of cortical plate neurons also intensifies during this period

[66–68]. After 34 PCW, the subplate gradually diminishes in size,

beginning at the depth of cortical sulci, but remains present even

in the newborn and early postnatal brain as the subplate remnant

[7]. It should be noted that most of the human fetal subplate

neurons not only survive the perinatal period, but continue to

develop postnatally and remain very numerous in the adult gyral

white matter [44,69,70].

Structural and Functional Organization of
the Human Subplate

The human fetal subplate has a complex structure and consists of

various cellular, fibrillar and extracellular elements [23,29]. Its

composition is continuously changing throughout the midfetal,

late fetal, perinatal, and early postnatal period [1–3]. However, in

all these periods, the subplate consists of migratory and postmigra-

tory neurons, glial cells, significant amount of extracellular matrix,

and various contingents of afferent and efferent axons involved in

intense synaptogenesis. This intense synaptogenesis is clearly

demonstrated by E.M. studies, but it is possible that not all of these

early synapses are functionally active, as suggested in a recent

study on acute slices of the postmortem human fetal brain tissue

[36]. Thus, to delineate the subplate in various developmental

periods, one has to use a combination of various E.M., histological,

histochemical, and immunocytochemical techniques [7,29,42,58].

Morphological and Molecular Phenotypes of
Subplate Neurons

The subplate contains early differentiated postmigratory and poly-

morphic (multipolar) neurons [44,66–70]. On the basis of Golgi

method (Fig. 1), these neurons can be described as fusiform,

inverted pyramidal, polymorphous and large multipolar [66–68].

Even if we limit the review just to the studies of human and rhe-

sus monkey brain, it is clear that these neurons also express a large

variety of molecular markers, such as different neurotransmitters

(Table 1), various receptors (Table 2), calcium-binding proteins

(Table 3) and synaptic and cytoskeletal markers as well as growth

factors and axon guidance molecules (Table 4). Along with

numerous neuropeptides [34,41,42], two major neurotransmit-

ters, glutamate and GABA, are also present in subplate pyramidal

neurons and interneurons [33,101–104]. However, their respec-

tive roles and exact distribution in specific types of subplate neu-

rons (especially in the human brain) are far from being

satisfactorily elucidated.
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Subplate Represents a Waiting Compartment for
Cortical Afferent Fibers and Subplate Neurons
Serve as Postsynaptic Targets for Various Inputs

The first afferent fibers to reach subplate neurons, already at the

presubplate stage, originate from modulatory monoaminergic

pathways ascending from the brain stem [29,49–52]. In the rodent

brain, early monoaminergic axons also make synapses below the

cortical plate in the zone which corresponds to the human sub-

plate [105]. During the expansion of the deep cortical plate and

the formation of the proper subplate (13–15 PCW), two new and

massive afferent systems enter the subplate: basal forebrain cho-

linergic fibers [53], and thalamocortical fibers [29,54,55]. A subset

of human subplate neurons display strong AChE-reactivity [69]

and express M2 muscarinic receptors [106]. The cholinergic

activation of subplate neurons has been also demonstrated in the

(A) (D)

(C)

(B)

Figure 1 Microphotographs of Golgi stained

human fetal somatosensory cortex (Stensaas’

modification of Del Rio Hortega method) in 23

PCW-old preterm infant. Note the radial

orientation of cellular elements in the

telencephalic wall (A) due to the presence of

radial glia and vertical arrangement of blood

vessels; the subplate is recognized as a wide

pale zone below the cortical plate (A). The

subplate contains postmigratory cortical

neurons (B, double arrows), radial glial cells

starting to transform into astrocytes (B, arrow)

as well as already formed fibrillar astrocytes in

contact with blood vessels (B, arrowhead). The

subplate contains several types of neurons:

polymorphic (C, arrow), fusiform (C, double

arrow), and inverted pyramidal (D, arrow).

Bar = 1 cm (A) and 200 lm (B, C, D).
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rodent brain [107]. Activation of subplate neurons by glutamater-

gic thalamocortical axons has been demonstrated in fetal brains of

cats and rodents [101,103] (for review see [34,41]). While there is

no convincing evidence on the activation of subplate neurons by

glutamatergic corticocortical fibers, it stands to reason to assume

its existence because corticocortical fibers represent the most mas-

sive component of axons waiting in the subplate [1,3,29,40].

The first experimental evidence for the existence of “waiting”

thalamocortical axons in the subplate was provided in the visual

cortex of fetal rhesus monkeys [28], and it was since extensively

documented that all afferent axons wait in the subplate (and

eventually establish temporary synapses with subplate neurons)

for a prolonged period of time, at least in humans and nonhuman

primates [1,3,29,34,40,41]. The ingrowth of different cortical

afferent systems (thalamocortical, basal forebrain, corticocortical)

in the subplate is sequential (but partly overlapping) and enfolds

throughout the entire fetal period. The same holds for the reloca-

tion of these afferents from the subplate into the cortical plate

after 24 PCW. For example, thalamocortical axons in the human

fetal brain invade the presubplate already at 13 PCW [29,57], form

extensive axonal plexuses in the subplate throughout the midfetal

period (15–20 PCW), accumulate in the superficial subplate

around 22 PCW, and penetrate the cortical plate after 24 PCW

[29,54,55]. The example of thalamocortical afferents suggests that

the subplate serves as a substrate for a special geometry and direc-

tionality of fiber growth [23,29]: fibers are first directed from basal

to dorsal pallial segments, and later grow radially through the sub-

plate into the cortical plate. During their basal-to-dorsal growth,

Table 1 Expression of neurotransmitters in subplate neurons

Marker Species Age Source

GABA Human 14–32 GW Yan et al. [71]

7–13 PCW Zecevic and

Milosevic [72]

Monkey

Huntley et al. [73]

E70–E141 Meinecke and Rakic [74]

NO & NADPH Human 15–32 GW Yan et al. [75]

15–28 PCW Yan and Ribak [76]

18–Newborn Downen et al. [77]

15–37 PCW Juda�s et al. [42]

25–35 PCW deAzevedo et al. [78]

NPY Human 14 PCW–34 years Delalle et al. [79]

14 PCW–34 years Uylings and Delalle [80]

11 PCW–Newborn Wai et al. [81]

13–16 PCW Bayatti et al. [82]

16 PCW Wang et al. [83]

Monkey

Huntley et al. [73]

E60–160 Mehra and

Hendrickson [84]

Somatostatin Human 22–34 PCW Kostovi�c et al. [85]

Monkey Huntley et al. [73]

Substance P Monkey E90–E160 Mehra and

Hendrickson [84]

Table 2 Expression of various receptors in subplate neurons

Marker Species Age Source

GABA A receptor Monkey E121–E155 Huntley et al. [86]

E70–E141 Meinecke and

Rakic [74]

a1 and a2 adrenergic

receptor

Monkey E65–E143 Lidow and Rakic [87]

b adrenergic receptor Monkey E90–128 Lidow and Rakic [87]

a4 nAChR Human 17–24 GW and

34–42 GW

Schroder et al. [88]

p75NGFR Human 16–40 PCW Kordower and

Mufson [89]

14–34 GW Chen et al. [90]

Monkey E56–E121 Meinecke and

Rakic [91]

EphA3, 6, 7 Monkey E65–E95 Donoghue and

Rakic [92]

Trk Human 14–34 GW Chen et al. [90]

Table 3 Expression of Ca2+ binding proteins in subplate neurons

Marker Species Age Source

Calbindin Human 20 PCW> Ulfig [93]

Calretinin Human 20 PCW> Ulfig [93]

13–16 PCW Bayatti et al. [82]

16 PCW Wang et al. [83]

Parvalbumin Human 26 PCW–Newborn Honig et al. [94]

S100A4 Human 12–32 GW Chan et al. [95]

S100A5 Human 12–32 GW Chan et al. [95]

S100A13 Human 12–32 GW Chan et al. [95]

Table 4 Expression of other markers in subplate neurons

Marker Species Age Source

GAD (67/65) Human 26 GW – 2 years Xu et al. [96]

GAP43 Human 14–Newborn PCW Honig et al. [94]

13–17 PCW Bayatti et al. [82]

vGAT Human 10 PCW Bayatti et al. [82]

KCC2 Human 16 PCW Bayatti et al. [82]

16 PCW Wang et al. [83]

MAP2 Human 16–22 GW Sims et al. [97]

14 PCW–Newborn Honig et al. [94]

16 PCW Bayatti et al. [82]

Monkey E75–160 Mehra and

Hendrickson [84]

Synaptojanin Human 15–37 GW Arai et al. [98]

Synaptophysin Human 10 PCW Bayatti et al. [82]

NURR1 Human 15–22 PCW Wang et al. [83]

TBR1 Human 9–12 PCW Bayatti et al. [82]

a2zinc-binding

globulin

Human 14 PCW Wang et al. [83]

CTGF Human 22 PCW Wang et al. [83]

Fetuin Human 14 PCW Wang et al. [83]

24–40 PCW Elsas et al. [99]

Nogo-A Human 16–36 PCW Haybaeck et al. [100]
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fibers are forming large axonal bundles or strata in the intermedi-

ate zone, that is, the fetal white matter, then turn obliquely to

enter the subplate, and after a prolonged waiting period they

finally radially relocate from the subplate into the cortical plate.

During their waiting period within the subplate, afferent axons

are loosely arranged [29] and embedded in a voluminous and hy-

drophyllic extracellular matrix [58,60], which contains a variety

of axon guidance molecules. Some of these axons make early syn-

apses with subplate neurons and thus make the subplate the

major site of early synaptogenesis in the fetal human cortex.

The damage of the subplate during the waiting period and

relocation of thalamocortical afferents can damage not only the

development of thalamocortical circuitry but also the columnar

development of the cortical plate [30,31] (for review see

[34,41]). Accordingly, the damage of thalamocortical system in

the human preterm infant may lead to abnormal cerebral devel-

opment [108,109]. Our long-term studies suggest that the most

critical period is during the accumulation of thalamocortical

fibers in the superficial subplate (around 22 PCW) and during

their relocation into the cortical plate at 24–28 PCW

[1–3,29,40,110]. However, it should be noted that subplate con-

tinues to function as waiting compartment for growing long cor-

ticocortical afferents until birth [3] and it may continue to serve

as mini-waiting compartment for growth of short cortico-cortical

connections even after birth [7].

Subplate Neurons Serve as Presynaptic
Elements in the Fetal Cortical Circuitry

The axons of subplate neurons establish synapses with (1) other

subplate neurons, (2) thalamus, and (3) cortical plate neurons. It

seems that glutamatergic presynaptic axons originate from sub-

plate inverted pyramidal neurons which represent up to 50% of

subplate neuronal population [68,111]. However, glutamatergic

NMDA receptors in the subplate are different from those in the

adult cortex and are active at �70 mV [33]. Some subplate cells

also project to the thalamus [31,112] but it is not clear whether

their neurotransmitter is really glutamate.

Various subplate interneurons contain GABA and neuropep-

tides and seem to contact other subplate neurons. However,

GABA receptors on subplate neurons are also functionally differ-

ent from those in the adult brain [113] and activation of subplate

GABA neurons in rodents leads to the activation of depolarizing

GABA receptors on other subplate neurons [33,114].

The subplate neurons also send ascending axons to the overly-

ing cortical plate [34,41]. Such projections were not directly dem-

onstrated in the human fetal cortex, but if they are present their

synaptic action in the cortical plate should occur after 23 or 24

PCW, because there are no synapses in the cortical plate before

that time [27].

Subplate Neuronal Circuitry and its Functions

The physiological properties of subplate neurons and their local

and extrinsic (input–output) circuitry were first described in the

cat [41,101,102,111]. This was subsequently thoroughly

elaborated in neurophysiological studies using rodents

[33–35,104,107,115,116]. The early subplate circuitry displays

oscillatory features [33,116] and has been described as having an

endogenous activity which does not depend on extrinsic input

[34].

In the human fetal brain, synapses may be found as deep as 4–

6 mm below the cortical plate, on cell bodies and dendrites of sub-

plate neurons [29]. This shows that human subplate neurons also

serve as postsynaptic elements for early cortical circuitry. While

most of these synapses are asymmetric (excitatory?), some

symmetrical (inhibitory?) synapses are located on cell bodies of

subplate neurons [29]. Similar findings were reported in fetal cats

[103].

As already mentioned, before 24 PCW, the subplate is the major

site of synaptogenesis in the human fetal brain, whereas there are

no synapses in the cortical plate; but, cortical plate neurons seem

to communicate through gap junctions [29,33,34,104,117,118].

However, synapses are also present on apical dendritic branches of

cortical plate pyramidal neurons situated in the marginal zone,

which serves as another early site of synaptogenesis in the fetal

cortex [27,29]. The fact that the subplate serves as the major site

of synaptic activity in midfetal and preterm brain has obvious

functional and clinical implications: (1) first external stimuli (such

as tactile or pain stimuli), travelling along thalamocortical axons,

reach the subplate circuitry and extend to the cortical plate only

after 24 PCW; (2) early influences of monoaminergic and cholin-

ergic modulatory systems are also centered on transient subplate

circuitry; (3) initial corticocortical connections remain centered

on the subplate circuitry even after 28 PCW (when thalamocorti-

cal and basal forebrain afferents are already settled and active in

the cortical plate); (4) the prolonged co-existence of transient

(subplate-centered) and permanent (cortical plate-centered) corti-

cal circuitry represents a salient feature of human cortical devel-

opment [1,2] during at least 6 months (i.e., three last prenatal

and three-first postnatal months); (5) the transient subplate cir-

cuitry probably represents an important component of the emerg-

ing resting state activity during the perinatal period [119–122].

In conclusion, the transient subplate-centered cortical circuitry

consists of elaborated local (modular?) circuits (Fig. 2) which

receive specific inputs and send specific outputs, and continues to

exist during the initial formation of the equivalent cortical plate-

based (i.e., adult-like) cortical circuitry. Thus, the subplate repre-

sents vital but hitherto neglected component of the human fetal

cortical connectome.

Subplate Involvement in Neuronal
Migration and Developmental Brain
Disorders

Subplate as the Zone of Neuronal Migration

After its formation (13–15 PCW), the subplate becomes the thick-

est and the most voluminous transient compartment of the

human fetal cerebral wall, reaching its developmental peak (6–

10 mm in thickness!) between 28 and 32 PCW. It should be noted

that during this entire period postmitotic cortical neurons migrate

through the subplate on their way to the cortical plate. This also

means that radial glial guides (along which these neurons

migrate) are continuously present in the subplate. Thus, the
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subplate not only represents a large portion of the total migratory

route, but may in fact represent a sort of “mine-field” for travel-

ling last-generated migratory neurons (destined to corticocortical

layers II and III); namely, these neurons continue to migrate after

24 PCW, when many radial glial cells are already transforming

into astrocytes within the subplate and thus may not be able to

serve as radial guides to migratory neurons.

With respect to generation and migration of subplate neurons

themselves in the human or primate brain, very little is known at

present. While subplate pyramidal neurons probably use the same

radial migratory route as pyramidal neurons of the cortical plate,

it is not known why and how they detach from the radial glia

already in the subplate instead of continuing their journey to the

cortical plate. For example, the reelin produced by Cajal-Retzius

cells in the marginal zone has been suggested to act as a stop signal

for pyramidal neuron migration, but there is at present no evi-

dence that subplate cells produce reelin [123,124]. Moreover, a

recent study suggested that massive loss of Cajal-Retzius cells does

not disrupt neocortical layer order [125]. On the other hand,

migrating GABA interneurons seem to rely on mechanisms inde-

pendent of reelin signaling [126] and use predominantly or exclu-

sively tangential routes of migration. But, the exact migratory

(A) (B)

(C) (D)

Figure 2 Simplified diagram (A) of transient subplate circuitry during the late midfetal period (24–26 PCW). Different presynaptic axons and postsynaptic

receptors are represented by different colors (see legends along the diagrams). To enhance the understanding and visibility, three major circuitry systems

are displayed separately: monoaminergic (B), thalamocortical (C) and intrinsic subplate plus corticothalamic (D). VZ and SVZ, ventricular and

subventricular zone; IZ, intermediate zone; SP, subplate; CP, cortical plate; MZ, marginal zone.
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route is still unexplored for many subsets of GABA interneurons

even in the rodent brain. With respect to human and nonhuman

primate brain, it is known that a significant subset of GABA inter-

neurons is generated in the VZ-SVZ and uses tangential migratory

route on their way to the cortical plate [127,128]. However,

which (if any) of these interneurons are destined to the human

subplate and how they settle there remains unknown. In distinc-

tion to the cortical plate, the subplate does not show clear laminar

organization. Thus, it is difficult to analyze how and why different

types of subplate neurons become settled at different subpial

depths within the subplate.

Subplate may have a Key Role in Pathogenesis
of Migration Disorders and Cortical Dysplasias

At present, there are several classifications of malformations of

cortical development, which rely on combination of develop-

mental, genetic and neuroimaging criteria [37–39]. For example,

cortical malformations may be broadly divided in disorders of

neuronal position, disorders of axonal projection and assembly,

and syndromes of cortical disorganization, that is, cortical dyspla-

sias [37]. As genetic studies have identified several genes associ-

ated with malformations of cortical development, and some of

these genes are involved in pathogenesis of the largest malforma-

tion groups such as focal cortical dysplasia, heterotopia and poly-

microgyria [39], molecular and genetic approaches opened new

vistas for classifying and studying functional consequences and

treatment options of various cortical abnormalities, for example,

those associated with drug-resistant epilepsy [20,21,39].

Another approach is to classify cortical malformations based on

the stage of development at which cortical development was first

affected and to use genotype, rather than phenotype, as the basis

for classifying disorders [38]. This revised classification [38] pro-

posed that there are four major groups of cortical malformations:

(1) Malformations due to abnormal proliferation/apoptosis; (2)

Malformations due to abnormal migration; (3) Malformations

due to abnormal late neuronal migration and cortical organiza-

tion; and (4) Malformations of cortical development, not other-

wise classified. The first three groups are useful for describing

disorders of neurogenesis of all cortical neurons, the radial migra-

tion of projection (pyramidal) cortical neurons and tangential

migration of cortical interneurons. These three groups can equally

apply to the analysis of disorders in neurogenesis and migration

of subplate neurons; unfortunately, that kind of analysis has not

been applied to subplate neither in humans nor in experimental

animals.

If subplate pyramidal neurons indeed use the radial glial cells as

their migratory routes, any change in signaling properties and

contact guidance with glial cells may lead to significant over- or

underpopulation of subplate with putative excitatory (glutamater-

gic) and projection neurons. For example, this may cause the pres-

ence of supernumerary and immature subplate-like neurons in

cortical dysplasia, as recently suggested [20,21]. However, it

should be noted that this pathology cannot be explained by abnor-

mal survival of fetal subplate neurons normally programmed to

undergo developmental cell death, because in the human brain

the large majority of subplate neurons survive into adulthood as

interstitial neurons of the gyral white matter [44,70].

As already described, the subplate also contains a complex con-

tingent of various axons distributed in a plexiform arrangement. If

some subplate GABA- and neuropeptide-containing interneurons

use the neurophillic mode of migration (i.e., migration along axo-

nal fascicles), this may explain why they finish scattered within

the subplate in a seemingly haphazard manner—and, perhaps, in

inappropriate numbers. On the other hand, the subplate extracel-

lular matrix contains all kinds of contact guidance molecules,

which may help guide not only growing axons but also migratory

neurons to their proper targets. But this also means that any dis-

turbance of this extracellular matrix (e.g., by hypoxic-ischemic

lesion in preterm infants) may cause serious disturbances in

proper laminar and modular distribution of migratory neurons as

well as various types of mis-connection or dis-connection of

ingrowing cortical afferents. Therefore, subplate GABA interneu-

rons (especially those of large multipolar type) may become not

only supernumerary, but also misplaced at wrong positions and

mis-connected with wrong postsynaptic targets as well as being

themselves wrong targets for presynaptic afferent axons. This may

be another cause for abnormal physiological features of these cells

in various types of cortical dysplasia and epilepsy syndromes.

All this shows that, for growing axons and travelling neurons,

the subplate may represent not just the “enchanted loom” (to use

the well-known expression of Sherrington) for properly con-

structing adult cerebral cortex, but also the impenetrable and con-

fusing jungle in which the weary travelers remain forever lost and

thus contribute to all kinds of improperly designed and abnormal

cortical arrangements. We are just becoming to be aware of

numerous potential and important roles that subplate neurons

may play in the pathogenesis of developmental brain disorders.

The developmental neuropathology of the subplate is obviously in

its infancy, but, thanks to the availability of modern molecular,

genomic, and neuroimaging techniques, it may be steadily and

prosperously advanced in the near future.
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