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Combined analysis of SPECT myocardial perfusion imaging (MPI)
performed with a solid-state camera on patients in 2 positions

(semiupright, supine) is routinely used to mitigate attenuation

artifacts. We evaluated the prediction of obstructive disease from

combined analysis of semiupright and supine stress MPI by deep
learning (DL) as compared with standard combined total perfusion

deficit (TPD). Methods: 1,160 patients without known coronary ar-

tery disease (64% male) were studied. Patients underwent stress
99mTc-sestamibi MPI with new-generation solid-state SPECT scan-
ners in 4 different centers. All patients had on-site clinical reads and

invasive coronary angiography correlations within 6 mo of MPI. Ob-

structive disease was defined as at least 70% narrowing of the 3
major coronary arteries and at least 50% for the left main coronary

artery. Images were quantified at Cedars-Sinai. The left ventricular

myocardium was segmented using standard clinical nuclear cardi-

ology software. The contour placement was verified by an experi-
enced technologist. Combined stress TPD was computed using

sex- and camera-specific normal limits. DL was trained using

polar distributions of normalized radiotracer counts, hypoperfusion

defects, and hypoperfusion severities and was evaluated for predic-
tion of obstructive disease in a novel leave-one-center-out cross-

validation procedure equivalent to external validation. During the

validation procedure, 4 DL models were trained using data from 3
centers and then evaluated on the 1 center left aside. Predictions for

each center were merged to have an overall estimation of the mul-

ticenter performance. Results: 718 (62%) patients and 1,272 of

3,480 (37%) arteries had obstructive disease. The area under the
receiver operating characteristics curve for prediction of disease on

a per-patient and per-vessel basis by DL was higher than for com-

bined TPD (per-patient, 0.81 vs. 0.78; per-vessel, 0.77 vs. 0.73; P ,
0.001). With the DL cutoff set to exhibit the same specificity as the

standard cutoff for combined TPD, per-patient sensitivity improved

from 61.8% (TPD) to 65.6% (DL) (P , 0.05), and per-vessel sensi-

tivity improved from 54.6% (TPD) to 59.1% (DL) (P , 0.01). With the
threshold matched to the specificity of a normal clinical read

(56.3%), DL had a sensitivity of 84.8%, versus 82.6% for an on-site

clinical read (P 5 0.3). Conclusion: DL improves automatic inter-

pretation of MPI as compared with current quantitative methods.
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SPECT myocardial perfusion imaging (MPI) is widely used for
the diagnosis of coronary artery disease (CAD), with more than

6.3 million scans performed annually in North America (1). High-

efficiency SPECT scanners equipped with solid-state detectors

and specialized collimators have dramatically improved count

sensitivity and image resolution (2). They enable shorter acquisi-

tion times that facilitate imaging patients in multiple positions to

assess image artifacts, or alternatively the implementation of low

radiation protocols by performing standard time acquisitions or

stress-only protocols (3).
Machine learning process allows artificial intelligence systems to

acquire their own knowledge from raw data. Recent research has
demonstrated increased capabilities of deep convolutional neural
networks (often referred to as deep learning [DL]) to solve challenging
tasks such as classification and image segmentation (4). In contrast to
conventional machine learning that requires predefined image features
to be computed in advance (5,6), convolutional networks are connected
directly to image pixels and learn image statistics in a self-taught
manner, therefore processing the images in their natural form (4).
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DL ability to simultaneously analyze normalized radiotracer counts,
hypoperfusion defects, and hypoperfusion severities on SPECT-MPI
maps to predict CAD has been recently demonstrated (7).
In this work, we aimed to apply DL to upright and supine images

acquired for the same patient on a high-efficiency camera. Physicians
need to review these 2 images for the final interpretation. Simple
rule-based computational methods are currently used for combined
quantification of upright/supine images (8) to mitigate various im-
aging artifacts, such as attenuation artifacts. In this study,
using a large international cohort of high-efficiency MPI with
correlating invasive coronary angiography (ICA), we apply DL to
improve the interpretation of upright/supine images.

MATERIALS AND METHODS

Study Population

The studied dataset was collected under NIH-sponsored REgistry of
Fast Myocardial Perfusion Imaging with NExt generation SPECT

(REFINE-SPECT) (9). The registry contains MPI studies and on-site

clinical reads of consecutive patients without known CAD who un-

derwent clinically indicated ICA within 180 d of MPI (7). This in-

formation was transferred to the core laboratory (Cedars-Sinai) for

processing. We analyzed stress MPI images from 1,160 patients

(64% male) from the registry who underwent upright and supine SPECT

MPI (performed on a D-SPECT system) in 4

nuclear cardiology centers in the United States,
between 2008 and 2015. The study was ap-

proved by the institutional review board of
each center, and the requirement to obtain in-

formed consent was waived.

Stress Image Acquisition
99mTc-sestamibi stress imaging was per-

formed using high-efficiency solid-state D-

SPECT scanners (Spectrum-Dynamics) for

patients positioned semiupright and supine
(10). Patients underwent either symptom-

limited Bruce protocol treadmill exercise

testing only (522 [45%]) or pharmacologic

stress (638 [55%]), with radiotracer injection
at peak exercise or during maximal hyper-

emia, respectively. Upright and supine stress

imaging began 15–60 min after stress and
followed fast acquisition protocols—acquisition

lasting 4–6 min each. Reconstructed images were generated on-site

from the list-mode data by vendor-recommended iterative reconstruc-
tion with resolution recovery as optimized on this scanner (10). No

attenuation, scatter, or motion correction was applied.

ICA

ICAwas performed within 180 d of the MPI examination according
to standard clinical protocols and routine. All coronary angiograms

were visually interpreted by an on-site cardiologist, independent from

MPI but not formally blinded to MPI. Luminal diameter narrowing of
50% or greater in the left main artery, or of 70% or greater in the left

anterior descending (LAD), left circumflex (LCx), or right coronary

arteries (RCA), was considered significant and used as the gold standard
for obstructive CAD.

Image Processing

Image datasets were transferred and quantified at Cedars-Sinai Medical
Center. Left ventricular (LV) myocardial contours were computed using

standard Cedars-Sinai Quantitative Perfusion SPECT software, version

2015 (11). LV contours were verified by a technologist with more than
15 y of experience in nuclear cardiology who was blinded to angio-

graphic and clinical findings. When needed, the technologist corrected

the gross initial LV localization, the LV mask, and the valve plane
position (6,12).

Automated Myocardial Perfusion

SPECT Quantification

Polar map samples derived from the raw

images by the standard algorithm were used
to generate raw polar maps showing radio-

tracer count distributions normalized to the

maximal counts. SPECT images were quan-
tified by sex-specific normal limits deriving

upright and supine blackout and total perfu-

sion deficit (TPD) maps—4 polar maps in

total (8,13). Blackout polar maps defined
areas of hypoperfusion (11) as blacked-out

samples in the raw map. TPD polar maps de-

scribed perfusion deficits—individual hypo-
perfusion severity—as polar map samples on

a 0–4 scale (13).

Standard Measures

Standard clinical combined TPD (cTPD)

measures per patient and per vessel for LAD,

FIGURE 1. DL prediction of obstructive CAD from upright and supine MPI. A deep convolutional

neural network trained from obstructive stenosis correlations by ICA was used to simultaneously

estimate probability of obstructive CAD for LAD, LCx, and RCA territories from upright and supine

polar MPI maps. Maximum probability was retained as probability of patient disease. FC 5 fully

connected layer; Max-pooling 5 function that returns maximum value for image patch; ReLU 5
rectified linear unit.

FIGURE 2. Leave-one-center-out cross-validation. Input stress MPI datasets are divided by

center (4 in total). Four folds are built, each containing training sample made up of images from

3 centers and validation sample with images from remaining center. This procedure allows ex-

ternal validation of 4 DL models trained separately in each fold.
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LCx, and RCA territories were computed using the rule of concom-

itant location of the perfusion defect (8) for comparison to DL. Final

on-site clinical reads incorporating all clinical information and imag-

ing data (static, gated, stress, rest) were reported on a scale of 0–4 (0,

normal; 1, probably normal; 2, equivocal; 3, abnormal; 4, definitely

abnormal) by experts from each site during clinical reporting. Clinical

scores of 0–1 were considered as normal, and 2–4 were considered as

abnormal for sensitivity/specificity calculation.

DL

The DL procedure illustrated in Figure 1 extends a previous approach

(7) by processing upright and supine polar maps simultaneously. Sex

TABLE 1
Baseline Characteristics of Studied Population

Characteristic

Overall,

n 5 1,160

Nonobstructive CAD,

n 5 442 (38.1%)

Obstructive CAD,

n 5 718 (61.9%) P

Age (y) 64.3 ± 11.5 62.2 ± 12 65.6 ± 11.1 ,0.0001

Sex

Male 745 (64.2) 232 (52.5) 513 (71.5) ,0.0001

Female 415 (35.8) 210 (47.5) 205 (28.5) ,0.0001

Weight (kg) 88.5 ± 21.9 89.4 ± 23.6 87.9 ± 20.8 0.278

Body mass index (kg/m2) 30 ± 6.5 30.8 ± 7.5 29.5 ± 5.7 ,0.01

Diabetes mellitus 351 (30.3) 121 (27.4) 230 (32) 0.09

Hypertension 841 (72.5) 304 (68.8) 537 (74.8) ,0.05

Dyslipidemia 780 (67.2) 281 (63.6) 499 (69.5) ,0.05

Smoking 221 (19.1) 83 (18.8) 138 (19.2) 0.85

Stress test type

Exercise 522 (45) 196 (44.3) 326 (45.4) 0.73

Exercise 1 pharmacologic 164 (14.1) 48 (10.9) 116 (16.2) ,0.05

Pharmacologic 474 (40.9) 198 (44.8) 276 (38.4) ,0.05

Imaging protocol

Stress only 48 (4.1) 19 (4.3) 29 (4) 0.83

Same day stress and rest 1,073 (92.5) 403 (91.2) 670 (93.3) 0.18

Stress-first 261 (22.5) 84 (19.0) 177 (24.7) ,0.05

Rest-first 812 (70.0) 319 (72.2) 493 (68.7) ,0.05

Two-day stress and rest 39 (3.4) 20 (4.5) 19 (2.7) 0.09

Qualitative data are expressed as numbers followed by percentages in parentheses; continuous data are expressed as mean ± SD.

TABLE 2
Prevalence of Obstructive CAD

Prevalence

Obstructive disease

Overall multicenter,

n 5 1,160

Center 1,

n 5 362

Center 2,

n 5 191

Center 3,

n 5 275

Center 4,

n 5 332 P

No disease 442 (38.1) 139 (38.4) 72 (37.8) 96 (34.9) 135 (40.7) 0.54

One-vessel disease 321 (27.7) 100 (27.6) 62 (32.5) 79 (28.7) 80 (24.1) 0.22

Double-vessel disease 240 (20.7) 74 (20.4) 33 (17.3) 64 (23.3) 69 (20.8) 0.48

Triple-vessel disease 157 (13.5) 49 (13.6) 24 (11.0) 36 (13.1) 48 (14.5) 0.93

Per-patient 718 (61.9) 223 (61.6) 119 (62.3) 179 (65.1) 197 (59.3) 0.54

LAD 509 (43.9) 163 (45.0) 84 (44.0) 124 (45.1) 138 (41.6) 0.78

LCx 384 (33.1) 121 (33.4) 60 (31.4) 92 (33.5) 111 (33.4) 0.96

RCA 379 (32.7) 111 (30.7) 56 (29.3) 99 (36) 113 (34.0) 0.35

Per-vessel (LAD 1 LCx 1 RCA) 1,272/3,480 (36.6) 395/1,086 (36.4) 200/573 (34.9) 315/825 (38.2) 362/996 (36.4) 0.65

Data are numbers followed by percentages in parentheses.
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information was included to account for the image differences between

men and women on non–attenuation-corrected MPI. The model esti-
mates the obstructive per-vessel CAD probability, without the use of

predefined coronary territories or any assumed subdivision of the input
polar map. The maximum per-vessel probability of obstructive CAD

was retained as the per-patient score.

Leave-One-Center-Out Cross-Validation

To externally validate the expected performance of the DL model

for each participant center, we divided the studied population per
center (4 groups) and then trained 4 DL models with data from 3

centers and evaluated them on the remaining external center in a leave-

one-center-out cross-validation (Fig. 2) (14). Therefore, the generalizabil-

ity of the prediction to new MPI data was determined by evaluating
unseen patients from a separate center. External validation aims to assess

the accuracy of a model in patients from a different but plausibly related
population (15). Externally validated predictions for each center were sub-

sequently merged, which reduces the variability of the estimated
performance as compared with an external validation in a single

external center.

Implementation

The DL model was implemented using the convolutional architec-
ture for fast feature embedding DL toolkit (Berkeley Artificial Intelli-

gence Research Lab) in Python programming language 2.7.12 (7,16).
Model training was performed on graphics processing units in a GeForce

GTX 1080 Ti card (Nvidia).

Statistical Analysis

DL and cTPD were compared using pairwise comparisons of the area
under the receiver operating characteristic curve (AUC) according to

DeLong et al. (17). Per-vessel curves were computed by merging LAD,

LCx, and RCA scores by per-vessel cTPD and by the DL scores. The

McNemar test was used to assess differences in sensitivity. The per-

patient and per-vessel improvements in sensitivity were computed for

the DL thresholds matching the specificity when using previously estab-

lished diagnostic cutoff values of 3% for per-patient cTPD and 1%

for per-vessel cTPD (8). Per-patient sensitivity was also evaluated for

DL and cTPD thresholds matching the specificity of clinical readers.

A 2-tailed P value of less than 0.05 was considered significant. Statis-

tical calculations were performed in R software, version 3.4 (18).

RESULTS

Baseline characteristics of the studied
population (Table 1) were similar to reported

single-center studies, with a higher inci-

dence of diabetes (8,19). The prevalence

of obstructive CAD (Table 2), age, inci-

dence of diabetes mellitus, and incidence

of hypertension (Supplemental Tables 1 and

2) were the same across centers. Injected

radiotracer activities for stress image acqui-

sition are in Table 3.

LV Segmentation

LV contours were manually corrected in
143 (12.3%) upright images and 238

(20.5%) supine images (P , 0.0001). Up-

right image modifications included 142

corrections for LV location, 15 corrections

for LV mask, and 139 valve plane correc-

tions (12). Supine image modifications in-

cluded 238 for LV location, 29 for LV

mask, and 200 valve plane corrections.

DL

Overall, the leave-one-center-out cross-
validation training/validation loop took less
than 30 min using graphics processing units,
which includes the creation of 4 DL models.
In the testing phase, the prediction of LAD,
LCx, and RCA disease could be completed
in less than 0.5 s per patient using central-
processing-unit computation.

TABLE 3
Radiotracer Activity for Stress Image Acquisition

Image protocol

Injected activity

(MBq)

Same-day protocols, n 5 1,073 (92.5%)

Stress-first protocol, n 5 261 (24.3%) 213.1 ± 87.3

Rest-first protocol, n 5 812 (75.7%) 103 ± 384

Two-day protocol, n 5 39 (3.4%) 682.3 ± 481.44

Stress-only protocol, n 5 48 (4.1%) 260.2 ± 486.5

Overall, n 5 1,160 804 ± 494

Data are mean ± SD.

FIGURE 3. DL prediction of obstructive CAD from 4 externally validated models with merged

data for 4 centers. Per-patient (A) and per-vessel (B) DL predictions of obstructive CAD from

upright and supine images (DL, red) are compared with prediction of obstructive CAD by com-

bined upright-supine TPD (cTPD, blue). AUC per center was externally validated using CAD

scores from 4 different DL models (1 per center) with each model trained with data from other

3 centers. Red dotted line (bottom) shows overall multicenter AUC. CI5 confidence interval; ROC

5 receiver operating characteristic.
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Per-Patient. The merged per-patient AUC by DL was signifi-
cantly higher than the AUC by cTPD (Fig. 3A). When operating

with the same specificity as cTPD with a per-patient threshold of

3%, DL significantly improved the sensitivity of per-patient dis-

ease prediction. When operating with the same specificity as nor-

mal clinical reads, DL had the same sensitivity for disease

prediction as on-site clinical readers and significantly improved the

sensitivity compared with cTPD (Fig. 4).
Per-Vessel. The merged per-vessel AUC by DL was signifi-

cantly higher than the AUC by per-vessel cTPD (Fig. 3B). When

operating with the same specificity as cTPD with a per-vessel

threshold of 1%, DL significantly improved the sensitivity of

per-vessel disease prediction.
Per-Center Analysis. DL resulted in significant improvements

of per-patient and per-vessel AUCs as compared with cTPD for all

externally validated centers except for per-patient CAD prediction

in center 3, where they were similar (Fig. 3 [bottom]).
Performance per Subpopulation. DL resulted in significant im-

provements as compared with cTPD for all studied subpopulations

except for per-patient AUC for women and for patients undergoing

exercise stress test, for whom DL performed the same (Fig. 5).

Case Examples

Figure 6 illustrates 2 cases of obstructive CAD correctly pre-
dicted by DL. Figure 6A shows a case of LAD disease correctly
predicted by DL but with normal per-vessel and per-patient cTPD.
Figure 6B shows a case of triple-vessel disease correctly identified
by DL but with normal TPD at the LAD and LCx territories.

DISCUSSION

In this study, we applied DL to automatically combine upright
and supine MPI polar maps and to predict obstructive CAD. The

performance of DL was compared to clinically established

combined perfusion quantification by upright and supine TPD

using the rule of the concomitant location of the defect (8,13), and

to on-site clinical readers. D-SPECT MPI data were collected in
a large multicenter registry, to our knowledge the largest to date
with ICA correlations, with the number of samples per vessel
disease similar to the number of samples per category in computer
vision datasets or new applications in medicine (7,20,21).
In a novel leave-one-center-out cross-validation procedure,

equivalent to external validation, we observed that DL from upright
and supine polar MPI images outperformed cTPD in the prediction
of obstructive disease. The observed gains for CAD prediction were
greater than those obtained by attenuation-corrected TPD, or by
visual analysis of attenuation-corrected SPECT MPI images (22).
These gains by DL derive from an improved processing of the same
information used by cTPD with no additional testing, radiation, or
cost. It should also be kept in mind that there is an upper limit in
diagnostic MPI performance measured versus ICA due to the phys-
iologic constraint of prediction of stenosis from a perfusion defect.
We demonstrate that DL matched the sensitivity/specificity of

disease prediction by clinical expert reading, even though on-site
reader experts made their diagnosis with all imaging data
(including rest scans and gated scans) as well as patient’s clinicalFIGURE 4. Sensitivity for prediction of obstructive CAD. Per-patient DL

prediction of obstructive CAD by DL computed from upright and supine

MPI (DL, red) had higher sensitivity than prediction by cTPD (blue) and

same sensitivity as on-site clinical readers (green). DL cutoff was set to

0.29, and cTPD cutoff was set to 0.62% to exhibit same specificity as

normal or probably-normal clinical read. CI 5 confidence interval.

FIGURE 5. Prediction of obstructive CAD per subpopulation. REFINE-

SPECT subpopulations were defined by sex (F, M), obesity (nonobese:

body mass index , 30 kg/m2, obese: body mass index $ 30 kg/m2),

stress imaging activity (low: patients undergoing stress-first/stress-only

MPI; standard: patients undergoing rest-first/2-d MPI), and stress test type

(exercise, pharmacologic). Red dotted line shows overall multicenter AUC

as reported in Figure 3. BMI 5 body mass index; CI 5 confidence interval.
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information, all unknown by DL and cTPD. Moreover, experts
reported in their own laboratory, whereas DL was trained on data

excluding patients from the tested laboratory. This validation ap-

proach conservatively reflects the performance estimate of the

generalization of the DL approach to unseen centers for potential

external deployment of such technology.
The proposed DL procedure performs an automatic end-to-end

prediction of CAD (from the image pixels to the predicted CAD

score) of upright and supine MPI. This demonstrates DL flexibility

and extends the previous single-view approach (7). The DL pro-

cedure learned image statistics from supine and upright maps and

integrated them with sex information to compute a score for ob-

structive CAD outperforming cTPD prediction. The DL procedure

was able to capture complex relationships that were not easily

captured with the rule for upright and supine concomitancy as

observed on the clinical examples in Figure 6.
We observed AUC improvements for men and for patients under-

going pharmacologic stress, same-day rest/stress, 2-d stress/rest, or

stress-only MPI. We also observed per-patient and per-vessel AUC

improvements by DL as compared with cTPD, for each participant

center. Some intercenter AUC variability was observed, likely due to

the differences in patients between centers. For instance, we observed

a higher proportion of patients undergoing the exercise stress test in

center 1 than the other 2 centers (Supplemental Table 1; supplemental

materials are available at http://jnm.snmjournals.org). The variability

may also be due to the differences in imaging protocols for obtaining

the upright and supine images among the centers.

The proposed DL method can be easily
and immediately deployed clinically. The
expected increased performance should be
reproduced in new upright/supine data from
unseen centers as observed here after rig-
orous external validation. Potentially, the
method can be extended for the simultaneous
analysis of prone and supine images or for
attenuation-corrected and non–attenuation-
corrected images. The proposed method is
standalone and uses only image data, com-
bining optimally the upright and supine
views, which is difficult visually. In compar-
ison to machine learning models combining
image and clinical information (23), the pre-
sented technique does not require entering
clinical information by the physician, which
is potentially dependent on the automatic ac-
cess to the electronic health records. The pre-
dicted per-vessel probabilities of obstructive
CAD could be integrated with the quantita-
tive software, in the form of polar maps (Fig.
6) to aid the clinician in final reporting. The
execution time of such DL models (,1 s),
allows for routine application of what can be
the first practical deployment of DL technol-
ogy to nuclear medicine and cardiac imaging
and one of the first examples of DL applica-
tion in clinical practice.
This study has several limitations. First,

visual stenosis on ICA was used as the gold
standard, which is known to overestimate the
prevalence of functionally significant disease

when compared with fractional flow reserve. Fractional flow
reserve measurements were not available in this population, as
these are not commonly performed clinically. The accuracy of
stenosis interpretation may also differ between centers. The
established endpoint interval of 180 d between SPECT MPI and
clinical indicated ICA may be considered long. We did use a 70%
diameter stenosis cutoff for the 3 major coronary arteries to
indicate functionally significant lesions (24). Second, in this study,
we used upright and supine polar maps acquired in D-SPECT cam-
eras because this protocol is specific to this camera. Motion correc-
tion was not considered for these scanners because it was not
available at any of the participant centers at the time when the
images were collected and interpreted; however, the proposed si-
multaneous processing of 2-position images could potentially mit-
igate motion artifacts in 1-position images. Third, rest scans and
ischemia were not considered; however, in this work, we studied
patients without known CAD, for which, traditionally, stress vari-
ables are used for detection of obstructive disease. It is possible that
externally validated machine learning models, also incorporating
clinical information into the scoring of obstructive disease (5), pro-
vide further enhancements in AUC performance, especially for the
prediction of prognostic outcomes.

CONCLUSION

DL improves automatic prediction of obstructive CAD
from MPI, as compared with the current standard quantitative
method.

FIGURE 6. Prediction of obstructive CAD from upright and supine stress MPI. Short/long axis

views, polar maps depicting normalized radiotracer count distribution and perfusion defects (top),

and predictions by cTPD and DL (bottom) are shown for 2 patients with obstructive CAD. (A) In 79-y-

old man (85% proximal LAD stenosis) quantified with normal cTPD (per-patient cTPD , 3% and

per-vessel cTPD , 1%), DL correctly identified LAD disease. Patient had body mass index of

30 kg/m2 and diabetes and underwent exercise stress MPI. (B) In 62-y-old woman (70% mid

LAD stenosis, 95% proximal LCX stenosis, and 80% proximal RCA stenosis) with cTPD ab-

normal for 1 vessel only, DL correctly identified triple-vessel disease. Patient had body mass

index of 25 kg/m2, dyslipidemia, and family history of cardiac disease and underwent exercise

stress MPI. BMI 5 body mass index.
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