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In Brief
Cone snail venom is a wide
source of active molecules that
have potential pharmacological
and biotechnological applica-
tions. Several proteins have
been reported in the venom of
cone snails. Here we describe
the isolation and characterization
of the sPLA2 Conodipines P1-3
from the injected venom of Co-
nus purpurascens. We employed
a combined proteotranscriptome
approach to obtain the full se-
quences these Conodipines. The
activity of Conodipine-P1 was
assessed by a mass spectrome-
try-based method, which pro-
vides the first detailed Conodip-
ine activity analysis.

Graphical Abstract

Highlights

• Three novel Conodipines P1-3 in the injected venom of Conus purpurascens.

• Conodipines P1-3 have consensus catalytic characteristics of sPLA2.

• We determined multiple modification sites in Conodipines P1-3.

• Evaluated the activity of Conohyal-P1 by a MS-based method.
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Conodipine-P1-3, the First Phospholipases A2
Characterized from Injected Cone Snail
Venom*□S

Carolina Möller‡, W. Clay Davis‡, Evan Clark§, Anthony DeCaprio¶, and Frank Marí‡�

The phospholipase A2 (PLA2s) superfamily are ubiquitous
small enzymes that catalyze the hydrolysis of phospholip-
ids at the sn-2 ester bond. PLA2s in the venom of cone
snails (conodipines, Cdpi) are composed of two chains
termed as alpha and beta subunits. Conodipines are cat-
egorized within the group IX of PLA2s. Here we describe
the purification and biochemical characterization of three
conodipines (Cdpi-P1, -P2 and -P3) isolated from the in-
jected venom of Conus purpurascens. Using proteomics
methods, we determined the full sequences of all three
conodipines. Conodipine-P1-3 have conserved consensus
catalytic domain residues, including the Asp/His dyad. Ad-
ditionally, these enzymes are expressed as a mixture of
proline hydroxylated isoforms. The activities of the native
Conodipine-Ps were evaluated by conventional colorimet-
ric and by MS-based methods, which provide the first
detailed cone snail venom conodipine activity monitored
by mass spectrometry. Conodipines can have medicinal
applications such inhibition of cancer proliferation, bac-
terial and viral infections among others. Molecular &
Cellular Proteomics 18: 876–891, 2019. DOI: 10.1074/mcp.
RA118.000972.

The phospholipase A2 (PLA2)1 superfamily (EC 3.1.1.4)
comprises a broad range of small enzymes that catalyze the
hydrolysis of phospholipids at the sn-2 ester bond to produce
lysophospholipids and fatty acids (1, 2). The fatty acid pro-
duced by the PLA2s catalysis can be potent mediators of
inflammation and signal transduction and could act either as
a second messenger or as a precursor of eicosanoids, (3).
Additionally, the lysophospholipids exert a wide variety of
biological effects on cells and tissues (4–6). Fifteen groups (I
to XV) and various subgroups of PLA2 have been identified
including five distinct types of enzymes: secreted PLA2s
(sPLA2s), cytosolic PLA2s (cPLA2s), Ca2�-independent PLA2s
(iPLA2s), platelet-activating factor acetyl hydrolases/oxidized
lipid lipoprotein associated PLA2s (LpPLA2s), adipose PLA2s
(AdPLA2s), and lysosomal PLA2s (LPPLA2s). Most of these

enzymes have been extensively studied as they play a major
role in the regulation of phospholipid turnover, membrane
trafficking and fluidity, cell maturation, apoptosis, and the
production of hormones such as prostaglandins (7–10).

Animal venom contains a wide range of sPLA2s, which are
of interest because they are potent toxins with effects on prey
such as hemorrhage, myotoxicity, neurotoxicity, cardiotoxic-
ity, and inflammation (5, 11–15). sPLA2s from venomous an-
imals such as snakes (2), scorpions (16), bees (17), corals (18),
and lizards (19) have been widely described. They have also
been found in the venom of marine invertebrates such as
starfish (20–22), sponges (23), sea anemones (24, 25), jellyfish
(26), and lionfish (27). Venom sPLA2s are enzymes with mo-
lecular mass between 13 and 18 kDa and their hydrolytic
activity is Ca2� dependent.

Venom-derived sPLA2s can be either monomeric or (non-
covalent or covalent) homo- or hetero- dimers or larger oli-
gomers. Despite this structural diversity, the mechanism of
hydrolysis appears to be similar. Venom-derived sPLA2s are
nonselective toward the fatty acid type at the sn-2 position of
phospholipids. The catalytic cleft of the venom sPLA2s is
surrounded by hydrophobic residues that in the presence of
Ca2� bind the substrate. Four key residues are essential for
catalysis sPLA2s: the His/Asp dyad, Tyr and Asp (5, 28–30).

The sPLA2s in the venom of cone snails (conodipines) ex-
pand the reach of these enzymes. Conodipines (Cdpi) are
composed of two chains (alpha and beta), and are classified
within PLA2 group IX. The first conodipine described was a
partial sequence for conodipine-M (Cdpi-M), isolated from the
dissected venom of C. magus (31). Recently, conodipines
were reported from the transcriptome of C. consors (32), C.
victorae (33), C. tribblei (34), C. lenavati (UniProt A0A0K8TTR8),
C. monile (UniProt A0A161J284), C. ermineus (35) and C.
geographus (36). Using sequences from tryptic peptides and
the transcriptome, ten conodipines were found in the dis-
sected venom of C. geographus, which differed in sequence
and inter-cysteine loop spacing. Conodipines have a molec-
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ular mass near 14 kDa with their two subunits joined by one or
more disulfide bonds. However, there is poor sequence ho-
mology between conodipines and other sPLA2s, despite hav-
ing the conserved Asp/His catalytic dyad.

Here, we report the isolation and characterization of three
conodipines, Cdpi-P1, -P2 and -P3 found the injected venom
of C. purpurascens, the only fish-hunting cone snail species
that inhabits the tropical Eastern Pacific region (Graphical
Abstract Fig.). These are the first PLA2s reported from the
injected venom of a cone snail. We have used combined
proteomic-transcriptomic approaches, and have determined
the full sequences of these Cdpi-Ps. Additionally, we as-
sessed the activities Cdpi-P1 and injected venom using mass
spectrometry-based methods and conventional PLA2 assays.

EXPERIMENTAL PROCEDURES

Extraction of Injected Venom—Specimens of C. purpurascens
(20–50 mm) were collected from intertidal areas at the shores of the
Republic of Ecuador and kept alive in aquaria for venom extraction.
Extraction of injected venom of C. purpurascens was carried out
according to the procedure of Hopkins et al. (37) with modifications
(38).

Experimental Design and Statistical Rationale—The purpose of this
study was to characterize PLA2s (conodipines) in the venom pro-
teome of C. purpurascens. Therefore, we employed methods to max-
imize the number of conodipines identified, including strategies to
identify parts of their sequences (Edman degradation, transcriptomic
data mining; MALDI-MS of HPLC fractions, LC-MS/MS of HPLC
fractions). The design and statistical rationale for each of the exper-
iments conducted have been described in each subsection. The
injected predatory venom was collected and screen from 27 individ-
uals. The specimens with most conodipine content in their venom
were selected for further analysis. Conodipine extraction was made
based on produced biological quintuplicates. The eventual dataset
includes 5 technical replicates of selected HPLC fractions, two tech-
nical replicates of reduced and alkylated but undigested venom, and
two replicates of reduced, alkylated, and digested venom. The re-
maining samples are neither biological nor technical replicates but are
subsets of venom components fractionated to maximize the potential
of LC-MS/MS for conodipine identification.

Fractionation and Identification of Cdpi-Ps—Five to ten injected
venom samples (�80 �l) were pooled and dissolved in 0.1% (v/v) TFA
and separated by reversed phase HPLC (RP-HPLC) using a 4.6 mm �
50 mm, 2.6-�m-particle diameter, 100-Å-pore size Kinetex C8 col-
umn (Phenomenex, Torrance, CA) with a flow of 1 ml/min. The mobile
phases were 0.1% (v/v) TFA (Solution A) and 0.1% (v/v) TFA in 60%
(v/v) acetonitrile (Solution B). The venom was separated with an
incremental linear gradient of 1% (v/v) B/min. All fractions were man-
ually collected, lyophilized, and kept at �80 °C before further use.
The fractions corresponding to the conodipines were resuspended in
50 �l of buffer; the conodipine concentrations were determined using

an EpochTM 2 microplate spectrophotometer (BioTeck®, Winooski,
VT) operating at � � 280 nm using the calculated extinction coeffi-
cient from ProtParam (39).

MALDI-TOF Mass Spectrometry of the Cdpi-Ps Fractions—Positive
ion MALDI-TOF mass spectrometry was carried out on an Applied
Biosystems Voyager-DE Pro spectrometer. Samples were dissolved
in 0.1% TFA (v/v)/60% (v/v) acetonitrile, and applied on 4-hydroxy-
3,5-dimethoxycinnamic acid (sinapinic acid) matrix. Mass spectra
were obtained in the linear and reflector mode (M/�M resolution
�10000) using Calmix 1 and Calmix 2 (Applied Biosystems, Foster
City, CA) as external calibration standards. An aliquot (1 �l) of each
RP-HPLC fraction was subjected for mass spectrometry.

Cdpi-P1 Partial Sequencing by Edman Degradation—An aliquot
corresponding to fraction II was dried, redissolved in 0.1 M Tris-HCl
(pH 6.2), 5 mM EDTA, 0.1% (v/v) sodium azide, and reduced with 10
mM DTT. Following incubation at 60 °C for 30 min, the sample was
alkylated at a final volume of 15 �l with 20 mM iodoacetamide and 2
�l of NH4OH (pH 10.5) at room temperature for 1 h in the dark. The
reduced/alkylated subunits were separated by RP-HPLC and were
dried for furthered N terminus sequence by Edman degradation on an
Applied Biosystems Procise model 491A sequencer.

RNA Extraction, RNA-Sequencing, Transcriptome Assembly and
Conodipines-P1–6 Sequencing—The sequences of the precursors of
Cdpi-P1–6 were determined from the transcriptome of the dissected
venom of C. purpurascens as described by Möller et al., 2017 (40).
Briefly, a single adult specimen of C. purpurascens was dissected, the
venom duct removed and placed in TRIZOL (Invitrogen, Carlsbad,
CA). The RNA was extracted from venom duct and prepared utilizing
Illumina Poly(A)-Truseq preparation protocol. Samples were se-
quenced on Illumina Next-Seq 500 sequencing platform to produce
21 million forward and reverse reads. The paired-end data was then
assembled the de novo assembler Trinity (41) to produce a final
FASTA dataset containing 96,000 independent assembled contig
sequences. The N terminus sequence of the Cdpi-P1 obtained by
Edman degradation was used to identify the protein from the BLAST
(Basic Local Alignment Search Tool) database generated from the
transcriptome (42). The signal region and predictions of the cleavage
sites were determined using SignalP 4.0 (43), NetChop 3.1 (44) and
ProP 1.0 server (45). Sequence alignments were performed by Clustal
Omega (46).

Cdpi-P1-3 Proteomic Analysis—Top-down and bottom up pro-
teomics strategies were used to determine the sequences and mod-
ifications of Cdpi-P1-3. For the bottom up analysis, the RP-HPLC
fractions were reduced and alkylated with 10 mM DTT and 20 mM

iodoacetamide. Centrifugal filters were used to eliminate excess al-
kylating agent. Proteins were resuspended in 25 mM ammonium
bicarbonate (pH 7.8) containing 1 mM of CaCl2. Then, proteins were
digested with a LysC/trypsin mix (Promega, Madison, WI) at an en-
zyme/protein ratio of 1:50 (w/w) at 37 °C for 18 h. After the digestion,
each sample was resuspended in 0.1% (v/v) FA, and the protein
digests were analyzed by an Orbitrap Fusion™ Lumos™ Tribrid™
Mass Spectrometer (Thermo Fisher, San Jose, CA) using a 75 � 25
mm, 2 �m, C18 column. Additionally, top-down proteomics was
performed on the intact protein fractions, and the reduced/alkylated
subunits using a Thermo Scientific 75 � 15 mm, 3 �m, C8 column.
The analyses were performed using electron transfer dissociation
(ETD). The parameters used for the MS acquisitions were: survey
scan � 1 (�scan), mass range � 750–4,000 (m/z), maximum injection
time � 50 ms, resolution � 240,000. The MS/MS acquisition param-
eters were: scans � 1 �scans, cycle time � 3 s, maximum injection
time � 35 ms, isolation with � 0.7 Da, ETD activation time � 50 ms
and dynamic exclusion was set to exclude selected precursor ions for
60 s after 10 fragmentation selections in 30 s.

1 The abbreviations used are: PLA2, phospholipase A2; sPLA2, se-
creted PLA2; cPLA2, cytosolic PLA2; iPLA2, Ca2�-independent PLA2;
LpPLA2, lipoprotein associated PLA2; AdPLA2, adipose PLA2;
LPPLA2s, lysosomal PLA2; Cdpi, conodipines; RP-HPLC, reversed
phased HPLC; Tris, tris(hydroxymethyl)aminomethane; BLAST, basic
local alignment search tool; FA, formic acid; ETD, electron transfer
dissociation; FDR, false discovery rate; PBS, phosphate-buffered
saline; RBC, red blood cells; DOPC, 1,2-dioleoyl-sn-glycero-3-phos-
phocholine; FIA, flow injection analysis.
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Spectra were processed and analyzed with Proteome Discoverer™
Software (Version 2.0) using the SEQUEST algorithm (47, 48) using
the Conus (taxon ID 6490) database found in UniprotKB. This data-
base was created using the 2018 releases of the SwissProt, and
TrEMBL databases from UniProt and adding the sequences of the
precursors of Cdpi-P1-3 from the transcriptome resulting in 9677
sequences. For Proteome Discoverer, the search parameter settings
were 10 ppm precursor mass tolerance, 0.2 Da product mass toler-
ance, unspecific enzyme with 2 missed cleavages and 0.1 FDR.
Cysteine carbamidomethylation was selected as a fixed modification,
and Pro hydroxylation, Glu carboxylation, N terminus cyclization (for
Glu and Gln), and deamidation amidation were selected as variable
modifications. The search parameters used for the peptide mapping
analysis using the software Thermo BioPharma™ Finder™ were:
10–20 signal/noise threshold and 4 ppm mass tolerance for peak
detection, 5 ppm with a minimum confidence of 0.80 and high
protease specificity for trypsin for peptide identification and mass
accuracy.

sPLA2 Assay for the Activity of Cdpi-P1-3—PLA2 activity was de-
termined using sPLA2 assay kit (Cayman Chemical Company, Ann
Arbor, MI) following the manufacturer’s protocol. To achieve repro-
ducible results, the amount of sPLA2s added to the well should cause
an absorbance increase between 0.01 and 0.1/min. The samples
were diluted to reach the enzymatic activity at this level. The assay
buffer was 25 mM Tris-HCl, pH 7.5, containing 10 mM CaCl2, 100 mM

KCl, and 0.3 mM Triton X-100. Assay buffer was used as a blank, and
Apis mellifera venom PLA2 (1 �g/ml) was used as a positive control.
We used 0.25 �l of injected venom from C. purpurascens diluted to a
final volume of 100 �l and �1 �g/ml of Cdpi-P1. The optical density
was measured every minute at � � 405 nm using Thermomax micro-
plate reader (Molecular devices, San Jose, CA). All tests were carried
out by triplicate or more and mean values were calculated. Enzymatic
activity was expressed as the increase in absorbance per minute.
Specific activity was expressed as micromoles of fatty acid released
per minute per milligram of protein.

Agar Plate Activity Assay—PLA2 activity was evaluated by indirect
radial digestion in an agar plate according to the methods described
by Gutierrez et al. (49). A solution of 25 ml of 1% (w/v) agarose
dissolved in phosphate-buffered saline (PBS) pH 7.2 was melted in a
boiling water bath and cooled to 50 °C. One ml of human whole blood
(Bioreclamation IVT, Westbury, NY) was washed three times with
(PBS) pH 7.2 using centrifugations at 1900 � g. Three hundred
microliters of washed erythrocytes were combined with 300 �l of 1:3
egg yolk solution in PBS and 250 �l of 0.01 M CaCl2. The solution was
added to the agar solution, stirred, and immediately poured into a 9 �
9-cm plastic Petri dish. Cylindrical holes of �2 mm in diameter were
punched into the gel and emptied by suction. Samples were prepared
in duplicates as follows: positive control containing 20 �g/ml of A.
mellifera venom PLA2, 0.5 �l of C. purpurascens injected venom, and
the Cdpi-P1 fraction (20 �g/ml) in a final volume of 10 �l in 0.2 mM

sodium acetate pH 6.0, 0.15 mM NaCl. The holes were filled with a
volume of 8 �l from each sample. Empty holes (negative controls)
were filled with 8 �l of buffer. The plate was covered and incubated
for 20 h at 37 °C.

Hemolytic Activity—The hemolytic effects of C. purpurascens in-
jected venom on red blood cells (RBC) were evaluated using human
blood (50). One ml of whole human blood (Bioreclamation IVT, West-
bury, NY) was diluted in 10 ml PBS, pH 7.4, and then centrifuged at
1900 � g for 15 min at 4 °C. The RBCs were washed three consec-
utive times. The pellet rich in erythrocytes was resuspended in PBS to
a final volume of 10 ml. A hundred microliters of the purified RBCs
were combined with 2, 5, 10, 15, and 20 �l of injected venom. Final
volume was adjusted to 300 �l with PBS. Positive control (maximum
hemolysis) consisted of 200 �l of PBS in 1% (v/v) Triton X-100 and

100 �l RBC, whereas the negative control contained 200 �l of PBS
and 100 �l RBC. The samples were incubated for 3 h at 37 °C in an
incubator and then centrifuged at 1900 � g for 15 min at 4 °C. The
absorbance of the supernatant was determined at � � 540 nm. All
samples were tested by triplicate. Percentage of hemolysis was cal-
culated as follows:

Hemolysis �%	 � 
�Asample � Anegative control	/�Apositive control � Anegative control	� � 100

Direct Assessment of the Activity by Mass Spectrometry—PLA2

activity was determined by mass spectrometry. For that purpose, A.
mellifera venom PLA2 was used as a positive control in a final con-
centration of 10 �g/ml. Venom activity was determined using a vol-
ume of 3 �l of injected venom from C. purpurascens and the Cdpi-P1
fraction in a final concentration of �10 �g/ml. A stock solution of
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (Avanti Polar Lip-
ids, Inc, Alabaster, AL) was prepared at 1 mg/ml diluted with metha-
nol. Reaction was started by adding DOPC to a final concentration of
100 �g/ml. The final assay volume was 30 �l adjusted with the 50 mM

sodium acetate (pH 7.4), 10 mM CaCl2, 100 mM KCl.
Calcium-dependent activity was determined using the conditions

described above, using 25 mM ammonium acetate (pH 7.4) as
buffer, 100 mM KCl, 2 mM EDTA. Control assays were A. mellifera
venom PLA2, injected venom and the RP-HPLC fraction II without
DOPC.

Samples were incubated for 3 h while gently agitated at 37 °C.
Direct flow injection analysis (FIA) was performed on an Agilent 6530
Accurate Mass Q-TOF, calibrated with the mass range set to 3200
m/z and an extended dynamic range of 2 GHz. Analysis was per-
formed in positive mode with the following settings: capillary voltage,
4000 V; nozzle voltage, 0 V; fragmentor voltage, 170 V; nebulizer
pressure, 20 psi; drying gas, 11 L/min at 350 °C, and sheath gas, 12
L/min at 400 °C. The mass range was set from 100 to 1500 m/z, with
a 1.0 spectra/s acquisition speed for the MS and MS/MS modes (51).
The mobile phase used was 50% (v/v) HPLC H2O/50% (v/v) aceto-
nitrile/0.1% (v/v) FA. The flow was 0.5 ml/min. The injection volume of
sample was 10 �l.

Additional MS of venom sPLA2s activities were carried out using a
Thermo Scientific Velos ProTM with a HESI probe. The analysis was
performed by direct injection of 2 �l of sample and ran isocratically
over 10 min in 90% (v/v) methanol/10% (v/v) acetonitrile in positive
mode. The autosampler was set at 37 °C.

RESULTS

Fractionation of Cdpi-P1-3 and Characterization—The RP-
HPLC profile of the injected venom from C. purpurascens is
shown in Fig. 1. The peaks eluted between 39 and 42 min
(peaks I to VII) were collected and saved for further analysis.

Preliminary MALDI-TOF mass spectrometry of the purified
RP-HPLC fractions peaks designed as II and VI yielded an
average molecular mass of 13,546 Da and 13,371 Da, respec-
tively (data not shown). Additionally, the intact protein masses
of the chromatographic fractions were determined by direct
injection in the Orbitrap Fusion™ Lumos™ Tribrid™ Mass
Spectrometer. The spectra deconvolution showed isotopi-
cally unresolved masses of 13,535.80 Da for the fraction peak
II (Fig. 2A) and 13,370.46 Da for the fraction peak VI (Fig. 2B),
which is within the range of the reported conodipines (31). The
other chromatographic peaks (III to VI) contained different
hydroxylation states of p21a, a conotoxin with a 9.3 kDa
molecular mass (38).
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The two fractions containing the putative conodipines were
reduced and alkylated yielding two peaks with molecular
masses of 8595.11 Da and 5634.82 Da for fraction II (Fig. 2A)
and 8591.83 Da and 5490.67 Da for fraction VI (Fig. 2B), which
confirmed that these are heterodimeric proteins, which is char-
acteristic of the previously reported conodipines. Notably, frac-
tion II was more concentrated and of higher purity than fraction
VI. Fraction VI major component was the nonhydroxylated state
of p21a. For that reason, the conodipine in fraction II (Cdpi-P1)
was selected for testing in the activity assayed.

Cdpi-P1 Partial Sequencing by Edman Degradation and
Transcriptome Assembling—The reduced and alkylated sub-
units corresponding to the fraction peak II were separated by
RP-HPLC and subjected to N terminus sequencing by Edman

degradation. We were unable to sequence the �-subunit,
presumably because it had a blocked N terminus (pyrogluta-
mate) (Fig. 3); however, we obtained the first 34 residues N
terminus of the �-subunit, yielding a KESCTKHSNGCSTPLR-
LPCQEYFROACDIHDNCY sequence (O � hydroxyproline). A
preliminary BLAST search with the obtained N terminus se-
quence yield identities from 67% to 79% with the N terminus
sequence of the conodipines reported from C. geographus
(36), and an identity of 53% with the alpha chain of Cdpi-M
from C. magus, the only conodipine isolated so far from
Conus dissected venom (31). Sequence homology along
with the molecular mass and the heterodimeric composition
were strong indications of conodipines present in the in-
jected venom of C. purpurascens.

FIG. 1. Fractionation of the Cdpi-Ps. RP-HPLC of the injected venom of C. purpurascens. Five to ten shots of injected venom were applied
to an analytical C8 column and eluted with a linear gradient of 1% (v/v) B/min over 100 min at a flow rate of 1 ml/min. The inset displays an
amplification of the fractions that corresponds to the Cdpi-P1-3. Fraction II and VI which are shadowed corresponded to Cdpi-P1 and
Cdpi-P2,-P3 respectively.
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The partial N terminus sequence of the conodipine-P1 ob-
tained by Edman degradation was used to search in the
transcriptome of the venom duct of C. purpurascens. We
found a set of six types of conodipines coded by the transcript:
Cdpi-P1 to -P6 (Fig. 3) (GenBank accession MK493027-
MK493032). The six conodipine precursor sequences have

178 residues, and the sequence found by Edman degradation
of the first 34 amino acids was the same for all Cdpi-Ps. The
predicted protein precursor sequence starts with a 24-residue
signal peptide followed by the sequence that includes the �

and �-subunits. Five different alphas (�1-�5) and four different
betas (�1-�4) were found in the transcriptome. The combina-

FIG. 2. Molecular mass determination of the Cdpi-P1-3 fractions. A, Fraction II corresponded to Cpdi-P1 with a deconvoluted molecular
mass of 13,535.80 Da and two possible hydroxylations. After reduction and alkylation the obtained deconvoluted masses were 8,595.11 for
the �-subunit and 5,634.82 Da for the �-subunit. B, Fraction VI corresponded to Cdpi-P2 with a deconvoluted molecular mass of 13,370.46
Da and two possible hydroxylations. After reduction and alkylation the obtained deconvoluted masses were 8,591.83 for the �-subunit and
5,490.67 Da for the �-subunit.

FIG. 3. Sequence alignment of the Cdpi-Ps found in C. purpurascens transcriptome. Residues underlined indicate the signal region. The
�-subunit and �-subunit are separated by an interchain peptide. Conserved residues are highlighted in gray, catalytic residues in orange,
pyro-Gln residue in yellow and found Hyp in blue. Residue numbers corresponded to the mature protein subunits.
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tion of subunits �1�1 was assigned as Cdpi-P1, whereas the
combination of �1�2, �2�2, �3�3, �4�4, and �5�2 were Cdpi-
P2, -P3, P4, P5, and -P6 respectively (Fig. 3). The signal
region and the cleavage sites for all six transcriptome-derived
sequences were determined and their calculated molecular
masses are shown in Table I.

A BLAST search with the whole Cdpi-P1, -P2 and -P3
transcriptome sequences shows similarities with other cono-
dipines and sPLA2s. The higher sequence identities ranged
between 58 and 61% with the transcriptome-based conodip-
ines from C. lenavati (Cdpi-L) (UniProtKB A0A0K8TUY3_
9CAEN), C. tribblei (Cdpi-T) (UniProtKB A0A0C9RYL5_
9CAEN), and C. geographus (Cdpi-G5, -G4 and -G3)
(UniProtKB W4VS60_CONGE, W4VSC8_CONGE, and
W4VSJ3_CONGE) (Fig. 4).

Cdpi-Ps Proteomics Sequence Analysis—RP-HPLC frac-
tions I to VII were subjected to LysC/trypsin digestion and
then analyzed by LC-MS/MS. The digested peptides se-
quences were obtained by peptide mapping analysis using
the modified Conus database information. Only sequences
with a confidence score of 80% or more were used. The
MS/MS data of the peak II fraction provided 81% coverage for
�1-subunit and 100% coverage for �1-subunit. This combi-
nation corresponded to Cdpi-P1 (�1�1) (Fig. 5A). It should
be noted that there are distinctive residues that differentiate
�1 from �2 and �1 from �2. Raw MS/MS spectra that dis-
tinguished Cdpi-P1 are shown on supplemental Fig. S1 and
S2. These results agreed with the deconvoluted masses
obtained for the native and reduced alkylated form of frac-
tion II.

We found isoforms of the conodipines formed by Pro hy-
droxylation (Hyp) on Pro14, Pro18, and Pro25 of the �1-
subunit (Fig. 5A). Hyp was also found on Pro25 with the
Edman degradation analysis and in the native and reduced
alkylated deconvoluted masses were a �16 Da was observed

(Fig. 2A). In the case of the Cdpi-P1 �1-subunit, we found
evidence the presence of a pyroglutamate on the N terminus
along with hydroxylation at Pro7 (Fig. 5A and supplemental
Fig. S2).

For fraction VI, coverage of 64.4% was obtained for the
�1-subunit and 100% coverage for �2-subunit, corresponding
to Cdpi-P2 (�1�2) (Fig. 5B). We observed a 64.4% sequence
match with the �2-subunit (Fig. 5B). Because only the �1-
subunit was observed with coverage of 100%, we concluded
that Cdpi-P2 (�1�2) and Cdpi-P3 (�2�2) co-eluted in fraction
VI. However, Cdpi-P3 was less abundant than Cdpi-P2. It
should be noted that the deconvolution of the native proteins
gave a mass of 13,370 Da that corresponds to Cdpi-P2, and
a mass of 13,402 Da, which corresponds to the Cdpi-P3
mass; however, it also matches with the molecular mass of
Cdpi-P2 plus two Hyp’s. Raw MS/MS spectra that distin-
guished Cdpi-P2 and Cdpi-P3 are shown on supplemental
Fig. S3 and S4.

Reduced and alkylated samples of fraction peak II and VI
were subjected to top-down proteomic analysis via ETD frag-
mentation. Fig. 6 shows the fragmentation maps of the two
subunits �1 and �1 for fraction II and �2 for fraction VI. Each
subunit showed a characteristic charge distribution, which
was a key for subunit identification. Data on the matched
fragments are included in the supplementary information
(supplemental Fig. S5).

Altogether, intact protein deconvolution, and top-down and
bottom-up approaches showed that fraction II contained
Cdpi-P1 and fraction VI contained Cdpi-P2 and Cdpi-P3 with
the latter at a lower concentration. Given the purity and abun-
dance of fraction II, Cdpi-P1 was selected for use in subse-
quent activity assays.

Agar Egg Yolk Plate Assay and Hemolytic Activity of
Cdpi-P1 and Injected Venom—The activity of Cdpi-P1 and
injected venom were determined by the formation of halos in

TABLE I
Calculated molecular masses for the different Cdpi-Ps

Monoisotopic (Da) Average (Da) Elemental composition

Native Cdpi-P1 (�1�1) 13,534.185 13,543.29 C583H890N170O176S14

Native Cdpi-P2 (�1�2) 13,372.138 13,381.07 C577H884N164O178S13

Native Cdpi-P3 (�2�2) 13,401.164 13,410.11 C578H887N165O178S13

Native Cdpi-P4 (�3�3) 13,719.317 13,728.56 C595H905N173O175S14

Native Cdpi-P5 (�4�4) 13,342.868 13,351.73 C568H853N165O184S13

Native Cdpi-P6 (�5�2) 13,461.201 13,470.71 C584H891N165O177S13

Red/Alk �1-subunit 8,596.872 8,602.65 C357H564N111O117S10

Red/Alk �2-subunit 8,625.899 8,631.69 C358H567N112O117S10

Red/Alk �3-subunit 8,755.988 8,761.88 C367H577N114O116S10

Red/Alk �4-subunit 8,711.863 8,717.69 C360H565N112O121S10

Red/Alk �5-subunit 8,685.935 8,691.78 C364H571N112O116S10

Red/Alk �1-subunit 5,633.664 5,637.36 C250H374N71O71S4

Red/Alk �2-subunit 5471.617 5474.14 C244H368N65O73S3

Red/Alk �3-subunit 5659.681 5663.39 C252H376N71O71S4

Red/Alk �4-subunit 5327.356 5330.75 C232H336N65O75S3

Molecular masses were calculated using Thermo BioPharma™ Finder™ (Version 2.0) under Protein Sequence Editor, and includes the
pyroglutamate, cysteine disulfide bonds or carbamidomethylation. Red/Alk � reduced and carbamidomethylated cysteine residues.
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agarose-erythrocyte egg yolk gels as a consequence of the
enzymatic hydrolysis of lecithin to lysolecithin, and latter lysis
of red blood cell membranes (Fig. 7A). All three, the positive
control, A. mellifera PLA2, C. purpurascens-injected venom
and Cpdi-P1 formed halos indicating the presence of PLA2

activity.
A dose-response curve showed the direct hemolytic ac-

tivity of C. purpurascens venom is shown on Fig. 7B. These
results confirmed that injected venom from C. purpurascens
can induce hemolysis in human erythrocytes. Two microli-
ters of injected venom can induce 60% of hemolysis while a
plateau between 85 and 95% is reached above 10 �l of
venom.

sPLA2 Assay for the Activity of Cdpi-P1 and Injected Venom—
We determined PLA2 activities using a colorimetric assay
based on the hydrolysis of a 1,2-dithio analog of diheptanoyl
phosphatidylcholine that serves as a substrate for most
sPLA2s. C. purpurascens injected venom and Cdpi-P1 were
tested using the A. mellifera PLA2 as the positive control (Fig.

7C). We determined that C. purpurascens injected venom
have an active PLA2, as the specific activity for Cdpi-P1 was
449.7 � 7.9 �mol/min/mg (n � 5), compared with A. mellifera
PLA2, which showed an 87.9 � 2.1 �/min/mg (n � 5) specific
activity.

Direct Assessment of the Activity of Cdpi-Ps by Mass Spec-
trometry—The direct measurement of venom PLA2 activity by
LC-ESI-MS was carried out by monitoring by the formation of
the lysophospholipid and fatty acid (products of the hydroly-
sis). We followed the formation of the hydrolysis products of
DOPC after treatment with Cdpi-P1 (Fig. 8). The peak corre-
sponding to DOPC showed a molecular mass of 786.59 Da.
After Cdpi-P1 activity, a lysophospholipid with a mass of
522.35 Da was formed along with oleic acid with a mass of
282.28 Da. The same results were observed when A. mellifera
PLA2 was used as the positive control and with the C. pur-
purascens-injected venom, where the DOPC peak disap-
peared after the treatment and corresponding lisophospho-
lipid was formed (Fig. 9).

FIG. 4. Sequence alignment of Cdpi-Ps with other cone snail conodipines. Cdpi-P1, Cdpi-P2 and Cdpi-P3 (GenBank Accession Number:
MK493027-MK493032) aligned with the conodipines from C. geographus Cdpi-G3, -G4 and -G5 (UniProtKB - W4VSJ3, W4VSC8, and W4VS60
respectively), Cdpi-L from C. lenavati (UniProtKB - A0A0K8TUY3), Cdpi-T from Conus tribblei (UniProtKB - A0A0C9RYL5), and Cdpi-M from
C. magus (UniProtKB - Q9TWL9 and Q9TWL8). Residues underlined indicate the signal region. Amino acid conservations are denoted by (*).
Full stops (.) and colons (:) represent a low and high degree of similarity, respectively.
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Other control experiments were performed using the venom
from the snakes, Agkistrodon piscivorous piscivourous (APP)
and Agkistrodon piscivorous locustoma (APL). Both snake
venoms have been reported to have sPLA2s (52). Additionally,
we tested the activity of the injected venoms from the fish-
hunting cone snails, C. ermineus and C. striatus. All the above,
except the C. striatus venom, formed the lysophospholipid
(522 Da), indicating PLA2 activity (supplemental Fig. S6). MS
analysis indicated the presence of molecular masses in the
range of sPLA2 in all venoms except in the venom of C.
striatus (data not shown).

Because calcium plays an important role in the lipolytic
activity of different venom sPLA2s (1, 31), we evaluated the

activity of different venoms in absence of Ca2� using a buffer
with no calcium that contained EDTA (36). Fig. 10 shows that
no lysophospholipid was formed in the absence of calcium
for the A. mellifera PLA2 and the C. purpurascens-injected
venom, indicating that in absence of calcium the PLA2 activity
was abolished. The same results were obtained with C. er-
mineus, APP, and APL venom (data not shown).

DISCUSION

Here we describe the isolation and characterization of three
conodipines (Cdpi-P1, -P2, and -P3) found in the injected
venom of C. purpurascens. These are the first conodipines
described in injected venom, the actual concoction deliver to

FIG. 5. Determination of Cdpi-P1, -P2 and -P3 sequence by bottom up proteomics. Sequence coverage map was achieved after the
trypsin/LysC digestion of the fraction II (A) and fraction VI (B). Peptide mapping analysis was performed by mass spectrometry. Gray bars
indicate the identified digested peptides. Fragments sequences matches were determined using the conodipines sequences from the
transcriptome. A, Fraction II sequence coverage corresponded to subunits �1 and �1, which match Cdpi-1. B, Fraction VI coverage
corresponded to �1, �2, and �2-subunits, which subunits combination are a1�2 and �2�2 and match to Cdpi-P2 and Cdpi-P3 respectively.
Covered fragments are in gray, Hyp in blue, carbamidomethyl cysteine in green and pyroglutamate in yellow. Cleavage residues for
Trypsin/LysC are in magenta. Bold residues correspond to then Edman degradation obtained sequence. Some of the key MS/MS spectra are
showing on the supplemental Figs. S1 to S4. For more details about the spectra and masses of the corresponding fragments, refer to the
supplementary material.
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the prey. Other Cdpis have been found in the dissected
venom of C. magus and of C. geographus (31, 36); however,
because no conodipines had been found in the injected
venom, it was suggested that these enzymes were not in-
volved in the envenomation process (32). The isolation of
Cdpi-Ps clearly show that these enzymes are part of the
envenomation strategy of certain cone snail species. Cono-
dipine sequences have been obtained from the transcriptome
of several cone snail species, which might be an indication of
their prevalence in cone snail venom and even a key compo-
nent for envenomation (34, 53–55).

Conodipines are heterodimers, however, their alpha and
beta subunits are encoded by a single precursor with a signal
peptide sequence and a peptide linker between the two sub-
units. Like other venom PLA2s, conodipines have high intra

and interspecies sequence variability as shown in the phylo-
genetic tree of known conodipines (supplemental Fig. S7).
Different isoforms were reported within the same species (54).
In our case, six conodipine isoforms were found in the tran-
scriptome, with higher sequence variability on the beta sub-
unit. All Cdpi-Ps precursors have the same signal and remark-
able similarity in their subunits linker. The catalytic His-Asp
dyad is conserved as in the other conodipines precursors
reported.

The complete sequences of Cdpi-P1, -P2, and -P3 from C.
purpurascens-injected venom were obtained by a combina-
tion of proteomics (MS/MS) and transcriptomic (RNAseq) data
analysis. The mature Cdpi-Ps contains nine cysteines on the
�-subunit and three on the �-subunit. Using homology mod-
eling (supplemental Fig. S8), we surmised that the third cys-

FIG. 6. Top-down proteomics of the reduced and alkylated �1, �1 and �2-subunits of Cdpi-P. On the left side of the figure are the ESI-MS
spectra of different charge distributions for each subunit. MS/MS by EThcD for these subunits were obtained for the peaks labeled with the
blue arrow. Fragmentation maps, scoring and residue coverage were obtained using the software ProSight Lite (90). On the right side of the
figure are the fragmentation maps for each subunit. The orange square represents the corresponded posttranslational modifications such as
pyroglutamic acid and hydroxyproline. Carbamidomethylated cysteines are highlighted in blue. Red brackets are matched with c/z ions,
whereas blue brackets are matched with b/y ions. The matching fragment list are shown in supplemental Fig. S5) A, ESI-MS spectra and
fragmentation map of [M�10H]10� � 862.1 corresponding to the �1-subunit in fraction II (42% sequence coverage). B, ESI-MS spectra
and fragmentation map of [M�6H]6� � 943.1 corresponding to the �1-subunit in fraction II (68% sequence coverage). C, ESI-MS spectra and
fragmentation map of [M�5H]5� � 1099.1 corresponding to the �2-subunit in fraction VI (64% sequence coverage).

FIG. 7. Cdpi-Ps activity. A, PLA2 activity was evaluated by the indirect radial hemolysis in agar plate method. PLA2 hydrolyzes the
phospholipids of egg yolk, which are liberated into medium as fatty acids and glycerophospholipids. The fatty acids decrease the pH and
produce the lysis of erythrocytes forming the halos. A. mellifera venom PLA2 was used as positive control. Halos were observed with C.
purpurascens injected venom and the Cdpi-P1 fraction. B, Direct hemolytic activity of C. purpurascens injected venom toward human
erythrocytes. Dose-response curve of the direct hemolytic activity of the injected venom shows that it can induce up to 95% hemolysis. C,
Colorimetric sPLA2 assay. A. mellifera PLA2 (1 �g/ml) was used as positive control. For the assay, we tested 0.25 �l of injected venom from
C. purpurascens diluted in a final volume of 100 �l and �1 �g/ml of Cdpi-P1. The line slope corresponded to the PLA2 activity. The resulted
activity values for A. mellifera PLA2, the injected venom from C. purpurascens and Cdpi-P1 fraction were 0.088, 0.142, and 0.266 �mol/min
respectively.
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FIG. 8. Direct assessment of the activity of Cdpi-P1 by mass spectrometry. Overlay of DOPC control spectra (black). Hydrolysis of DOPC
by Cdpi-P1 (red). Cdpi-P1 hydrolyzes the phospholipid DOPC (786 Da) into the lipolysis products, the oleic acid (282 Da) and the
lysophopholipid (522 Da). Sodium and potassium adducts could be observed.

FIG. 9. Direct assessment of sPLA2s activities of by mass spectrometry. A, Control experiment with only DOPC. B, DOPC incubated
with A. mellifera PLA2. C, DOPC incubated with Cdpi-P1 fraction D, DOPC incubated with C. purpurascens I.V. Notice that compared with
the control, PLA2s hydrolyzes the DOPC (786 Da) to form the lysophospholipid (522 Da). Sodium and potassium adducts could be
observed.
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teine (Cys19) in the alpha subunit is the one involved in
intermolecular disulfide bonding. Our proteomic analysis
shows that these conodipines are hydroxylated at Pro in
both the alpha and beta subunits and several hydroxylation-
related isoforms were observed. This differential and selective
hydroxylation has been reported in conotoxins and it is found
in the venom of C. purpurascens (37, 38, 56, 57). The impor-
tance of Hyp modification in conopeptides is still unclear, but
it is possible they could contribute to the formation of hydro-
gen bonds and facilitate the binding strength and selectivity
toward a target (58). For the Cdpi-Ps, there is the possibility
that the Hyp might be involved in enzyme dimerization and
stabilization. In addition to Hyp modifications, we found that
all Cdpi-Ps contain N-terminal pyro-Glu/Gln residues. This
moiety is a major modification in secretory proteins, and it is
thought to assist in receptor-ligand interactions and in the
stabilization of the N terminus against degradation (59).

Venom sPLA2s have been reported as either as monomeric
or multimeric complexes with at least one subunit catalytically
active. The mechanism of action of multimeric PLA2s is more
complex when compared with their monomeric counterparts.
One of the first examples of a heterodimeric PLA2 is the snake
�-bungarotoxin (60); heterodimeric sPLA2s have been iso-
lated from scorpion venom such as Imperatoxin (61). Other
examples include Heteromtoxin (62) and Hemilipin (63), which
have a large PLA2 active subunit, and a small subunit linked
by a disulfide bond. The function of the small subunit is
unknown, although they have been categorized as members
of the Kunitz protease inhibitor superfamily (64). Likewise, the

catalytic residues of the conodipines are conserved and lo-
cated on the alpha subunit, which is larger than the beta.
However, there is a high sequence variability on the beta
subunit, and they have no sequence relationship with the
Kunitz protease inhibitor superfamily.

Among all sPLA2 isoforms, the amino acid residues in-
volved in the Ca2� binding and catalysis are highly conserved.
The His/Asp dyad and a Tyr are also highly conserved in the
active site of these enzymes (65, 66). Conodipines have the
conserved His/Asp dyad that corresponds to the residues
His-30 and Asp-31. Additionally, Asp-28 has been suggested
as an active residue because it may possibly form hydrogen
bonds with His-30 (9, 31). A study with species of the phylum
Cnidarian, Mollusca, and Turnicata found a conserved cata-
lytic site with the sequence X-Cys-Asp-X-His-Asp-X-Cys-Tyr-
X-Cys (67), which matches with the domain observed in all
Cdpi-Ps and other Cdpis. The precise role of these residues
and the other conserved amino acids has not been deter-
mined. Although the His/Asp dyad has been a hallmark of
these enzymes, other group of PLA2 enzymes with a His/Lys
dyad has been described in snake venom (68–74). No His/Lys
dyad conodipines have been reported so far. In addition to the
calcium binding dyad, other venom PLA2s have an extra
calcium binding motif of Trp/Tyr-Cys-Gly-X-Gly. It is notable
that this motif is not present in any conodipines, which also
underwrites conodipines as unique group of sPLA2.

We assessed the activity of Cdpi-P1-3 by colorimetry and
an agarose-erythrocyte egg yolk gel assay. We found enzy-
matic activity for the venom fraction containing Cdpi-P1 and

FIG. 10. Calcium dependence activity. A, DOPC incubated with A. mellifera PLA2 in presence of calcium (left) and in presence of EDTA
(right). B, DOPC incubated with C. purpurascens injected venom in presence of calcium (left) and in presence of EDTA (right). Notice that in
presence of EDTA the sPLA2 activity is abolished.
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for the C. purpurascens injected venom. A direct assessment
of Cdpi-P1 activity was performed by MS indicating that is a
fast and reliable method for PLA2s activity studies. We eval-
uated the DOPC lipolysis in presence of Cdpi-P1 and the
injected venom of C. purpurascens, C. ermineus and Agkis-
trodon piscivorous. We found that the activity of Cdpi-Ps is
Ca2�-dependent. The use of MS to follow the enzymatic
activity of PLA2s has been reported, as venom toxins have
been tested in cultured neurons and in cardiolipin (75, 76). It
has been shown that MS can be used as a screening method
with high sensitivity and specificity. These MS-based tech-
niques not only allow the characterization of enzymes, but
also enable studies on the lipid composition of membranes.
The use of MS to determine the activity of venom enzymes by
MS is promising for a fast and reliable method for enzyme
kinetics. We recently reported that other venom enzyme’s
activities, such as hyaluronidases, could be follow by MS (40).

Venom sPLA2s could be potent hemolytic agents (77–81);
i.e. C. loroisii venom produced significant alterations in the
hematological parameters, including the reduction of the red
blood cells and induced edema (82). Our results show that the
injected venom of C. purpurascens exerts a notable hemolytic
effect. This may be because of Cdpi-P isoforms and/or also
because of other active enzymes as proteases present in the
venom (83, 84). The damage of the red cell membrane by the
action of venom molecular components could be a direct or a
multistep process, where not only does the sPLA2s partici-
pate in the hemolysis process, but also other enzymes.

Conodipines, similar to other peptides and proteins present
in venom, may be naturally tailored by cone snails to effi-
ciently adapt to a variety of different preys (85). We not only
found different conodipines in C. purpurascens, but we also
found that some individuals of this species kept in our lab did
not express measurable quantities of conodipines and no
PLA2 activity was detected in their injected venom. It would
be important to determine the factors that conditioned the
selective expression of these venom enzymes by some spec-
imens. Furthermore, that we found PLA2 activity in the venom
of C. ermineus, but not in C. striatus, which demonstrate that
not all fish-hunting cone snails express these enzymes. Ad-
ditionally, it should be noted that conodipines are not only
restricted to fish-hunting species, as conodipines have been
found on the closely related worm-hunting species, C. tribblei
and C. lenavati. This demonstrates that conodipines are found
in cone snails of their prey preference.

It is unclear how conodipines have evolved and adapted
within this genus. The intraspecific and interspecies variability
and adaptations shown so far indicates a biochemical conun-
drum that requires further study. However, it has been re-
cently proposed that group IX PLA2s, belonging to the phylum
Mollusca, Cnidarian and Turnicata, share a common evolu-
tionary origin with group XIV PLA2s of bacteria and fungi.
Furthermore, there are indications that group IX PLA2s go
through species-specific duplication and that evolutionary

pressures in different lineages promoted ancestral molecule
modifications (67).

Venom PLA2s may have medical and therapeutic applica-
tions, such as prevention of prion peptide-induced cell death
(84), viral inhibition (85, 86), hepatoxicity protection (86), inhi-
bition of cancer cell proliferation (88), neuroinflammatory
modulation (87), and mediation of antigen delivery (88).
Given the large intraspecific and interspecies structural var-
iability shown by venom PLA2s along with their associated
activity, it seems that their use can be optimized for specific
applications and the discovery and testing new PLA2s will
be important for a variety of uses in research, medicine and
industry.

Disclaimer—Certain commercial equipment, instruments,
or materials are identified in this paper in order to specify the
experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it in-
tended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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