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Abstract. The growth dynamics of multicell tumour spheroids (MTS) were

analysed by means of mathematical techniques derived from signal processing

theory. Volume vs. time trajectories of individual spheroids were ®tted with the

Gompertz growth equation and the residuals (i.e. experimental volume

determinations minus calculated values by ®tting) were analysed by fast fourier

transform and power spectrum. Residuals were not randomly distributed around

calculated growth trajectories demonstrating that the Gompertz model partially

approximates the growth kinetics of three-dimensional tumour cell aggregates.

Power spectra decreased with increasing frequency following a 1/f d power-law.

Our ®ndings suggest the existence of a source of `internal' variability driving the

time-evolution of MTS growth. Based on these observations, a new stochastic

Gompertzian-like mathematical model was developed which allowed us to

forecast the growth of MTS. In this model, white noise is additively

superimposed to the trend described by the Gompertz growth equation and

integrated to mimic the observed intrinsic variability of MTS growth. A

correlation was found between the intensity of the added noise and the particular

upper limit of volume size reached by each spheroid within two MTS populations

obtained with two different cell lines. The dynamic forces generating the growth

variability of three-dimensional tumour cell aggregates also determine the fate of

spheroid growth with a strong predictive signi®cance. These ®ndings suggest a

new approach to measure tumour growth potential.

INTRODUCTION

Two main and important features characterize the growth of solid tumours: variability and

saturation. Though not yet de®ned clearly, the meaning of tumour growth variability and of

growth saturation arises from experimental observation. Variability means that tumour cells

of the same histotype can produce tumour masses whose volume increases in time following
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heterogeneous kinetics so that, at a certain time, two tumours may have very different

volumes. Saturation, instead, refers to the fact that a tumour mass can not grow inde®nitely

but, at a certain time and after a quasi-exponential growth phase, its size reaches an upper

limit (also called asymptotic volume). Thus, the size of a tumour increases in time following

an S-shaped growth curve which is best approximated by the Gompertz growth equation

(Bajzer, Vuk±Pavlovic & Huzak, 1997):

V(t) � V(0)expfa=b[1ÿ exp(ÿ bt)]g (1)

where V(t) is the volume of a tumour at time t, V(0) is the initial volume and a and b are

positive parameters.

Both growth variability and saturation are observed in vivo for experimental tumours in

animals (Norton et al., 1976; Brunton & Wheldon, 1980; Steel, 1980; Norton, 1985;

Demicheli et al., 1989), whereas it is still a matter of debate whether these features

characterize the growth of solid tumours in humans (Hart, Shochat & Agur, 1998). When

®tting tumour growth data with the Gompertz equation, the growth variability is reduced to

a linear correlation between the two parameters a and b which holds for all tumours of the

same histotype and appears to be species-speci®c (Norton et al., 1976; Brunton & Wheldon,

1980; Demicheli et al., 1989). This important result would establish a relation between growth

variability and saturation since in the Gompertz growth model the asymptotic volume (V1) is
related to the parameters a and b by the following:

V1 � lim
t!1

(V(t)) � V(0)ea=b (2)

In other words, different tumour masses would approach in time the same asymptotic volume

irrespective of the initial conditions and hence of the individual growth kinetics (which can be

highly variable).

However: (i) to date, the above theoretical prediction that different tumour masses would

approach in time the same asymptotic volume has not been proven experimentally. Rather,

analysis of tumour growth carried out for tumours grown in different species of mammals

has revealed that the asymptotic volumes of tumours may vary over two orders of magnitude

(Steel, 1980) in spite of the linear correlation found between Gompertzian parameters

(Brunton & Wheldon, 1980). The origin of variability of asymptotic volumes is still not

understood; (ii) both variability and saturation of tumour growth may have an important

dynamic as well as biological meaning and therefore should be investigated in detail. For

example, it could be hypothesized that the levels at which the volume of different tumours

saturate in growth curves might be related to growth variability.

Understanding the growth of tumours may have profound clinical and biological

implications. The designing of therapeutic strategies aimed at controlling neoplastic growth

would bene®t from a deeper knowledge of tumour growth dynamics and hence of the

underlying biological laws. New information can be gathered by detailed study of tumour

growth using modern methods of time series analysis. To do this, however, a large number of

experimental determinations of tumour volume are needed. This is best accomplished in vitro

using a three-dimensional tumour model (multicellular tumour spheroids, MTS) due to the

limiting number of accurate volume determinations that can be obtained in patients or even

in experimental animals.

MTS represents an experimental model with an intermediate complexity between solid

tumour in vivo and traditional two-dimensional cell cultures (Sutherland, 1988). They share

many biological properties in common with solid tumours, in particular gradients for

nutrients and oxygen which rapidly decrease in the inner layers as a function of MTS size.
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This leads to a gradient of cell proliferation with actively proliferating cells in the outer rims

of an MTS and nonproliferating/quiescent or dying cells in the central core. At a certain

critical size, the central core of an MTS becomes necrotic (Sutherland, 1988).

Since in MTS cells adhere to each other, they display molecular and physiological

characteristics which mimic those of cells in tumour tissues which cannot be appreciated in

2D-cultures. Among these are: (i) expression of adhesion molecules (Waleh et al., 1994) (ii)

production of an extracellular matrix (Nederman et al., 1984) (iii) expression of a multidrug-

resistant phenotype (Durand, 1981; Sutherland, 1988). For these reasons, MTS have been

extensively utilized in recent years to study the biology of tumours and to test novel

antitumour treatments (Sutherland, 1988).

The growth kinetics of MTS also parallel those of in vivo tumours, and they have been

found to obey the Gompertz growth model (Demicheli et al., 1989). Several biological and

biophysical conclusions have been derived to explain why the Gompertz equation is the best

descriptor of biological growth in general and of tumours and MTS growth in particular

(Laird, 1964; Laird, 1969; Demicheli et al., 1989; Bajzer et al., 1997). However, we recently

showed that when the growth trajectories of individual MTS are analysed using the

Gompertz growth equation followed by signal analysis techniques, new growth patterns arise

which consist of temporal quasi-periodic oscillations of MTS volume (Chignola et al., 1999).

These patterns are not predicted by the Gompertz growth model.

In this study, we put forward our analysis of the growth patterns displayed by individual

MTS. A mathematical model has been developed based on experimental data which allowed

us to forecast the growth of MTS. A correlation between variability and volume saturation

was also found. These results show that it is possible to predict the endpoint of MTS growth

by analysing their individual growth dynamics. A new approach to forecast tumour

progression is suggested.

MATERIALS AND METHODS

Generation of multicellular tumour spheroids

9L (rat glioblastoma) or U118 (human glioblastoma) cells were cultured at 37 �C in a 5%

carbon dioxide atmosphere in RPMI-1640 medium supplemented with 10% heat-inactivated

fetal bovine serum (FBS) and antibiotics, and passaged weekly. Spheroids were obtained by

inoculating 106 cells in 10 ml of RPMI-FBS 10% in Petri dishes on a thin layer of agar

[10 ml of a 0.75% (w/v) solution of agar in RPMI-FBS 10%]. Spheroids of about 200±

250mm diameter (approximately 2000±4000 cells per spheroid) were harvested by gentle

repeated transfer with a micropipette of individual spheroids into the wells of a 24-well

culture plate. MTS were then individually placed into the wells of a 24-well culture plate

containing 1 ml of RPMI-FBS 10% on a layer of 1 ml of 0.75% (w/v) agar in the same

medium. Every 7 days 0.5 ml of RPMI medium were gently removed from each well; the

wells were then ®lled with the same amount of fresh medium. Spheroids were measured

using a calibrated ocular micrometer on an inverted microscope. At best resolution, one

unit of the metric scale corresponds to 34mm. The longest spheroid diameter (D) and the

perpendicular diameter (d) were measured; the volume (V) was calculated according to the

formula V � 4/3pr3, where r � (Dd)1=2/2 is the mean radius of the spheroids. Only

spheroids showing a regular spherical or quasi-spherical structure were analysed. Volume

size determinations were carried out by two independent researchers to minimize possible

subjective interference with the observed phenomenon. At the asymptotic volume levels

error in the measurement procedure was estimated to be < 10% of the MTS volumes.
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Standard deviation (SD) was estimated from repeat measurements of randomly selected

volume samples. The greatest SD observed is shown in the ®gures.

Mathematical analysis of growth curves

Time-series of volume size determinations were ®tted with the Gompertz growth equation

(equation 1). Fitting was performed using two different algorithms for nonlinear least-square

minimization: the Marquardt±Levenberg algorithm implemented in SigmaPlot (Jandel

Scienti®c, Erkrath, Germany) and the `fmins' function, which uses the Nelder±Mead simplex

method, implemented in MatLab v.5.2 (MathWorks Inc., Natick, MA, USA). Standard

statistical quantities were considered to best ®t experimental data (e.g. r2, SD and CV of

estimated parameters). Residuals, i.e. experimental data minus calculated values by ®tting, were

analysed by Fast Fourier Transform and power spectrum analysis by taking advantage of

algorithms implemented in MatLab. Mathematical models were also implemented in MatLab.

RESULTS

Analysis of the growth curves of individual MTS

Growth variability and saturation are observed in vitro when the growth of individual MTS is

followed over a suf®ciently long time-period (Fig. 1a). In time different MTS appeared to

reach different asymptotic volumes following heterogeneous kinetics. In addition to the

variability in the growth kinetics as de®ned above, a new type of variability can be

appreciated in all analysed growth curves (see, e.g. Figure 1a) which consist of time-

dependent ¯uctuations in the volume size of one MTS. At later times, the MTS volume

¯uctuates around the asymptotic volume predicted by the Gompertz growth model. The

experimental and biological signi®cance of the observed ¯uctuations have been addressed in a

previous study (Chignola et al., 1999).

Best estimates of Gompertzian parameters V(0) a and b were used to calculate the

instantaneous growth rate a0 for each MTS (Brunton & Wheldon, 1980; Demicheli et al.,

1989; Chignola et al., 1995). The instantaneous growth rate is the growth rate of a spheroid

when it was ideally composed of one single cell, and it can be calculated using the following

formula (Brunton & Wheldon, 1980; Demicheli et al., 1989; Chignola et al., 1995):

a0 � a� bln(V(0)/V0), where a, b and V(0) have already been de®ned, and V0 is the volume

of one cell (assumed to be 10ÿ6 mm3; Brunton & Wheldon, 1980; Demicheli et al., 1989;

Chignola et al., 1995). In essence, the instantaneous growth rate is a normalized parameter

which allows one to compare the growth of different tumours. A strong linear correlation

was found between a0 and b for all MTS within the 9L and U118 populations (Fig. 1b),

con®rming ®ndings reported previously (Chignola et al., 1995). Thus, the analysed MTS

populations displayed the main growth characteristics shown by solid tumours in animals: (1)

growth variability (2) growth saturation with variable saturation levels and (3) a strong linear

correlation between a0 and b.

Mathematical modelling of MTS growth

Growth curves were ®tted with the Gompertz growth equation. If a model equation

satisfactorily describes a certain process, then the residuals, i.e. the difference between

observed and calculated data, should distribute randomly. A random distribution can be

demonstrated by power spectrum analysis which reveals the frequency content of a time-

series. In the case of a random distribution all frequencies have the same probability and the

power spectrum is ¯at (white noise). As described previously (Chignola et al., 1999), power
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spectra of the residuals computed for the growth trajectories of individual MTS ®tted with

the Gompertz growth equation were not ¯at. Plots of power spectra in a log-log scale

revealed the existence of a correlation between frequency and amplitude (Fig. 2). This

correlation is described by a power-law of the type 1/f d(pink noise) with a mean � SD d of

1.07 � 0.25 and 1.26 � 0.37 for 31 MTS obtained with 9L cells and 18 MTS obtained with

U118 cells, respectively. Delta values measured for 9L MTS were compared with the values

measured for U118 MTS using the F-test. The observed difference was statistically signi®cant

(F � 4.2, P < 0.05).

From a mathematical point of view, 1/f dspectra may be obtained by integration of white

noise. Therefore, we developed a modi®ed stochastic Gompertzian growth model. The

Figure 1. Growth of multicell tumour spheroids. (a) representative volume �SD vs. time trajectories of
four 9L MTS (*, &, ~, !) ®tted with the Gompertz growth equation (solid line). (b) the correlation
found between the Gompertzian growth parameter a0 and b is shown. Parameters were estimated by
®tting of the individual growth curves observed for 31 9L MTS (*) and 18 U118 MTS (*).
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Gompertz equation shown above in analytic form (equation 1) is the exact solution of the

following system of two differential equations:

dV

dt
� aV

da

dt
� ÿba

8>><>>: (3)

where a is a variable whose initial value coincides with a in equation 1. This system was

modi®ed according to:

dV

dt
� aV� w(t)

da

dt
� ÿba

8>><>>: (4)

where w(t) is a stochastic variable whose values are taken at random from a normal

distribution with mean zero and variance l2. Equation 4 provides growth trajectories that

depend on the initial conditions chosen for the variables V(0) and a(0) and for the parameter

b and on the particular unpredictable realizations of the added white noise. Both initial

conditions and b values can be estimated from experimental data. However, the proposed

Gompertzian-like growth model (equation 4) would be hardly veri®ed in its present form due

to uncertainties in the variable w(t). We therefore modi®ed equation 4 using the usual

approximation:

dV

dt
� V(n� 1)ÿ V(n)

da

dt
� a(n� 1)ÿ a(n)

(5)

Figure 2. Power spectrum of the residuals computed for the individual growth trajectories of MTS. Two
representative power-spectra are shown (continuous lines), along with the linear regression used to
estimate the 1/f ddecay of the spectral amplitude with increasing frequency (dashed lines).
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that, combined with equation 4, results in the following model:

V(n� 1) � a(n)V(n)� w(n)� V(n)
a(n� 1) � ÿba(n)� a(n)

�
(6)

Model (6) was used to predict the volume of an MTS at time t(n + 1) starting from the

volume measured experimentally at time t(n). For this purpose, the variance l2 of the added

white noise was calculated from experimental data as follows:

l2 � var{[V(n� 1)ÿV(n)]obsÿ [V(n� 1)ÿV(n)]calc}

where the subscripts `obs' and `calc' refer to MTS volumes measured experimentally or

calculated by ®tting with the Gompertz equation (equation 1), respectively.

One step predictions in the future of the volume of MTS are shown in Fig. 3. Residuals

computed with respect to calculated data with equation 6 were randomly distributed. A

random distribution was demonstrated by power spectrum of the residuals followed by

statistical analysis using three different tests (Brockwell & Davis, 1996): Anderson,

Figure 3. Forecasting the growth of MTS. Experimental data � SD of volume size increase over time of
two independent MTS. One-step prediction in the future of the volume dimensions was computed for
each spheroid using equation 6 (continuous lines). For comparison, the classical Gompertzian trend
®tted to experimental data is also shown (dashed lines).
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Portmanteau and Cumulative Periodogram. Notably, our model predicts nicely either the

nonstationary regimen (i.e. exponential-like growth at earlier times) and the quasi-stationary

regimen (i.e. growth saturation at later times) of our experimental growth curves.

Growth variability and saturation in MTS

Results shown above demonstrate that both variability and saturation of MTS growth are

best described by model 6. In our model, the source of variability is the added white noise

whose intensity is given by the variance l2. A correlation was found between l2 and the

asymptotic volume calculated for each of the individual MTS growth trajectories using

equation 2 (Fig. 4). The prediction error was < 10% over 49 independent growth curves. No

correlation was instead found when other Gompertzian parameters, i.e. a, a0 and b were

taken into account.

DISCUSSION

Mathematical analysis of the growth trajectories displayed by individual MTS revealed

quanti®able growth variability and saturation typical of malignant proliferation. Growth

variability is measured by means of power-laws of the type 1/f d in power spectra and is

additively superimposed to the S-shaped Gompertzian growth.

Power-laws are quite common in nature, and suggest the existence of scale-free internal

dynamics, possibly chaotic, driving the behaviour of a system. Chaotic dynamics (e.g.

deterministic variability) have been recently showed for the micromotion of tumour cells in

Asy

Figure 4. Correlation between noise intensity and asymptotic volume for the growth of MTS. Each
point in the ®gure represents the value of the variance l2 plotted with respect to the asymptotic volume
calculated for each spheroid within the 9L (*) and U118 (*) MTS populations. Prediction intervals at
99% level were also drawn in the ®gure (dotted lines).
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two-dimensional cultures (Posadas, Criley & Coffey, 1996). However, 1/f d power spectra

alone can not unambiguously discriminate between deterministic or stochastic dynamics. In

fact, 1/f d power spectra with small d (i.e. less than 2) are also a result obtained when the

dynamics of stochastic nonchaotic connected networks are analysed (Milotti, 1995).

Although the results shown in Fig. 2 did not allow us to reach a conclusion on the nature

of MTS growth variability (i.e. stochastic vs. deterministic), they demonstrate that a source of

variability must be considered to best model and forecast the growth of individual MTS. In

principle, the source of growth variability might be present in the environment (i.e.

environmental noise) or, intringuingly, the variability might be an intrinsic property of MTS

owing to their three-dimensional organization (i.e. internal noise). Discriminating between

environmental noise and internal noise may be important since, as shown in Fig. 4, the

growth variability allows one to predict the course of MTS growth. The following reasons

would suggest that the growth of individual MTS is driven by internal noise:

1 MTS were grown under the same controlled culture conditions (see Materials and

methods). Thus, each MTS was subjected to the same environmental noise. The only

perturbations applied to culture plates were limited to short periodic shifts from 37 �C to

room temperature to carry out volume determinations and to change the growth medium.

In previous work, we further limited external perturbations by changing medium only once

during the whole growth assay for a control population of 9L MTS (Chignola et al., 1999).

However, the same type of growth variability was observed also for these MTS;

2 in spite of the variability of the observed asymptotic volumes, a strong linear correlation

was found between parameters a0 and b for all spheroids within the two analysed MTS

populations (see Fig. 1). If the noise were environmental, then the growth of each spheroid

would be perturbed in a less organized way. Under these conditions a linear correlation

between growth parameters of independent growth curves would be hardly measured;

3 the correlation found between the variance (i.e. the intensity) of the added noise in our

model and the asymptotic volume calculated for each MTS further support the conclusion

that MTS growth is driven by internal noise.

It should be mentioned that, in physical terms, white noise corresponds to the behaviour of a

dynamical process with n degrees of freedom (i.e. dynamics of n noninteracting variables). On

the other side, coloured 1/f d noise describes the behaviour of a dynamical system of

interacting variables. In this case the degrees of freedom are reduced with respect to white

noise dynamics and the system is more ordered.

In biological terms, the internal noise in spheroids might be interpreted as an internal

energy of proliferation determining the time-evolution of MTS growth. The difference in

calculated d values between 9L and U118 MTS would suggest that this internal energy of

proliferation may vary depending on the cell type. In traditional two-dimensional cell

cultures, tumour cells are allowed to proliferate with, at least in principle, no constraints (i.e.

as n noninteracting variables). In spite of this, chaotic-like oscillations were observed to occur

for the micromotion of cultured tumour cells (Posadas et al., 1996), that is to say a certain

degree of order arises even under the less stringent experimental conditions of tumour cell

proliferation. The increase of MTS volume is primarily due to the increase in cell number,

though we cannot exclude other mechanisms like swelling of the spheroid structure. In MTS

a strong constraint is imposed on cells since cells must grow in close contact to each other in

order to form a three-dimensional aggregate. This would result in a decrease of the degrees of

freedom of the proliferating cell population and might explain the observed 1/f d power

spectra. In other words, in MTS the proliferating cell population would constitute a

Forecasting spheroid growth 227

q 2000 Blackwell Science Ltd, Cell Proliferation, 33, 219±229.



connected network of cells, each with a certain proliferation potential. The overall growth

process would be the result of the dynamical balance between proliferation forces and

cohesive forces acting on opposite directions over a great number of variables (i.e. cells). This

interpretation might explain the observed ¯uctuating quasi-periodic growth pattern shown by

MTS (Chignola et al., 1999).

Previous work showed that treatment of spheroids with antigen/receptor-speci®c cytotoxic

protein molecules (immunotoxins) resulted in a heterogeneous effect: at certain immunotoxins

concentrations some spheroids were sterilized (i.e. they did not grow after treatment) whereas

others regrew after a variable delay time (Chignola et al., 1995). The therapeutic effect

measured by applying the Gompertz growth model as the number of cells killed (log-kill)

ranged between 0 and 4. This 4 logs range overlaps the range observed for the intensity of

growth variability of MTS (see variance l2 in Fig. 4). It is therefore tempting to speculate

that the heterogeneous effect of immunotoxin treatment and the variability in the growth

dynamics of MTS could be correlated. However, this ®nding would require further

investigation.

Overall, our data reveal the complex nature of the growth of three-dimensional tumour cell

aggregates. MTS appear to possess the complexity shown by self-organized dynamical

systems (Coffey, 1998), where the environmental noise as well as the internal noise play a

fundamental role in regulating the behaviour of the system itself (Wiesenfeld & Moss, 1995).

For experimental tumours in vivo endpoints of growth process are hardly achieved during

the observation period. Forecasting the endpoint of tumour growth might be of help in

evaluating the effects of therapeutic regimens, e.g. by comparing endpoints of treated vs.

nontreated tumours. Besides the biological and biophysical implications of the present work,

these results suggest a way of measuring tumour growth potential in vivo by analysing the size

variability in time of the tumour burden. The variability parameter l2 appears to predict the

asymptotic volume of 3D-tumour cell aggregates better than it has been shown so far using

traditional growth models.
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