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Abstract
The caspase family is well characterized as playing
a crucial role in modulation of programmed cell
death (PCD), which is a genetically regulated, evo-
lutionarily conserved process with numerous links
to many human diseases, most notably cancer. In
this review, we focus on summarizing the intricate
relationships between some members of the caspase
family and their key apoptotic mediators, involving
tumour necrosis factor receptors, the Bcl-2 family,
cytochrome c, Apaf-1 and IAPs in cancer initiation
and progression. We elucidate new emerging types
of cross-talk between several caspases and auto-
phagy-related genes (Atgs) in cancer. Moreover, we
focus on presenting several PCD-modulating agents
that may target caspases-3, -8 and -9, and their sub-
strates PARP-1 and Beclin-1, which may help us
harness caspase-modulated PCD pathways for
future drug discovery.

The most important hallmarks of cancer cells comprise
ten biological characteristics, acquired during the multi-
step development of human tumours. Amongst these ten
‘weapons’, are in humans, tumour mutations that may
render themselves resistant to programmed cell death
(PCD) assisting defective cell survival (1). The complex
processes of programmed cell death, such as apoptosis
(type I PCD), are orchestrated by caspases, a family of
cysteine proteases with unique substrate specificities.
Accumulating evidence has recently revealed that phos-
phorylation of caspases can finely regulate PCD signal-

ling, and that caspase-mediated cleavage of kinases can
terminate pro-survival signalling or generate pro-death
peptide fragments, execute the death program, and thus
ultimately determine the fate of the cancer cells (2).

Hitherto, the official nomenclature has named four-
teen caspases in mammals, of which two-thirds may
function in apoptosis (3). Caspases are involved in two
different apoptotic pathways: (i) the death-receptor
pathway (extrinsic), which is triggered by ligation of
death receptors and subsequent caspase-8 activation
and (ii) the mitochondrial pathway (intrinsic), which is
initiated by intracellular stress, and subsequently acti-
vated by caspase-9. Both extrinsic and intrinsic apopto-
tic pathways can activate downstream caspase-3, which
is responsible for execution and cancer cell demise
(4,5).

However, caspases are not only executioners of PCD
in cancer, but they can also modulate several apoptosis-
related proteins including the TNFRs, Bcl-2 family,
cytochrome c, Apaf-1 and inhibitors of apoptosis (IAPs)
(6,7). Intriguingly, caspases-3, -7 and -8 are involved in
autophagy (type II PCD), a multi-step lysosomal degra-
dation process in which a cell degrades long-lived pro-
teins and damaged organelles (8,9). Of note, the process
of autophagy is highly regulated by a limited number of
autophagy-related genes (Atgs) that may play a pro-
survival or a pro-death role for regulation of several can-
cer-related signalling pathways (10). To date, some
PCD-modulating agents have been known to target cas-
pase members (for example caspases-3, -8, -9) and their
substrates (for example PARP-1 and Beclin-1) and these
could be potential therapeutic purposes (11). In this
review, we focus on highlighting recent data concerning
the multifaceted roles of caspases in apoptosis and auto-
phagy, which may in turn provide a new perspective for
targeting caspase-mediated PCD pathways, in future
cancer therapy.
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Caspase-mediated apoptosis in cancer

Tumour necrosis factor receptors

Tumour necrosis factor receptor (or death receptor), which
is a trimeric cytokine receptor that binds tumour necrosis
factor (TNF), is important for ‘decisions’ of progress
towards apoptosis. Of the death receptors there are
TNFR1 (also there are further TNFRs) and Fas that can
kill many types of cancer cells, and thus induce apoptosis
by binding to their cognate receptors that are capable of
transmitting a caspase-activating signal (12). During this
process, Fas ligand (FasL), which triggers trimerization of
receptors and aggregation of intracellular death domains
(DDs), leads to formation of a death-inducing signalling
complex (DISC) (13). The death adaptor protein FADD
and proteolytic enzyme caspase-8 are recruited to Fas. In
a homotypic interaction, the DD of Fas binds to a C-termi-
nal FADD, and subsequently, the death effector domain
(DED) of FADD can interact with the DED of the pro-
domain of caspase-8; thereby, recruiting this proenzyme
to the DISC (14). Moreover, pro-caspase-8 is proteolyti-
cally cleaved and activated at the DISC. DISC-activated
caspase-8 then directly cleaves the cascade of downstream
effector caspases, thus culminating in cell death.

So far, at least nine members of the TNFR family
possess a cytosolic DD, included in development of
DR-targeted pro-apoptotic therapies (15). Moreover, Fas
is frequently present in most tumour tissues; however,
the capacity for caspase-8 to elicit PCD following Fas
ligation varies dramatically in cancer cells, suggesting
that some additional factors may impact on this pathway
(16). In contrast to Fas, TNF-related apoptosis-inducing
ligand (TRAIL), identified by sequence homology to
FasL and TNF, induces apoptosis in around 60% of can-
cer cells. DR4, DR5 and DR5 are the key regulators in
DISC formation for caspase-8/10-mediated apoptosis in
cancer (17,18) (Fig. 1a).

Bcl-2 family

The Bcl-2 family is pivotal for regulation of apoptosis,
and includes both anti- and pro-apoptotic proteins, and
with slight changes in the dynamic balance of these
members, there is either inhibition or promotion of cell
death (19). Of note, the Bcl-2 family consists of some
pro-apoptotic members such as Bax, Bak, Bad, Bcl-Xs,
Bid, Bik, Bim and Hrk, as well as anti-apoptotic mem-
bers such as Bcl-2, Bcl-XL, Bcl-W, Bfl-1 and Mcl-1.
Pro-apoptotic Bcl-2 members enhance apoptosis by
facilitating cytochrome c release, whereas anti-apoptotic
members (Bcl-2, Bcl-XL and Mcl-1) may counteract this
effect by sequestering pro-apoptotic members (20).

In response to apoptotic stimuli, upstream regulators
undergo post-translational modifications such as dephos-
phorylation and cleavage, resulting in their activation and
translocation to mitochondria, thereby triggering apopto-
sis (15). In this process, pro-apoptotic BH3-only proteins
(Bim, Bid and Bad) are activated and thus promote oligo-
merization of p53 effector Bax/Bak (multi-domain BH3
proteins) to exert their intrinsic pro-apoptotic activities.
Subsequently, mitochondrial outer membranes become
permeable, leading to cytochrome c release (from inter-
membrane spaces) and activating the intrinsic apoptotic
pathway (21). Hitherto, accumulating data have shown
that both caspase-8 and caspase-2 can act upstream of
mitochondrial permeabilization by cleaving and activat-
ing Bid, leading to subsequent cytochrome c release, thus
playing the key roles for inducing intrinsic apoptotic
pathway (22) (Fig. 1b).

Other apoptotic modulators: cytochrome c, Apaf-1 and
IAPs

Cytochrome c, once released into the cytosol, can bind
to apoptotic peptidase activating factor 1 (Apaf-1) in the
presence of dATP or ATP, thus promoting self-
oligomerization of Apaf-1. It is well known that Apaf-1
and caspase-9 contain the protein interaction motif, cas-
pase recruitment domain (CARD) (23). Apaf-1 can bind
caspase-9 by CARD–CARD interactions that may result
in formation of the apoptosome, and dimerization-
induced activation of caspase-9. Once the apoptosome is
formed and then caspase-9 is activated, domains of
Apaf-1 can recruit downstream executioners such as
caspases-3, and -7 that target and cleave the key struc-
tural proteins for proteolysis, to trigger apoptosis. Subse-
quently, caspase-9 processes these effector caspases,
initiating their release from the complex. Also, the
cysteine site in caspase-9 and the cleavage aspartate site
(D175) of caspase-3 are required for efficient recruit-
ment and activation of caspase-3 (24).

Caspase-9 can be inactivated by some protein kinas-
es including ERK1⁄2 and protein kinase A (PKA), that
can be activated by extracellular survival signals. ERK1/
2 can also inhibit apoptosis through phosphorylation of
caspase-9 during interphase of the cell cycle, while PKA
can phosphorylate caspase-9, which can block recruit-
ment of caspase-9 to the apoptosome by compromising
Apaf-1 oligomerization. PKA can directly phosphorylate
Apaf-1, suggesting it to be a regulator of caspase-9 (25).
Survivin, which is often overexpressed in cancer cells,
opposes caspase-9 activity, thus having a role as a mem-
ber of the anti-apoptotic family. Like other anti-apopto-
tic caspase antagonists such as cFLIPS and XIAP,
survivin has a very short half-life, predicting it to
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disappear from the cell over the course of G2/M, however,
survivin plays a critical role during this time. During
mitosis, survivin binds to and stabilizes the mitotic spin-
dle. In the absence of survivin, cycling cells undergo
mitotic collapse and caspase-9-mediated apoptosis (26).

Hitherto, eight human IAP family members have
been identified, and X-chromosome linked IAP (XIAP),
containing three BIR domains, is the most efficient cas-
pase inhibitor among them. XIAP can bind caspase-9
through a groove in the BIR3 domain, associating it
with the homodimerization domain of the enzyme and
preventing its conformational change (27). The linker
region to N-terminus of the BIR2 domain binds the cata-
lytic domain of caspase-3 and blocks the active site of
the enzyme by steric hindrance, a reverse orientation. In
contrast to XIAPs, cellular IAPs (cIAP1 and cIAP2) can
inhibit a JNK signalling pathway that promotes the acti-
vation of caspase-8, and the cIAP2-BIR2 domain
directly binds and inhibits caspase-2. This indicates that
HIAP2 is a candidate inhibitor of the caspase-2 contain-
ing complex (28). ML-IAP/Livin though contains only a

single BIR domain and inhibits both caspase-3 and -9 in
cancer cells (29).

Several mammalian IAPs, including XIAP, c-IAP2
and c-IAP1 possess a c-terminal RING that may function
as an E3 ubiquitin ligase, which can promote ubiquitina-
tion, and target caspase-3 and -7 to the proteasome. It is
suggested that caspase degradation may be a further
mechanism by which IAPs suppress apoptosis (30). As a
final apoptotic executioner, caspase-3 can specifically
activate the endonuclease CAD, which is complexed with
its inhibitor, ICAD. Activated caspase-3 can cleave ICAD
to release CAD in apoptosis (31) and caspase-3 can also
cleave other substrates including PARP-1, which may
cause morphological and biochemical changes seen in
apoptosis of cancer cells (Fig. 1c).

Caspase-mediated autophagy in cancer

The intricate relationships between caspases and their
apoptotic modulators (TNFRs, Bcl-2 family, cytochrome
c, Apaf-1 and IAPs) have been elucidated at some

Figure 1. Caspase-mediated apoptotic pathways in cancer. In the extrinsic apoptotic pathway, Fas and DR4/5 are ligated by FasL and TRAIL
respectively, recruiting FADD and binding pro-caspase-8 in a homotypic interaction to form a DISC. Once pro-caspase-8 is activated, it cleaves the
execution caspases (caspases-3, -6, -7) to promote DNA damage and apoptosis. Both caspase-8 and caspase-2 can cleave and activate Bid, which
sequesters anti-apoptotic Bcl-2 family members and promotes oligomerization of Bax/Bak, leading to release of cytochrome c from mitochondria to
induce intrinsic apoptosis. Cytochrome c binds to Apaf-1, which recruits pro-caspase-9 through CARD–CARD interactions to form the apoptosome.
Subsequently, caspase-9 is activated and Apaf-1 recruits and cleaves caspase-3 and caspase-7 to bring about apoptosis. During this process, ERK1⁄2
and PKA can inactivate caspase-9, while IAPs (Livin, XIAP, cIAP1/2) can inhibit activity of some caspase members, acting as the key pro-survival
regulators in cancer.
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levels; however, a new emerging correlation between
caspases and Atgs has recently been explored in cancer.
Beclin-1 (mammalian homolog of Atg6) can enhance
autophagic signalling pathways by combining with class
III phosphatidyl inositol-3-kinase (PI3KCIII) at the initi-
ating stage (32). In this process, Beclin-1 and PI3KCIII
are novel substrates that can be cleaved by caspases-3, -
7 and -8. Beclin-1 and PI3KCIII are cleaved by caspases
in both mitochondrial- and death receptor-mediated
apoptotic pathways in cancer cells (33). Under some cir-
cumstances (Bax over-expression, nutrient deprivation
and oxidative stress), Beclin-1 can be cleaved by caspas-
es (34). Apoptotic stimuli that activate death receptor-
and mitochondria-mediated signalling pathways may
cause activation of autophagy, however, during sus-
tained exposure to apoptotic stimuli, caspase-mediated
cleavage of Beclin-1 produces fragments (Beclin-1-N
and Beclin-1-C) that lose their abilities to induce auto-
phagy, which might be explained by their mislocaliza-
tion. To be specific, a Beclin-1-C fragment translocates
to the mitochondrion, thus acquiring a new pro-apopto-

tic function to sensitize cells to apoptotic signals by
enhancing its local permeabilizing activity (33). Simulta-
neously Beclin-1-N, containing the BH3-only domain,
fails to promote cytoprotective autophagy when the Be-
clin-1-C fragment is stimulated (35) (Fig. 2).

Furthermore, Beclin-1, Atg5 (being required for the
elongation of autophagosomes) and Atg4D (mediating
proteolytic maturation of Atg8/LC3) can be cleaved in
apoptosis. When apoptosis occurs, calpain-mediated
cleavage of Atg5 can generate a truncated protein that
interacts with Bcl-2 at the mitochondrion to facilitate
apoptosis induction (36). Conversely, Atg5 may connect
to several signalling pathways that may activate caspase-
3, of which the highest scoring one is that pathway that
linking Atg5 to caspase-3 by Rhophilin2 (RHPN2), cy-
tokeratin 18 and DEDD. Although apoptosis-associated
cleavage of Beclin-1 and Atg5 can inactivate autophagy,
cleavage of Atg4D by caspase-3 generates a fragment
with increasing autophagic activity; this fragment has a
cytotoxic effect that correlates with its recruitment to
mitochondria (37,38). Thus, apoptosis-associated

Figure 2. Caspase-mediated autophagic pathways in cancer. Under some circumstances (for example nutrient deprivation and oxidative stress),
Beclin-1, key component of autophagy-inducing complex, is cleaved by caspases-3, -7 and -8. Fragments of Beclin-1 may lose their ability to
induce autophagy and acquire a new pro-apoptotic function. Besides Beclin-1, Atg5 can be cleaved, and generates a truncated protein that may
interact with Bcl-2 with apoptosis promotion, and it can also activate caspase-3. Cleavage of Atg4D by caspase-3 produces a fragment
that increases autophagy activity and simultaneously amplifies the apoptotic response by the mitochondrial pathway. In particular conditions, Bcl-2
and Flip, two anti-apoptotic proteins, can form complexes with Beclin-1 and Atg3 respectively, thus blocking caspase-mediated autophagic
pathways. Moreover, activation of caspase-8 and caspase-9 may act in pro-apoptotic roles or enhance cytoprotective autophagy in the different bio-
logical contexts.
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cleavage of Atg4D, similar to that of Beclin-1 and Atg5,
may amplify an apoptotic response via the mitochondrial
pathway (Fig. 2).

A further link between autophagy and apoptosis has
been explored, that FADD may play a key role in pro-
moting caspase-8 recruitment and survival via cytopro-
tective autophagic signalling, suggesting that caspase-8
plays a part as autophagic regulator (39). In addition,
caspase-8 may have a pro-apoptotic role while caspase-9
can enhance cytoprotective autophagy in human breast
MCF-7 cells, which suggests that caspase-9 can be con-
sidered to have connections between apoptosis and auto-
phagy (9,40). Bcl-2 and Flip, two anti-apoptotic
proteins, can inhibit autophagy by forming complexes
with Beclin-1 and Atg3, respectively, suggesting another
caspase-mediated autophagic pathway in cancer (Fig. 2).

Targeted caspases and their substrates for drug
discovery

Of note, TNF alpha and its family members of death
ligands CD95L (Fas ligand) and TRAIL, all possess
considerable potential in apoptosis induction in many
types of cancer cells. However, systemic administration
of TNF alpha and CD95L provoke severe adverse
effects, thus their applicability as tumour cell-specific
agents remains to be clarified for cancer therapy. In con-
trast, TRAIL is a rather promising anti-cancer cytokine
as it has been shown to exert selectivity amongst various
cancer cells. Even though TRAIL initiates apoptosis
after binding to TRAIL receptors (TRAILR1/DR4,
TRAILR2/DR5) in the death-receptor (extrinsic) path-
way, it can also recruit the mitochondrial pathway
(intrinsic) for apoptotic response (6,18).

Caspases are responsible for initiation and regulation
of the apoptotic pathway, and thus play their important
roles as tumour repressors. Currently, several anti-cancer
approaches (gene therapy and antisense strategies) have
been developed to target some specific apoptotic regula-
tors (11,22). Thus, we focus here on presenting several
known anti-tumour agents that can target caspases and
their substrates (for example PARP-1 and Beclin-1) in
apoptotic and/or autophagic pathways in cancer cells
(Fig. 3).

Caspase-8, -9 and -3

Caspase-8 is not only an apical caspase which triggers
apoptosis following death receptor ligation, but also a
highly versatile molecule that impacts on cellular signal-
ling. It is worth observing that caspase-8 is expressed
heterogeneously amongst different types of cancer (41).
Thus, it is possible to devise a range of anti-neoplastic

therapeutic strategies that can enhance death-inducing
functions of caspase-8 by elevating its expression. Cas-
pase-8 regulation can be targeted by small molecules for
potential applications. One classical type of these is the
microtubule-stabilizing agents, such as taxanes, that can
amplify caspase-8 activation via microtubule-anchored
DED ‘filaments’ to promote apoptosis (42). Caspase-8-
mediated death may be linked to the status of cellular
tubulin, as well as to production of reactive oxygen spe-
cies (ROS) (43). Production of ROS from mitochondria
may mobilize sequestered pools of existing caspase-8.
Interestingly, ROS (for example, NO) can lead to nitro-
sylation of NF-jB, a nuclear transcription factor that
modulates expression of many genes involved in apopto-
sis regulation in carcinogenesis, thereby acting as a
molecular switch of apoptotic and non-apoptotic func-
tions of caspase-8 (44). Proteosomal inhibitors, such as
Bortezomib and NPI-0052, have been utilized against
tumour cell populations that express caspase-8. These
small molecules may increase caspase-8 expression pre-
sumably by blocking its degradation (45). Moreover,
treatments with other agents such as 5-azacytidine, inter-
feron-V and retinoic acid can up-regulate transcription
of caspase-8, thus favouring activation of PCD pathways
(46–48).

Caspase-9 is the initiator caspase associated with the
intrinsic or mitochondrial pathway of apoptosis. Once
activated, caspase-9 cleaves and activates downstream
effector caspases-3 and -7, thus resulting in apoptosis.
FKBP12, a caspase-9 fusion protein, is anti-angiogenic
in mouse models by induction of caspase-9 dimerization
(49).

Caspase-3, the executioner caspase, is able to
directly degrade multiple substrates including structural
and regulatory proteins. Thus, therapeutic strategies
designed to stimulate apoptosis by activating caspase-3
may help in combating cancer caused by apoptosis defi-
ciency. Some small molecules have been developed to
be selective activators of caspase-3, peptides containing
the arginine-glycine-aspartate (RGD) motif, which pro-
motes apoptosis by directly inducing auto-processing of
pro-caspase-3 (50). A further reagent, immunocasp-3, is
a fusion protein comprised of a single-chain anti-erbB2/
HER2 antibody, and an active caspase-3 molecule. Sig-
nificant tumour regression in mouse xenografts of
HER2-positive tumour cells has been observed upon
over-expression of chimaeric immunocasp-3 gene, which
can induce autoactivation of caspase-3 (51). Gene ther-
apy approaches have been aimed at replacing defective
caspases in cancer cells by their normal counterparts.
For example, Ad-G/iCasp3 is a replication-incompetent
adenoviral vector carrying the caspase-3 gene, whose
antitumor activity has been tested in mouse models of
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prostate cancer (52). There are a variety of anti-cancer
agents that target both caspase-3 and -9 and promote the
apoptotic process, including Brucea javanica (53) oil,
niflumic acid–ciglitazone (54) and tetrandrine (55).

PARP-1 and Beclin-1

Several caspase substrates may be targeted in combined
therapies of cancer. For instance, a typical substrate is
Poly ADP-ribose polymerase-1 (PARP-1), as the ‘guard-
ian angel of DNA’. The PARP-1-mediated pathway is a
major mechanism for DNA repair in cancer cells, thus
leading to drug resistance and continued tumour growth
(56,57). Hence, PARP-1 inhibitors or deletion of the
PARP-1 gene can act as potentiators in chemotherapeu-
tics, damaging DNA repair mechanisms and resulting in
genomic dysfunction and cell death. Inhibitors of
PARP-1, such as benzimidazole, carboxamides [Abbott,

KuDOS/Astrazeneca] and BiPar/Sanofi (58–60), have
been utilized for cancer therapy.

A new emerging caspase substrate is Beclin-1, a
component of the PI3KCIII complex required in auto-
phagy. Beclin-1 is a novel substrate of caspases-3, -7
and -8, suggesting its crucial role in cross-talk between
apoptosis and autophagy. Interestingly, tamoxifen, an
oestrogen receptor (ER) antagonist first targeted breast
cancer therapeutic agent, can up-regulate levels of Be-
clin-1, thus inducing autophagy in breast cancer treat-
ment (61,62).

Concluding remarks

Cancer is a complex, multi-step gene-derived disease
with astonishingly numerous links to PCD apoptosis and
autophagy; nevertheless, cancer cells evolve a variety of
strategies to circumvent apoptosis. This multiplicity

Figure 3. Anti-tumour agents that target the caspase-modulated programmed cell death network. Several anti-tumour agents that may target
caspase-3 (peptides with the RGD motif, immunocasp-3, Brucea javanica oil, niflumic acid–ciglitazone and tetrandrine), caspase-8 (taxanes, Bort-
ezomib, NPI-0052, 5-aza-cytidine, interferon-v and retinoic acid) and caspase-9 (FKBP12), as well as their substrates PARP-1 (benzimidazole, carb-
oxamides, Abbott, KuDOS/Astrazeneca and BiPar/Sanofi) and Beclin-1 (tamoxifen), have been utilized to modulate PCD networks for cancer
therapy.
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of apoptosis-evading mechanisms may reflect diversity
of apoptosis-inducing signalling pathways that cancer
cell populations may encounter. The apoptotic machin-
ery and strategies utilized by cancer cells to evade its
actions have been widely appreciated, thus, any new
therapeutic strategy should consider combination of
apoptosis and autophagy in cancer treatment.

Currently, considerable effort is needed to further
determine the molecular mechanisms of apoptosis and
autophagy in cancer, to define how some apoptotic or
autophagic modulators such as caspases (caspases-3, -8
and -9) and their mediators (TNFRs, Bcl-2 family, cyto-
chrome c, Apaf-1 and IAPs) can impact on cancer aeti-
ology and pathology, specially focusing on
distinguishing differences between physiological and
pathological PCD, thus specifically targeting caspase-
modulated apoptotic and autophagic pathways as prom-
ising avenues for therapy. Thus, a new therapeutic strat-
egy would be carried forward for drug discovery, if new
PCD-modulating agents could be designed to target not
only caspases and their substrates (for example PARP-1
and Beclin-1), but also their aforementioned PCD modu-
lators, for future cancer drug discovery.
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