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ABSTRACT The clinical presentation of severe Plasmodium falciparum malaria differs
between children and adults, but the mechanistic basis for this remains unclear.
Contributing factors to disease severity include total parasite biomass and the di-
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IMPORTANCE P. falciparum malaria can cause multiple disease complications that Published 30 April 2019

differ by patient age. Previous studies have attempted to address the roles of para-
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site adhesion and biomass in disease severity; however, these studies have been lim-
ited to single geographical sites, and there is limited understanding of how parasite
adhesion and biomass interact to influence disease manifestations. In this meta-
analysis, we compared parasite disease determinants in African children and Indian
adults. This study demonstrates that parasite biomass and specific subsets of var
genes are independently associated with detrimental outcomes in both childhood
and adult malaria. We also explored how parasite var adhesion types and biomass
play different roles in the development of specific severe malaria pathologies, in-
cluding childhood cerebral malaria and multiorgan complications in adults. This
work represents the largest study to date of the role of both var adhesion types
and biomass in severe malaria.

KEYWORDS cerebral malaria, machine learning, malaria, PFEMP1, Plasmodium
falciparum, severe malaria, var gene

espite increased malaria control and elimination efforts, severe malaria (SM) from

Plasmodium falciparum remains responsible for more than 400,000 deaths every
year (1). In areas with high P. falciparum transmission, such as sub-Saharan Africa, SM
primarily occurs in pediatric patients, as older children acquire protective immunity to
the pathogenic effects of infection. In areas of low transmission, such as Asia and the
Americas, SM occurs in both children and adults. This distinction is important, as
malaria disease presentation varies between children and adults (2). Whereas cerebral
malaria (CM) and metabolic acidosis are common to children and adults, severe malarial
anemia is more common in children, and acute kidney injury, jaundice, and acute
respiratory distress syndrome are most commonly seen in patients greater than
10 years old (2). The parasite and host factors that contribute to variability in malaria
disease presentation remain poorly understood.

A key virulence determinant of P. falciparum is sequestration of infected erythro-
cytes (IEs) within the microvasculature (3). Extensive microvascular obstruction from
sequestered IEs is believed to contribute to metabolic acidosis (4), while high levels of
parasite sequestration in brain (5-7) and the placental intervillous space (8) are asso-
ciated with organ-specific complications. Cytoadhesion of P. falciparum-IEs is mediated
by the large and diverse P. falciparum erythrocyte membrane protein 1 (PfEMP1) family,
encoded by var genes. PfEMP1 proteins are expressed in a clonally variant fashion on
the surface of IEs (9-11). Each parasite genome contains ~60 var genes that are
classified into group A, B, or C based on chromosomal localization and the gene
upstream region (12). Molecular insight into PfEMP1 function has been gained by
sequence classification of the extracellular Duffy binding-like (DBLa/B/v/6/¢/{) and
cysteine-rich interdomain region (CIDRa/B/vy/8) adhesion domains (13, 14). CIDRal
domains bind endothelial protein C receptor (EPCR) (15, 16), CIDRa2-6 domains bind to
CD36 (17-19), and CIDRB/v/8 domains bind neither receptor (reviewed in reference 20).
Additionally, PfEMP1 can simultaneously bind to other coreceptors, as some DBLB1/3
(group A) and DBLB5 (group B and C) domains mediate binding to ICAM-1 (21-25).
PfEMP1 also includes sets of domains typically found tandemly arrayed in the same
protein, termed domain cassettes (DCs). Several DCs encode conserved cytoadhesion
traits, including binding to EPCR (DC8 and DC13) (16, 21, 23, 26, 27), ICAM-1 (DC4)
(28), and PECAM-1 (DC5) (29). Antigenic switching of PfEMP1 proteins modifies P.
falciparum-IE specificity for receptors on endothelial cells (cytoadhesion) or eryth-
rocytes (termed rosetting [30]).

A challenge of studying the epidemiological associations of the var gene family and
malaria disease is the immense diversity of var genes in the parasite population (31, 32).
The development of primer sets targeting different var domain subtypes represented
a breakthrough in malaria pathogenesis research (13, 33). This approach has shown that
transcription of var genes encoding predicted EPCR binding activity is elevated in both
pediatric (23, 33-36) and adult (37) SM patients. Moreover, deep sequencing of var
amplicons has indicated that SM infections comprise a mixed population of parasites
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expressing different var genes (34, 38). Although these findings implicate specific
PfEMP1 subsets in disease severity, these studies were insufficiently powered to assess
whether expression of distinct PfEMP1 adhesion types are linked to different organ
complications in children and adults. High parasite burden is also thought to play an
important role in disease severity. Plasma levels of P. falciparum histidine-rich protein
2 (PfHRP2), a parasite protein released upon merozoite egress, is used as a blood
surrogate marker for the combined amount of both circulating ring-stage and seques-
tered mature-stage P. falciparum-IEs. PfHRP2 levels are associated with severe malaria
in both children and adults (39, 40), predict disease progression (41), and are increased
in patients with specific complications, including cerebral malaria (42), and metabolic
acidosis (43).

This study extends previous work (i) by applying an integrated multicohort analysis
to better understand how both parasite burden and binding phenotype are associated
with severe malaria in both adults and children and (ii) by examining how parasite
burden and parasites expressing different var gene subsets influence disease severity
and the spectrum of disease across study sites. To accomplish this, we performed a
machine learning meta-analysis of combined var transcript profiles from two previously
described African children cohorts (33, 34), along with an expanded Indian adult cohort
based on our previously published work (37). This work represents the largest and
broadest analysis of these parasite factors in severe malaria to date, thus providing
unprecedented power to explore and compare the parasite factors that lead to severe
disease.

RESULTS

Characteristics of the study cohorts. The var gene transcript profiles (var profiles)
for this work were obtained from two previously published studies of pediatric malaria
in Tanzania (TZ) (33) and Malawi (BLZ) (34) and one adult malaria cohort in Goa, India
(GMCQ). The cohorts included 90 (TZ), 68 (BLZ), and 55 (GMC) SM patients and 32 (TZ),
40 (BLZ), and 37 (GMC) uncomplicated malaria (UM) patients. The GMC cohort ex-
panded our previously published (37) cohort with newly obtained samples, comprising
both severe and uncomplicated malaria.

Previous work has shown that malaria disease presentation is influenced by both
transmission intensity and patient age (2, 44). The recruited individuals in the three sites
had different age profiles (see Table S1 in the supplemental material). Tanzanian UM
and SM pediatric patients (median age, 2 years; range, 1 to 3 years) were generally
younger than Malawian patients (median age, 4 to 4.5 years; range, 2 to 7 years)
(Table S1). Goan adult UM and SM patients had median ages of 25 and 27 years,
respectively (Table S1). UM and SM patients in all three cohorts did not show significant
differences in circulating parasite density by blood smear. However, UM patients had
significantly reduced parasite biomass compared to SM patients, as reflected by plasma
PfHRP2 levels (Table S1). PfHRP2 levels were not measured in the TZ cohort. Patient
mortality rates for SM were similar at all sites, ranging from 10% in TZ and BLZ patients
to 13% in GMC patients (Table S1).

var transcript profiles and cross-site correlations. To compare the var adhesion
types associated with malaria disease severity at the three sites, var transcript profiling
was performed using a set of 41 PCR primer pairs designed to quantify transcripts of
defined var domain subtypes (33), many of which have predicted binding phenotypes
(33-35, 37) (Fig. 1A). The three cohorts analyzed in this meta-analysis were chosen as
they employed the same primer panel enabling comparative analysis across sites.
Table S2 in the supplemental material shows the primers used for these analyses, along
with a color code based on predicted binding phenotypes of the targeted domain(s)
used in all figures throughout this study. To examine how the primer sets performed
across different parasite populations in Africa and India, correlations between transcript
expression of individual var domain subtypes across every patient were calculated in all
three sites and used to hierarchically cluster domains (Fig. 1B, left). Notably, the
transcript expression of var domain subtypes grouped according to PfEMP1 domain
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FIG 1 Correlation of var domain transcript profiles across the three study sites. (A) Schematic of PfEMP1 domain architecture illustrating the relationship
between known binding phenotypes and different var groups. CIDRB/y/8 domains (yellow) have unknown binding properties, CIDRa1 domains (light and
dark blue) bind EPCR, CIDRa2-6 domains (orange) bind CD36, and DBLB1/3/5 domains (purple) bind ICAM-1. (B) Transcriptional profiling of var genes was
performed with 41 different primer sets targeting different var domain subtypes. Shown is a heat map of correlations (Spearman'’s rho) of transcript levels
of different var domain subtypes across all samples (SM and UM) from all three sites. Domain transcript levels were hierarchically clustered, and known tandem
domain arrangements (e.g., DC19) are indicated to the left of the heat map. The right and bottom legends use the color scheme described in Table S2 to indicate
EPCR/CD36/ICAM-1/Rosetting/PECAM-1/unknown/C-terminal domains. Clusters A and B and subclusters i to v are highlighted in dashed boxes.

architecture and var adhesion type. Tandemly arrayed domains (domain cassettes
[DCs]) remain closely correlated at all three sites (i.e.,, DC5, DC6, DC9, DC16, and DC19),
all but DC5 retain their close association across every site, and DC5 primers remain the
most closely associated in Tanzania (Fig. 1B). For DC8, three of the four tandemly
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associated domains grouped together, and DC13 is the sole domain cassette whose
two characteristic domains are not closely correlated with each other (Fig. 1B), probably
reflecting the weaker association of these domain types (DBLy4/6 [DC8] and DBL«1.7
[DC13]) with their domain cassettes (13). Clustering of DCs also holds true in each
individual site, with the exception of DC5 (see Fig. S1 in the supplemental material).
This analysis suggests that these protein architectural arrangements are maintained
across diverse parasite populations in Africa and India, despite extensive gene recom-
bination in the var gene family (45). This finding also suggests that tandem domain
relationships may be under strong biological selection. Additionally, var transcripts
clustered according to predicted var adhesion types (Fig. 1B). Cluster A was dominated
by var genes encoding predicted CD36 binding domains (preferentially found in
subcluster i) and C-terminal domains (preferentially found in subcluster ii). In contrast,
cluster B contained var genes encoding predicted EPCR binding domains (subcluster iii)
and var genes associated with unknown/rosetting function (subcluster iv). Exceptions
in cluster B were subtypes relating to DBLa0.9 of DC20 and DC6 (subcluster v).
Although DC6 domains can be found in all three var groups (13), its expression was
more closely correlated to the DC8 and group A var genes across the three cohorts. This
analysis suggests that transcription of specific var adhesion types is more closely
correlated and that DCs are conserved across parasite populations of distant geograph-
ical sites.

Cross-site correlations in var transcript profiles. To explore var transcript profiles
across the three study sites and to assess the comparability of var profiles derived from
each site, we compared var domain subtype expression distributions from each cohort.
Overall, var genes encoding EPCR binding (both DC8 and group A var) were the highest
expressed transcripts across the three sites (transcription units [T,] value = 10 to 1,000)
(see Fig. S2 in the supplemental material). Differences in expression were tested by
using the Kolmogorov-Smirnov test (Fig. 2A). While some domain subtypes presented
similar patterns at all sites (P = 1.00), other domain subtypes showed site-specific
differences in expression distributions. These differences are not solely explained by
differences between patient age and ethnicity. For example, while adult GMC and
pediatric BLZ patients shared 26 similarly distributed domain subtypes (P = 1.00), only
14 subtypes met this threshold when comparing pediatric TZ versus BLZ patients. These
results were unexpected, as pediatric and adult severe malaria patients present differ-
ent organ complications.

While EPCR-binding domains presented similar expression profiles across sites (P =
1.00), the main site-specific expression differences were observed for CD36-binding and
C-terminal domains (Fig. 2A). Figure 2B shows the expression density distributions
detected by primer pairs, stratified by study site and severity. We looked for differences
in the transcript levels of the most abundantly transcribed var subtypes (median T,
>10) in the combined severe versus uncomplicated malaria cases. Five primer pairs
were identified that passed this threshold: primer pair DBLa2/a1.1/2/4/7 targets all
EPCR binders (DC8 and group A), primer pair DBLa not var3 targets group A PfEMP1
(EPCR, rosetting, PECAM-1, unknown), primer pairs DBLB12 and DBLB3/5 mostly target
DC8 (EPCR), and primer pairs CIDRy and CIDR«2.3/5/6/7/9/10 target CD36-binding var
genes. Notably, the rank order of the top 5 transcribed domains was the same in both
SM and UM patients across the three sites, but the var transcript levels tended to be
higher in SM patients (Fig. 2B). Two of the three EPCR-binding domains showed
significantly higher expression in SM for all sites (DBLa not var3, BLZ, P = 8.8 X 10~5;
GMC, P = 0.02; TZ, P = 2.5 X 1078, DBLB12 and DBLB3/5 of DC8 BLZ, P = 1.6 X 10~%
GMC, P = 0.0004; TZ, P = 0.002), while neither of the CD36 high expressers showed any
significant difference. In all three sites, UM patients showed a bimodal distribution of
the DC8 and group A var transcripts, including two peaks representing low-expression
and high-expression individuals (Fig. 2B). However, the low expressers’ peak is absent
in SM cases from BLZ and GMC and highly diminished in TZ (Fig. 2B). Thus, even though
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FIG 2 Correlations in var transcript levels across the three study sites. (A) Kolmogorov-Smirnov P values comparing var domain subtype distributions between
each pair of sites. P values under 0.01 are highlighted in blue, and those under 0.05 are highlighted in yellow. Subtype color annotations and order are identical
to those in Fig. 1B. (B) Transcription levels of the top five transcribed var domain subtype transcripts (median T, >10) are stratified by site and severity (SM/UM).

individual domain subtype expression varies in a site-specific manner, marked increases
in abundances of some PfEMP1 domains are a feature of SM across all study sites.

Common var profiles predict severe malaria in both adults and children. In
order to more precisely evaluate the contribution of var transcript profiles to malaria
severity, a machine learning approach was applied. Random forest (RF) models were
trained on var profiles to classify samples as severe or uncomplicated malaria. This was
performed for all sites individually and for Tanzania and Malawi together to derive a
model representing all childhood cases.

The importance of each adhesion domain to the adult and child RF models is shown
in Fig. 3A and B. Importance was measured as the mean decrease in classifier accuracy
(MDCA) when the primer is excluded from the model while resampling during model
training. As previously reported, in both adults (37) and children (23, 33-36), SM is
associated with increased transcription of domains predicted to bind EPCR. Despite
comprising only 10% of the var repertoire (13), more than 50% of the top 10 predictive
features in both models belong to PfEMP1-EPCR binders (Fig. 3A and B). Both the group
A and DC8 subsets of EPCR binding var genes were predictive of pediatric SM (group
A: DBLa not var3; DC8: DBLB12 and DBLB3/5, DBLa-CIDRe, and CIDRa1.1; and DC8-
group A: DBLa2/a1.1/2/4/7). Although we previously reported that only DC8-EPCR
binders were predictive of adult SM (37), both DC8 domains (DBLy4/6, DBLB12 and
DBLB3/5, DBLa-CIDRe, CIDRa1.1, and DBL«2/a1.1/2/4/7 [see Table S3 in the supple-
mental material]) and group A-EPCR binders (DBLa not var3 and DBLa2/a1.1/2/4/7
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FIG 3 Parasite load and var adhesion types independently predict severe malaria in adults and children. (A and B) Bar plots showing var domain subtype model
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used to generate the RF model, colored by predicted binding phenotype or position in the protein (see also Table S2 and Table S3). Positive MDCA indicates
higher expression of a specific domain subtype in SM and vice versa. Bars with asterisks indicate that these domain subtypes showed significant differences
in expression (false-discovery rate [FDR] of =0.2) using the mProbes algorithm. (C) ROC curves showing out-of-bag predictions of RF models classifying samples
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malaria and PfHRP2 combined with the var profile RF models.

[Table S3]) contributed to the adult SM model in the expanded data set. Additionally,
var genes containing the DC19 subset of CD36 binding domains (children, CIDRa3.4;
adults, DBL«0.16 [Table S3]) ranked among the top 10 predictive features in both the
adult and children SM models. As well, high expression of var genes containing the
C-terminal DC6 (DBLy [Table S3]), which ranked as the top var feature in our previously
published adult SM model (37), still ranked as the third most predictive feature in the
adult SM model. The presence of several DCs in the top ranks of our models is
remarkable. This is because RF analysis may penalize DC domains, as the algorithm
recognizes them as a proxy of each other, decreasing the MDCA score. The importance
of DC8 (EPCR), DC6 (C-terminal), and DC19 (CD36) in both the adult and children SM
models suggest that these domains play an important role in severe disease across age
groups.

Receiver operating characteristic (ROC) curves and the accompanying 95% confi-
dence intervals (Cls) representing the unbiased out-of-bag (OOB) predictions made
during model training are shown in Fig. 3C. All var profile models significantly discrim-
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inate UM from SM. Notably, the combined childhood SM model (area under the ROC
curve [AUC], 0.75 [95% Cl, 0.68 to 0.82]) performs very similarly to the individual
Tanzanian and Malawian models (TZ AUC, 0.81 [95% Cl, 0.73 to 0.9]; BLZ AUC, 0.75 [95%
Cl, 0.65 to 0.84]) and the adult Goan model (AUC of 0.72 [95% Cl, 0.62 to 0.83]). Taken
together, predictive performance was highly consistent across all sites.

To further explore pathogenic mechanisms in children and adults, we made blind
predictions, using the adult model to classify the child samples and the childhood
model to classify the adult samples. Importantly, both models showed significant ability
to cross-classify (Fig. 3D) for both children on adults (AUC, 0.66 [95% Cl, 0.55 to 0.78];
P = 0.002) and adults on children (AUC, 0.69 [95% Cl, 0.62 to 0.78]; P = 53 X 1077). In
other words, adult SM could be predicted by var profiling of pediatric samples and vice
versa. This demonstrates that, despite presenting highly distinct severe disease mani-
festations, similar var subsets are predictive of SM in both adults and children.

Parasite biomass and var profiles are independent and complementary con-
tributors to severe disease in both adults and children. A recurrent question in the
malaria pathogenesis field is the relative contribution of parasite biomass and parasite
cytoadhesion to malaria severity. PfHRP2 measurements were available for both the
Malawi and Goa cohorts, but not Tanzania. PfHRP2 levels alone significantly discrimi-
nated severe from uncomplicated malaria in both Malawi (AUC, 0.85 [95% Cl, 0.79 to
0.92]; P = 4 X 107°) and Goa (AUC, 0.7 [95% Cl, 0.59 to 0.81]; P = 0.0018) (Fig. 3E). To
evaluate the improvement resulting from the combination of PfHRP2 and the var gene
models, logistic regression models of the form severity = PfHRP2 + var signature score
were fit. Receiver operating characteristic (ROC) curves for these models are shown in
Fig. 3E, and the combined severity predictions significantly improved on both PfHRP2
alone and var profiles alone for both Malawi (y? test, P = 0.0005) and Goa (y? test, P =
0.006). Statistical analyses indicate substantial improvement in all prediction metrics in
both sites when var profile models are combined with PfHRP2 measurements (Malawi,
var profile alone odds ratio [OR], 6.6, HRP2 alone OR, 15.9, and var profile plus HRP2 OR,
28.3; Goa, var profile alone OR, 5.77, HRP2 alone OR, 3.75, and var profile plus HRP2 OR,
15) (see Table S4 in the supplemental material). This demonstrates that var profiles and
parasite load are independent and complementary biomarkers of malaria severity in
two independent study cohorts.

Parasite load is the primary factor underlying adult SM cases with multiple
clinical complications. Adult SM is frequently associated with multiorgan complica-
tions that increase fatality risk (2). Within our Goan cohort, acute respiratory distress
syndrome, acute kidney injury, and jaundice were the most frequent complications and
were frequently found together (Fig. 4A). Notably, the number of severe malaria criteria
is significantly correlated with PfHRP2 levels (Spearman’s p = 0.46; P = 0.00038
[Fig. 4B]), presenting a pronounced increase in individuals with more than three
severity criteria. Fatal SM cases were also associated with higher burdens of severe
criteria, with six of seven fatal cases in this cohort presenting with more than three
severity criteria (Fig. 4A).

An RF model was trained to classify adult severe malaria cases into those with up to
three severity criteria and those with over three severity criteria. Notably, the model
based only on var profile data showed no discriminatory power (AUC, 0.43 [95% Cl, 0.28
to 0.59]), while PfHRP2 levels alone successfully discriminated patients with over three
severity criteria (AUC, 0.74 [95% Cl, 0.58 to 0.88]) (Fig. 4). As the redundant nature of the
primer repertoire used in this study could artificially decrease the importance of some
var domains contributing to SM by acting as proxies for each other during modeling,
we also trained a model based on primers grouped into related var predicted adhesion
types (Fig. 5D; see Table S5 in the supplemental material). T, values of var sets were
summed to construct a summarized matrix of discrete, nonredundant binding pheno-
type sets. Patients with multiorgan complications presented decreased expression of
var genes with a predicted CD36 binding phenotype and increased expression of a
subset of group A var genes (DC13 EPCR binders and DC5-containing genes, which
bind PECAM-1 in some instances). Conversely, the DC8 EPCR-binding subset did not
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FIG 4 Plasma PfHRP2 levels are associated with the number of severe malaria criteria in adults. (A) Heat map showing prevalence of clinical signs of adult SM
in Goa. Fatal SM cases are indicated below. A white box indicates missing information. (B) Box and dot plot of plasma PfHRP2 levels in adult SM, stratified by
number of severity criteria. The median is indicated by a horizontal line. (C) Bar plot showing importance of primer sets in the severe criterion count var set
model. Negative MDCAs indicate sets with lower expression in patients with >3 severity criteria. (D) ROC curves showing the predictive power of individual
var domain subtypes, PfHRP2 levels, var domain subtypes grouped by binding phenotype (var sets), and var sets combined with PfHRP2 levels to classify adult

SM patients as having up to three clinical signs versus those with over three clinical severe signs.

predict multiorgan complications, as their expression was elevated among all adult SM
patients (Fig. 4C). While the var set model showed improved predictive power (AUC,
0.61 [95% Cl, 0.45 to 0.77]), it did not reach the threshold for statistical significance.
Moreover, there was no improvement over PfHRP2 alone (Fig. 4D). Taken together, this
analysis suggests that P. falciparum growth and expansion are the primary parasite
factors that influenced presentation of multiple severity signs in adults.

Specific var profiles are associated with childhood severe malaria and anemia.
To investigate var profile associations with childhood disease complications, we ana-
lyzed SM samples from the combined Tanzanian and Malawi data sets. The main SM
complications in children are coma (cerebral malaria [CM]), severe anemia (SA), lactic
acidosis, and respiratory distress, which can appear alone or in combination (Fig. 5A
and B). While the Tanzanian cohort was selected for an even distribution of complica-
tions, the Malawian cohort is biased toward CM patients, as it was the main focus of the
original study (34). Fitting an RF model to the combined cohorts accurately classified
CM from non-CM among SM cases (AUC, 0.77 [95% Cl, 0.7 to 0.84] [Fig. 5C to E]).
Consistent with previous studies (33, 34, 38), childhood CM is associated with higher
levels of transcripts encoding group A and DC8 EPCR binders (group A: DBLa not vars3;
DC8: DBLy4/6, DBLB12 and DBLB3/5, and CIDRa1.1; and DC8-group A: DBLa2/a1.1/2/
4/7) (Fig. 5C; see Table S6 in the supplemental material). We also observed higher levels
of transcripts encoding C-terminal domains (DBLy of DC6 and DC9), as well as the DC19
subset of CD36-binding domains (Fig. 5C; Table S6).
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FIG 5 var transcript profiles distinguish childhood coma (CM) and anemia (SA). (A and B) Heat maps showing the prevalence of clinical signs of childhood SM
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domain subtype importance (MDCA, negative bars indicate lower primer expression in SM plus CM or SM plus SA patients) for the SM plus CM versus SM with
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and Tanzania sets. (F) Box plots of site-specific expression for the most important (MDCA, >2.5) var domain subtypes in the anemia model.
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This modeling approach also significantly discriminated SA from non-SA among SM
patients (AUC, 0.66 [95% Cl, 0.57 to 0.74] [Fig. 5D and E]), with SA being associated with
lower expression of most adhesion domains present in the CM model, including group
A EPCR binders, the DC6 and DC9 C-terminal domains, and the DC19 subset of CD36
binders (Fig. 5D; Table S6). To further investigate if the performance of the SA model
was simply being driven by lower var transcription levels in parasites associated with SA
cases or study site-specific biases, we compared transcript levels of the most informa-
tive var domain subtypes (MDCA, >2.5) from the SA model (Fig. 5F). This analysis
indicated that while most var domains were expressed at lower levels in SA, the DC8
domain, CIDRa1.1 (Table S6), had higher median transcript levels in SA than CM cases
in both Malawi and Tanzania. However, CIDRa1.1 DC8 transcripts were also elevated in
many CM cases, suggesting that DC8-expressing EPCR-binding parasites are linked to
both CM and SA.

DISCUSSION

The var gene family plays a central role in parasite immune evasion and pathogen-
esis and has extensively diversified under immune pressure. The motivation of this
study was to evaluate if the same var subsets were linked to severe malaria in Africa and
India and to explore how var adhesion types interact with parasite biomass to influence
malaria disease presentation in children and adults. This work represents the most
comprehensive analysis to date of parasite factors leading to SM. This has been
accomplished by assembling a multisite adult and pediatric data set of var profiles,
comprising hundreds of patient samples. The var profiles studied in this meta-analysis
were tested with a panel of domain-specific primers that provide broad coverage of the
var repertoire (estimated 87% of var genes) (33). While these primers have less
overlapping domain coverage of the CD36-binding PfEMP1 subset, which comprise
90% of the P. falciparum var genomic repertoire, independent next-generation se-
quencing of var amplicons of the pediatric cohorts analyzed in this study (34, 38)
validated the use of the var domain-specific primers to determine patient var profiles.

Our central observation is that both parasite biomass and var profiles are
important, independent, and complementary in the development of adult and
pediatric SM. Furthermore, despite var transcript profiles showing extensive within-
host and between-site differences, the var profile signatures associated with severe
malaria in African children are highly predictive of severe malaria in Indian adults and
vice versa. Most previous var transcript profiling has focused on African children, and
less investigation has been conducted in lower-transmission settings where disease
affects both children and adults. Despite differences in disease presentation between
children and adults, severe malaria in both Indian adults and African children is clearly
linked to increased transcription of variants predicted to bind EPCR, including DC8 and
group A var genes. This demonstrates the power of this meta-analytical approach to
reveal a universal signature of severe malaria and validates the results of previous
studies implicating the DC8 and group A var subsets in severe malaria (33-38).

In contrast to the clear associations of specific var transcript profiles with severe
malaria, the relationship of specific binding phenotypes and malaria disease syndromes
is more complex. Understanding this relationship is complicated by the complex
presentation of severe malaria in children and adults, as many patients had more than
one severity criterion, especially in our adult Indian cohort. The most definitive link to
var adhesion types was observed for childhood malaria, in which children with coma
and severe anemia had distinctive var signatures. While predicted EPCR-binding group
A var transcripts were lowest in UM cases, intermediate in SA, and highest in CM, DC8
var transcript levels tended to be higher in SA than CM cases, indicating there may be
subtle differences in the transcript level or composition of DC8 variants between the
two syndromes. However, the incidence of anemia in this study is highly skewed: it is
common in our Tanzanian cohort and uncommon in the Malawian cohort. Along with
this, the most anemic individuals also were not cerebral malaria patients. This raises
the possibility of site-specific and CM expression patterns biasing the signature.
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Nevertheless, the specific association of DC8 var expression with severe anemia,
and of DC8 and group A var with CM, is intriguing. DC8 PfEMP1 binds EPCR and
most likely a range of other not yet well understood human receptors (46), while
some group A var genes encode dual adhesive properties for EPCR and ICAM-1 (21,
23), as well as other yet undefined human receptors. This is suggestive of a
mechanistic hypothesis in which malaria coma is potentially driven by both ICAM-1
and EPCR binding parasites, in contrast with anemia. Further study is needed to
disentangle these effects.

In addition to var disease signatures, our study confirms the strong role of parasite
biomass in severe disease (39-43). RF models reveal that both factors are independent
and complementary biomarkers of severity. The combination of both features increases
the sensitivity, specificity, and odds ratio of severe malaria prediction in both pediatric
and adult severe malaria. An expansion of the circulating and sequestering parasite
population might directly contribute to disease severity by directly increasing endo-
thelial cell activation (47-49) and microvascular obstruction (4, 50).

Whereas EPCR-binding var subsets were linked to severe malaria in adults, progres-
sion to multisymptomatic disease (greater than three severity criteria) appeared to be
primarily driven by parasite load. However, we did see a possible reduction in CD36
binders in adults with multiple severe malaria complications. This may suggest that an
overall increase in EPCR-binding parasites contributes to multiorgan complications in
adult SM. Future work is needed to address whether specific var adhesion types are
linked to the distinct organ complications of adult SM.

A limitation of this study is that the meta-analysis focuses on P. falciparum tran-
scription differences in severe malaria and lacks experimental assessment of parasite
binding. Nevertheless, the cytoadhesion predictions for CD36, EPCR, and ICAM-1 are
supported by multiple in vitro studies of both laboratory-adapted P. falciparum lines
(21-23, 26-28) and cerebral malaria isolates (16, 51, 52). The consistency in the
importance of group A and DC8 var transcripts as a predictor of disease severity in
patients of multiple ages and ethnicities, presenting multiple disease syndromes,
suggests an important role of EPCR in severe disease. This likely reveals a pathogenic
pathway, as IE binding to EPCR is proposed to prevent its vascular homeostatic and
protective function (53).

In summary, machine learning meta-analysis has revealed common var signatures of
severe malaria in African children and Indian adults and further suggests important
interactions between parasite biomass and var adhesion type in disease presentation.

MATERIALS AND METHODS

Ethical approval. Informed consent was obtained from all study participants. The Indian study was
approved by the ethics boards at Goa Medical College and Hospital, the University of Washington, and
the Western Institutional Review Board, used on behalf of the Center for Infectious Disease Research/
Seattle Children’s Research Institute, as well as by the Government of India Health Ministry Screening
Committee. The Malawian study (34) was approved by the institutional review boards at the University
of Malawi College of Medicine, Michigan State University, and the Albert Einstein College of Medicine.
The Tanzania study (33) was approved by the Tanzania Medical Research Coordinating Committee, and
parents or guardians of children provided consent.

Composition of human cohorts and patient recruitment. Newly recruited patients were obtained
from the Goa study site, using the previously published sample collection protocol (37). Additional
subjects were recruited between August 2012 and January 2017 from the hospital admissions or
outpatient wards at the Goa Medical College and Hospital. P. falciparum infections were identified using
Giemsa-stained thick and thin smears for parasitemia determination and species identification. Plasmo-
dium vivax infections were excluded from the study. After informed consent was obtained, blood
samples from P. falciparum-infected patients were collected in acid citrate dextrose vacutainers and
separated into plasma and red blood cell fractions in RNAlater, before freezing at —80°C. Adult SM was
defined as hospitalization with any of the following signs: coma (Glasgow coma score, <10), severe
anemia (Hb, <7 g/dl), jaundice (bilirubin, >3 mg/dl), kidney failure (serum creatinine of >3 mg/dl or
blood urea nitrogen of >17 mmol/liter), shock (systolic blood pressure of <80 mm Hg plus cold
extremities), metabolic acidosis (peripheral venous bicarbonate, <155 mmol/liter), respiratory distress
(>20 breaths per min or partial pressure of oxygen in alveoli [PaO,] of <75 mm Hg), or hypoglycemia
(blood glucose, <40 mg/dl). Unadmitted patients were classified as UM. For the two African children
sites, SM was defined as hospitalization with any of the following presentations: coma (Blantyre coma
score, =2), severe anemia (Hb, <5 g/dl), and lactic acidosis (plasma lactate, >5 mmol/liter) as published
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previously (33, 34). Pediatric patients with respiratory distress were classified if any of the following
variables was present: deep breathing, grunting, nasal flaring, chest indrawing, and chest retractions (for
BLZ) or Kussmaul breathing and being X-ray positive (for TZ).

qRT-PCR measurement of var transcription profiles. All participants had quantitative reverse
transcription-PCR (qRT-PCR)-based var transcript profiling performed as previously described (33). Briefly,
TRIzol reagent was used to extract RNA from parasitized red blood cells, and cDNA was synthesized. The
var primer threshold cycle (C;) values were quantified by qRT-PCR using a panel of degenerate primers
designed to identify known var domain subclasses. Levels of var expression were normalized relative to
the housekeeping gene primers adenylosuccinate lyase and seryl-tRNA synthetase (GMC) and aldolase
and seryltRNA synthetase (TZ and BLZ): AC; 4 primer = C7 var primer = MEAN Co ousekeeping primers:
Low-abundance transcripts with a AC; of >5 were set to 5. Samples where housekeeping primers
showed a mean C; of = 25 (TZ) or >30 (BLZ and GMC) were excluded from further analysis. For all
subsequent analyses, var expression was represented as transcript units [T, = 2 ~ 24¢7], where a T, value
of 1 represents a 0 level of expression.

PfHRP2 plasma quantification. PfHRP2 quantification was performed as previously described (34,
37). Briefly, BLZ samples were analyzed by a commercial kit (Cellabs, Brookvale, Australia) and for the
Goan samples (GMC), a double-site sandwich enzyme-linked immunosorbent assay (ELISA) was per-
formed. The standard curve for Goan samples was established using purified PfHRP2 protein (kindly
donated by David Sullivan, Johns Hopkins Bloomberg School of Public Health).

Statistical and machine learning analysis. All statistical and machine learning analysis was carried
out using the R language for statistical computing (54). All primer expression and distribution plots were
created using the R ggplot2 library (55).

(i) Clustering and distribution analysis. Primer-primer correlation coefficients were calculated as
Spearman’s rho (p), and hierarchical clustering was performed using the R hclust function. Significant
differences in primer distribution between sites were evaluated using the Kolmogorov-Smirnov test,
using the R ks.test function, and P values were adjusted for multiple testing using the Holm
approach.

(ii) Machine learning modeling and significance testing. Machine learning models were used to
assess the ability of var transcript profiles to classify subjects as SM or UM or to distinguish specific SM
severity criteria. RF models were trained to distinguish SM from UM in all three sites using the R
randomForest package (56). Missing primer T, values were set to be equal to 1 (indicating primer
expression below the limit of detection). To avoid bias due to overfitting, unbiased model predictive
performance was evaluated based on the consensus RF out-of-bag (OOB) predictions generated during
model training. Receiver operating characteristic (ROC) curves were constructed based on the OOB
predictions. Strength of predictive performance was measured as area under the ROC curve (AUCQ). This
takes the form of a number between 0 and 1, where 0.5 represents random performance and 1
represents perfect classification. The R pROC (57) package was used to estimate 95% confidence intervals
(ClIs) around the AUC. Models were considered significant when the lower 95% Cl was over 0.5 (i.e., the
entire 95% confidence interval of the AUC was in the “better than random” area of the ROC curve).
P values for ROC curves were calculated by fitting two logistic regression models—one of the form
class ~ signature_score and the other of the form class ~1—and comparing them with the R
anova.glm(test="Chisq") function. Sensitivities, specificities, and odds ratios were calculated from con-
fusion matrices of binary predictions made at the optimal point on the ROC curve, defined as the point
that minimized the Euclidean distance to a sensitivity and specificity of 1.

To estimate the contribution of individual var subtypes to model performance, the mean decrease
in classifier accuracy (MDCA) was used. This statistic is calculated during the resampling training
procedure of the RF model and is the percentage of decrease in accuracy in random data subsamples
that contain the var subtype versus those that do not. Significance of model var domain subtypes was
calculated using the mProbes algorithm (58), which compares model subtypes to randomly shuffled
subtypes to calculate a family-wise error rate (FWER).

Creation of summarized var primer sets. Sets of var domain subtypes (var sets) that combine
related information, such as a common binding phenotype (e.g., EPCR or CD36), gene group (e.g., group
A, B, or C), domain organization (C-terminal DBL or C-terminal CIDR), or part of a tandemly arrayed
domain combination (e.g., DC8/DC13) were developed (Table S5) and applied to summarize the var
transcript levels. The summed var transcript abundance (var set) was calculated by summing the
reported T, values for each var domain subtype per sample and subtracting 1 for each additional primer
beyond the first. This was done to ensure that the set’s summarized T, value was equal to 1 if no
expression was observed for any var domain subtypes in a particular sample. Machine learning and
importance estimates were created for the summarized features, as described above.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.00217-19.

FIG S1, EPS file, 2.3 MB.

FIG S2, EPS file, 8.1 MB.

TABLE S1, PDF file, 0.1 MB.

TABLE S2, PDF file, 0.1 MB.

TABLE S3, PDF file, 0.1 MB.
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