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SUMMARY

Bipolar disorder (BD) is a chronic and severe mental disorder with recurrent episodes of

mania and depression. In addition to neuronal alterations, accumulating evidences have

revealed the importance of glial system in pathophysiology and phenotype of the illness.

Postmortem studies have repeatedly demonstrated the alterations in glial cells and its func-

tions in patients with BD. The activated microglia and inflammatory cytokines are proposed

to be the potential biomarkers that may help to predict disease exacerbation in BD. On the

other hand, anti-BD drugs have been shown to produce profound effects on glial activity,

which not only contributes to the therapeutic efficacy, but may also provide a potential tar-

get for the drug development of BD. We will focus on the recent development of glial abnor-

malities and potential therapeutic benefits targeted to glial modulation in BD.

Introduction

Bipolar disorder (BD) is a devastated psychiatric disorder, and the

etiology of BD remains largely unknown. It is generally believed

that the complex interactions between genes and environment

attribute to the pathogenesis of the disease [1–3]. Although the

abnormal neurotransmission, particularly serotonin system disor-

der, is traditionally attributed to the mechanism of BD, recent

information indicates that, in addition to neuronal system, glial

activity also contributes to the BD pathology and the therapeutic

response of anti-BD drug therapy.

Astrocyte, microglia, and oligodendroglia are family of glial sys-

tem in the central nervous system. Astrocyte is the large stellate

cell, and its roles are far beyond the traditionally recognized sup-

porting function to neurons. Microglia is specialized macrophage,

and oligodendroglia serves as neuronal satellite in gray matter and

involves in myelin sheath formation in white matter. Homeosta-

sis, support, and protection of neurons are largely dependent on

glial cells in the brain. The importance of glial activity in the path-

ophysiology of neurodegenerative disorders, psychosis, and stoke

is well documented [4–10]. Recently, accumulating evidences

suggest a potential involvement of glial cells in the pathogenesis

and pathophysiology. The postmortem studies of BD revealed glial

cells were decreased significantly in the subgenual prefrontal cor-

tex, particularly in patients with familial BD [11]. Furthermore,

transcripts of astrocyte-specific glial fibrillary acidic protein

(GFAP) in the anterior cingulate cortex were reported to decrease

significantly in white matter in patients with BD [12]. The

decreased expression in frontal cortical GFAP was further con-

firmed later [13]. In addition to the changes in astrocytes, microg-

lial activation, and oligodendrocyte dysfunction in the

pathological development of BD, we will focus on the BD-specific

glial pathology and potential therapeutic role for modulating glial

activity in the illness.

Glial Pathology in Bipolar disorder

Microglia Activation in BD

Microglia is a resident macrophage of the brain, which is activated

in response to changes in environment such as stress and insult by

regulating cytokine production, neuronal plasticity, and neuro-

transmission [14,15]. Upon activation, microglia can produce

either neurotoxic or neuroprotective effects depending on the

polarization status. M1 polarization enables microglia to produce

proinflammatory cytokines such as TNF-a and IL-1b, which

potentially could injure neurons, whereas M2 polarization can

increase the production of neurotrophic factors and antiinflamma-

tory factors that are beneficial for the repairing of damaged neuro-

nal tissues [14–16]. Accumulating evidences indicate that some of
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the cytokines such as TNF, IL-1, IL-2, and IL-6 are significantly

changed in patients with BD [15–21]. The serum TNF-a level is

higher in acute episodes of the illness, which is responsive to the

anti-BD drug treatment [21]. Although the precise role of inflam-

matory response in the pathophysiology of the BD remains largely

unknown, it was proposed that activated microglia may serve as a

possible biomarker for predicting disease exacerbation and as a

measure of pharmacological response in BD therapy.

Alteration of Serum S100B in BD

S100B, a protein produced by astrocyte and oligodendrocyte, can

bind to calcium and modulate various cellular responses along

with the calcium signal transduction pathway [22]. It regulates

intracellular signal transduction that is related to energy metabo-

lism, cell-to-cell communication, and cell growth [23]. The

genetic variability within the S100B gene indicated that it may be

a susceptibility gene for BD [24]. It was reported that decreased

S100B immunopositive astrocytes and oligodendrocytes were

found in CA1 area of hippocampus in patients with BD [25].

S100B protein can be easily measured in human serum, which

renders it may be a valuable index for glial activation in response

to various conditions. In fact, elevated serum S100B is a common

finding in neuropsychiatric disorders, such as schizophrenia and

major depression [26]. Early study showed that serum S100B was

elevated in patient with first manic episodes [27]. This finding was

confirmed by other studies in both depressive and manic episodes

of the disease, and moreover, lithium treatment could effectively

reverse the levels of S100B [28,29]. These clinical observations

were also confirmed in experimental study using ouabain-induced

rat model of mania [30]. However, a very recent follow-up study

reveals some dynamic changes in S100B in bipolar offspring: nor-

mal during adolescence but increased during adulthood. These

changes are independent of psychopathologic state of the off-

spring. This is interesting, and it may implicate that S100B may

not have predictive value for the BD [31].

Oligodendrocyte Dysfunction in BD

Oligodendroglias are known to serve as neuronal satellites in

gray matter and form myelin sheaths in white matter. Myelin

provides the structure importance for rapid impulse conduc-

tion in the nerve system. Decreased gray matter volume in

BD and schizophrenia has been repeatedly reported [32]. A

further study reveals the linear correlation between decreased

gray matter volume in the dorsolateral frontal cortex and

number of manic episodes of BD [33]. In addition, a signifi-

cant alteration in white matter was also found in BD [34].

BD-associated deficits of oligodendrocyte/myelin gene expres-

sion by microarray and quantitative real-time PCR studies

found that many genes, including PLP1, MBP, and CLDN11,

were downregulated in postmortem frontal cortices of patients

with BD [35]. Decreased number of oligodendrocytes has also

been observed in BD using optical dissector method [36].

Moreover, electron microscopic study revealed ultrastructural

signs of apoptosis and necrosis of oligodendrocytes in the pre-

frontal cortex and the caudate nucleus of patients with BD

[37]. ErbB, an important molecule in regulating the structure

and functions of oligodendrocytes, is genetically linked to

neuropsychiatric disorders including schizophrenia and BD.

Loss of ErbB signaling in oligodendrocytes results in the

decreased myelin thickness and slower conduction velocity in

brain axons, which is a potential mechanism for BD [38].

Thus, it is conceivable that decreased oligodendrocytes and

gray matter volume will lead to atrophy of neurons that will

ultimately change the prefrontal network function, giving the

importance of the brain area in the modulation of emotion

and cognition [39].

Potential Medication Target of Glial Cells
in BD Therapy

Lithium (Li+), valproic acid (VPA), and carbamazepine (CBZ) are

the three classical antibipolar disease drugs. As a mood stabilizer,

Li+ has been used to treat BD for more than 60 years [40]. The

molecular mechanism of mood stabilizer such as lithium is sug-

gested to associate with alteration in inositol phosphate/phospho-

lipid signaling and glycogen synthase kinase-3b (GSK-3b),
although other pathways may be also involved [41,42]. Given the

important roles of glial system in the regulation of neurotransmitters,

synaptic efficacy, blood–brain barrier, and trophic support of neurons

in normal brain functions and in pathophysiology in BD as described

above [43], increased attention has been paid to the effects of those

mood stabilizers on glial systems and to explore the potential

approach targeted to glial therapy for BD. It seems that antibipolar

drugs elicit broad spectrum of effects on glial functions that may, in

turn, contribute to the therapeuticmechanism of drugs.

Inhibition of Astrocytic Glycogen Synthesis and
Promotion of Intracellular Alkalinization

Glycogen in the adult brain is largely stored in the nonneuronal

cells, particularly astrocytes, and actively metabolized and used as

a store of energy resource for the demands of neurons [44]. Treat-

ment of primary astrocytes, with 1 mM lithium, markedly

reduced the steady state of glycogen content, which is attributed

to the inhibition of phosphoglucomutase (PGM) and dephosphor-

ylation of glycogen synthase [45]. Altered PGM activity is also

reported in BD patients with lithium treatment. Interestingly, the

peripheral PGM expression in leukocytes or erythrocytes of

patients with BD in response to lithium treatment was not altered,

which could be the result of compensatory response as suggested

by Csutora et al. [46].

Clinical studies with MRS revealed a change in cerebral pH in

patients with BD [47,48]. Chronic antibipolar drug treatment can

cause progressive intracellular alkalinization in astrocytes. Intra-

cellular alkalinization inhibits myo-inositol uptake and leads to

the suppression in inositolphosphate/phospholipid signaling. It

seems that antibipolar drugs elicit intracellular alkalinization in

astrocytes through distinct mechanism. Chronic treatment of lith-

ium increases astrocytic pH value by stimulating Na+/H+ exchan-

ger (NHE). The alkalosis is a gradually developing process, and

thus, the substantial decrease in cellular myo-inositol content

may require a relatively long time, which is in line with the

delayed therapeutic response for antibipolar drug treatment [49].
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Chronic treatment to astrocytes with therapeutically relevant con-

centrations of either CBZ or VPA also increased pH value [50].

This alkalinization is associated with the increased activity of

NBCe1, a subtype of Na+/HCO3
� cotransporters (NBCe) and the

major acid-extruding HCO3
�-dependent transporter in glial cells.

Astrocytic alkalinization not only inhibits inositolphosphate/phos-

pholipid signaling and intracellular Ca2+, but also upregulates the

expression of Ca2+-dependent phospholipase A2 [51]. It is believed

that intracellular alkalinization in astrocytes is one common ther-

apeutic mechanism of the three antibipolar drugs.

Modulating the Production of Astrocytic
Neurotrophic and Neuroprotective Effects

Brain-derived neurotrophic factor (BDNF) is widely expressed in

the adult brain and plays an important role in neurogenesis and

neuroplasticity. Decreased serum BDNF was reported in both

the manic and depressive phases of patients with BD [52,53].

Conversely, another report revealed increased serum BDNF in

the bipolar manic state [54]. Thus, alterations of BDNF in the

peripheral blood of patients with BD are not always consistent

and may depend on the state or the phenotype of the illness. A

recent study demonstrated that VPA, but not lithium treatment,

enhanced glial cell-derived neurotrophic factor (GDNF) and

BDNF expression in astrocytes via modulating the activities of

histone modifications and/or transcription factors [55]. The roles

of antibipolar drug-regulated production of neurotrophic factors

and its potential contribution to the drug efficacy remain to be

fully elucidated.

Tissue plasminogen activator (tPA) is expressed in several

regions of brain and plays regulatory roles such as neurite out-

growth and synaptic plasticity. tPA is regulated by plasminogen

activator inhibitor-1 (PAI-1), the endogenous inhibitor of tPA. Bind-

ing of PAI-1 to tPA terminates tPA enzymatic activity. It is interesting

to note that VPA treatment down-regulated PAI-1 activity and thus

led to enhanced tPA activity in astrocyte [56]. The regulatory effects

of anti-BD drugs on PAI-1/tPA are still not fully explored. How the

drug-regulated tPA/PAI-1 activity in astrocyte contributes to the

drug’s therapeutic effect of BD isworth further study.

Regulation of Astrocytic FEZ1 Expression

The microarray study has found that treatment of respective anti-

BD drugs such as lithium, VPA, CBZ, and lamotrigine differen-

tially altered the expression pattern of genes, while fasciculation

and elongation protein zeta 1 (FEZ1) in human astrocyte-derived

cells is the only gene induced by all four mood stabilizers [57].

FEZ1 protein was expressed in the cytoplasm of both transformed

and primary astrocytes, as well as in neuronal cells. FEZ1 is

involved in the extension and maintenance of astrocytes pro-

cesses, mitochondrial functions, and the development and main-

tenance of structural formations. In addition, FEZ1 has been

reported to play an important role in the establishment of neuro-

nal polarity by controlling the axonal transport [58,59]. Mito-

chondrial dysfunction in BD is well recognized [60,61], and

antibipolar drugs modulate the FEZ1 expression and improve

mitochondrial function, which may provide a potential therapeu-

tic benefit for BD.

Regulation of Synaptic Activity and Neuronal
Excitability via Astrocyte

Kainate receptors are widely distributed in the central nervous

system both in neurons and astrocytes, and actively involved in

the regulation of synaptic activity [62]. Chronic treatment with

antibipolar drugs such as carbamazepine, valproic acid, or Li+

selectively suppressed mRNA and protein expression of GluK2 in

astrocytes, but not in neurons [63]. GluK2 activation increases

intracellular Ca2+ in astrocyte, thereby promotes Ca2+-dependent

release of “gliotransmitters”, such as glutamate and ATP [64,65], and

consequently enhances the efficacy of glutamatergic synaptic activity.

Thus, downregulation of GluK2 expression in astrocytes by antibipolar

drug treatment may provide a potential mechanism for drug’s effects

[66]. The selective effect of antibipolar drugs on astrocytic expression of

GluK2may also suggest a potential target for anti-BD drug discovery.

VPA is able to modulate the synaptic excitatory/inhibitory (E/I)

balance. It is known that cell adhesion molecules (CAMs) and

extracellularmatrices (ECMs) are involved in the formation andmatu-

ration of synapses and the synaptic E/I balance [67,68]. VPA has been

found to increase the mRNA levels of two excitatory postsynaptic

CAMs (neuroligin-1 and neuregulin-1) and ECMs (neuronal pentrax-

in-1 and thrombospondin-3) in primary rat astrocyte cultures, but not

in neurons, in a time- and concentration-dependentmanner [69].

Na+, K+-ATPase is a membrane-bound enzyme enriched in both

neuron and astrocyte and is important for neuronal excitability

[70]. This enzyme is involved in the regulation neuronal electro-

chemical gradients by active exchange of Na+ and K+. Lowered

brain Na+, K+-ATPase density was found in patients with BD [71].

Chronic administration of lithium or carbamazepine tomice altered

mRNA expression of the Na+, K+-ATPase (especially a2 and b1) in both

neurons and astrocytes, and increased Na+, K+-ATPase activity [72].

Whereas acute carbamazepine or lithium treatment has no effects to

Na+, K+-ATPase activity [73], which is in agreement with the time lag

of effectiveness for antibipolar drug therapy.

Taken together, antibipolar drugs modulate synaptic activity

and neuronal excitability through multiple mechanisms, which

include GluK2 expression, synaptic E/I balance, and Na+, K+-AT-

Pase activity.

Conclusions

Mounting evidences support the phenomenon of glial abnormali-

ties in bipolar disorder. It appears that structural or functional

alterations for three main types of glial cells including microglia,

astrocyte, and oligodendrocyte contribute to the pathophysiology

in BD. The pharmacological mechanisms for antibipolar treatment

are concerned with the regulation of glial functions. No doubt,

these progresses will contribute to our understanding in the path-

ophysiology of BD. Given the importance of glial abnormalities in

bipolar disorder, glial cells may pave a potential pathway for

future BD drug discovery.
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