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Summary:

Modern biomedical studies have yielded abundant survival data with high-throughput predictors. 

Variable screening is a crucial first step in analyzing such data, for the purpose of identifying 

predictive biomarkers, understanding biological mechanisms and making accurate predictions. To 

nonparametrically quantify the relevance of each candidate variable to the survival outcome, we 

propose integrated powered density (IPOD), which compares the differences in the covariate-

stratified distribution functions. The proposed new class of statistics, with a flexible weighting 

scheme, is general and includes the Kolmogorov statistic as a special case. Moreover, the method 

does not rely on rigid regression model assumptions and can be easily implemented. We show that 

our method possesses sure screening properties, and confirm the utility of the proposal with 

extensive simulation studies. We apply the method to analyze a multiple myeloma study on 

detecting gene signatures for cancer patients’ survival.
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1. Introduction

As a key aspect of scientific discovery is to identify low-dimensional presentations of 

predictive features in a high-dimensional space, there is an urgent need to develop a fast but 
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crude method to screen relevant variables, and ensure that the unselected variables are 

indeed irrelevant (Fan and Lv, 2008). In the context of integrative analysis, screening steps 

are crucial in simultaneously reducing dimensionality and ensuring estimation accuracy (Fan 

and Lv, 2010). More broadly, screening has found wide applications, ranging from quality 

control in the data processing step for genome/genetic studies (Beyene et al., 2009), to 

identifying predictive biomarkers for understanding biological mechanisms (Heinzel et al., 

2014). This paper is motivated by a clinical study (Shaughnessy et al., 2007) on multiple 

myeloma, the second-most common hematological cancer, which often results in bone 

lesions, immunological disorders, and renal failure. A deeper understanding of the molecular 

etiology of this disease, such as through detecting the gene signatures that are relevant to 

cancer patients’ survival, would lead to novel therapeutic targets and more accurate risk 

classification systems (Mulligan et al., 2007). However, with expression level measurements 

on more than 50,000 probe sets, this dataset presents substantial challenges that defy the 

existing statistical tools for dimension reduction.

While screening approaches, including sure independence screening (Fan and Lv, 2008), 

have been actively pursued for fully observed outcomes, the development of high 

dimensional screening tools with survival outcomes has been less fruitful. Limited works 

include a sure screening procedure for Cox’s proportional hazards model (Fan et al., 2010), 

a Cox univariate shrinkage estimator (Tibshirani, 2009), a marginal maximum partial 

likelihood estimator (Zhao and Li, 2012), a general class of single-index hazard rate models 

(Gorst-Rasmussen and Scheike, 2013), and a conditional screening with prior information 

(Hong et al., 2016). As successful as these methods have been, their validity often hinges 

upon modeling assumptions between outcomes and predictors (Lin and Halabi, 2013), 

violations of which can lead to inflated false discoveries or non-discoveries.

There has been a surge of effort in developing model-free screening procedures that achieve 

sure screening properties under weak conditions; see Zhu et al. (2011), Li et al. (2012), Liu 

et al. (2014), Mai and Zou (2015), Li et al. (2012) and Shao and Zhang (2014). However, the 

extension of these nonparametric works to accommodate censored outcome data is elusive 

and nontrivial. Limited works include a quantile adaptive method (He et al., 2013) and a 

censored rank independence screening method (Song et al., 2014), and a survival impact 

index procedure (Li et al., 2016).

In a survival setting, nonparametric variable screeners have focused on discerning how each 

candidate variable influences overall survival functions. Studying the variability of survival 

functions for strata defined by each variable is one possible way. We note that such survival 

differences may occur either during the early or late period in the follow-up due to disease-

related characteristics. Therefore, screening approaches that rely on a single screening 

criterion may not be able to capture the complex difference patterns and may lead to false 

non-discovery.

Our paper proposes a model-free method for screening ultrahigh dimensional predictors 

when the outcome is randomly right censored. We propose an integrated powered density 

(IPOD) criterion to screen predictors that are relevant to the survival outcome. With an 

embedded weighting scheme, IPOD flexibly compares the differences in covariate-stratified 
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distribution functions that occur at various time points. The proposed framework is general, 

including the Kolmogorov filter (Mai and Zou, 2015) as a special case.

Compared to the other screening methods, our work presents several novel contributions. 

First, we have introduced a general nonparametric screening framework to accommodate 

survival outcomes and provided a convenient means to select ultrahigh dimensional 

predictors of mixed types, discrete or continuous. Second, by embedding our screening 

criteria in a new class of statistics, our method provides more flexibility and power in 

efficiently selecting signals out of ultrahigh dimenionsal predictors. We have established 

sure screening properties, and conducted simulations to validate the method.

The remainder is organized as follows. In Section 2, we introduce the concept of integrated 

powered density and propose a model-free screening procedure to screen covariates of 

different types (e.g. discrete or continuous). We present in Section 3 the sure screening 

property. In Section 4, we evaluate the finite-sample performance via simulation studies. In 

Section 5, we apply the method to analyze a multiple myeloma study and identify gene 

signatures that are relevant to patients’ survival. We conclude with some final remarks in 

Section 6. Technical details are deferred to the Supplementary Web Materials.

2. Integrated Powered Density (IPOD) for Survival Outcomes

Suppose we have n observations with p covariates, where p ≫ n. Denote by Xij the jth 

covariate for subject i, and write Xi = (Xi1, …,Xip)T. Let Ti be the underlying survival time 

and Ci be the potential censoring time. We observe Yi = min{Ti, Ci} and δi = I (Ti ⩽ Ci), 

where I(·) is the indicator function. We assume that Ti and Ci are independent given Xi, and 

(Yi, δi, Xi) are independently and identically distributed (i.i.d). In particular, we assume (Ti, 

Xij), i = 1, …,n, are i.i.d copies of (T, Xj), the random variables that underlie the survival 

time and covariates. To ensure the estimability of the survival function, we assume that there 

exists a τ > 0 such that P(Yi > τ|Xi)> 0 and restrict our analysis to [0, τ], a common practice 

in survival analysis (Zeng and Lin, 2007). In practice, τ is often chosen to be the study 

duration.

Denote by S(·) the marginal survival function of T and by S(t|X) the conditional survival 

function of T given X. To facilitate the selection of covariates that are relevant to T, we 

define the set of active covariates as

ℳ = j : S(t X) functionally depends on X j for some t ∈ (0, ∞) .

In biomedical studies, it is not unreasonable to stipulate a sparsity condition that only a 

small number of biomarkers are relevant to the disease-specific survival. That is, the 

cardinality of ℳ is small relative to p. Our goal is to identify ℳ. As the candidate variables 

can be of mixed types, we start by considering a categorical variable, say, Xj, with Rj 

categories such that Xj ∈ {1, 2, …,Rj}. Later we will extend the method to cover continuous 

covariates.
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For a generic density function corresponding to a (continuous) survival time, denoted by f(·), 

and for t ∈ (0, ∞), we define the integrated powered density (IPOD) as ∫ 0
t f γ(s)ds, for γ > 0. 

IPOD resembles the cumulative density function (CDF) and satisfies the basic properties of 

CDFs, except that it does not necessarily approach to one when t → ∞. This unique 

property is advantageous for using IPOD to detect distributional differences, as exemplified 

in Figure 1.

When γ = 1, IPOD is a CDF. When γ ≠ 1, IPOD is closely related to the Renyi entropy with 

a power index γ (Cover and Thomas, 2012). To study the relevance of covariate Xj to the 

survival time T, we propose to characterize the variability of IPOD across different 

categories of Xj. Specifically, for each pair of categories, say, Xj = r1 and Xj = r2 (r1, r2 ∈ {1, 

…,Rj}), we compute the absolute difference of IPOD, take the maximum over all pairs of r1, 

r2 and use it as the screening criterion:

ℐ j
(γ) = max

r1, r2 ∈ 1, …, R j

sup
t ∈ 0, τ

∫
0

t
f

T X j

γ s X j = r1 ds − ∫
0

t
f

T X j

γ s X j = r2 ds , (1)

where fT|Xj(s|Xj = r) denotes the conditional density function of T given Xj = r. The 

rationale is that ℐ j
(γ) = 0 implies T and Xj are independent and so does the converse. Hence, 

an estimated ℐ j
(γ) empirically gauges the relevance of Xj to T. When γ = 1, (1) is simply the 

classical Kolmogorov difference, 

max
r1, r2 ∈ 1, …, R j

supt ∈ [0, τ] FT | X j
t | X j = r1 − F

T X j
t | X j = r2 . However, the added 

power index γ in (1) may inflate early (γ > 1) or late differences (γ < 1) and thus gives more 

flexibility to detect the distributional differences. For example, Figure 1 illustrates that IPOD 

with γ = 0.5 amplifies the late differences in CDF (corresponding to γ = 1), which 

exemplifies the possible role of γ in differentiating distributions.

This leads to a natural question of which γ should be chosen in analysis. For unbiased 

analysis, it is not reasonable to look at the survival curves first, and then choose weights. 

However, prior medical knowledge might guide the choice of γ. For example, late 

differences are more likely to occur in childhood cancers (National Cancer Policy Board, 

2003), while early treatment differences are more prominent in late stage lung cancer 

remission (Fossella et al., 2000).

2.1 Estimation of IPOD

To estimate (1) for a given γ > 0, we need to first reliably estimate the density of the survival 

time. We adopt a kernel type density estimation. We illustrate the idea by estimating the 

marginal density of T.
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Denote by 0 ≡ t0 < t1 < t2 < ⋯ < tM the ordered observed failure times in the data, and by 

ST(t) the Kaplan-Meier estimate of ST(t), the marginal survival function of T at time t. Then 

the estimated kernel density function for T is

f T(t) = − ∫ K t − s
hn

dST(s) = ∑
i = 1

M
K

t − ti
hn

ST ti − 1 − ST ti ,

where hn > 0 is the bandwidth and K(·) is a kernel function.

Similarly, restricting samples to Xj = r, we can compute f T | X j
t | X j = r , the estimate of the 

conditional density function given Xj = r. Thus, (1) can be estimated by

ℐ j
(γ) = max

r1, r2
sup

t ∈ [0, τ] ∫0

t
f

T X j

γ s X j = r1 ds − ∫
0

t
f

T X j

γ s X j = r2 ds . (2)

When Xj is continuous, without loss of generality, we assume the support of Xj is the real 

line ℝ. We can discretize Xj into Rj slices by using the percentiles of the empirical 

distribution of Xj. That is, X j = r if X j ∈ q j(r − 1), q j(r) , where q j(r) is the r/Rjth percentile of 

the empirical distribution of Xj. For notational convenience, we set q j(0) = − ∞ and 

q
j R j

= ∞. We then replace Xj by its discretized version X j in (2) and compute the 

corresponding IPOD statistic, which sheds light on the dependence between T and Xj, even 

when the latter is continuous. As Mai and Zou (2015) noted, discretization could be more 

preferable than using the continuous version, not only for computational convenience but 

also for added discriminative power. Moreover, without discretization, the criterion (2) 

requires the calculation of the pairwise-difference of the conditional density functions for all 

distinct Xj values, which is computationally intensive even for low-dimensional covariates, 

let alone for the ultrahigh dimensional settings.

Finally, we use the following criterion to select active variables

ℳ1 = j:ℐ j
(γ) > cn−v, j = 1, …, p ,

where c > 0 is a pre-specified constant, and term the procedure as the IPOD screening.

When Xj is continuous with infinitely many possible values, the slicing scheme may be 

driven by the consideration of retaining enough samples within each slice to control the 

estimation variance. Mai and Zou (2015) noted that the choice of slices does not affect 

variable screening results much, but fusion can achieve significant improvement. We 

consider a fusion-based IPOD screening as follows. Suppose there are N different ways of 

slicing Xj, denoted by Λju, u = 1, …,N, with each slicing Λju containing RjU intervals. 
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Specifically, Λ ju = q ju(r − 1), q ju(r) :r = 1, …R ju,  and  ∪r = 1
R ju q ju(r − 1), q ju(r) = ℝ , where 

the slicing point q ju(r) is the r/Rjuth percentile of the empirical distribution of Xj under 

partition Λju. We then replace Xj by its discretized version X ju under Λju. That is, X ju = r if 

X j ∈ q ju(r − 1), q ju(r) . For example, we can take N = [log(n)] − 2, and Rju = u + 2,u = 1, 

…,N to ensure there are enough samples within each slice for all slicing schemes. Our 

numerical experiments suggest that at least 30 samples are needed within each slice for a 

reasonable estimate.

Let ℐ j, Λ ju
(γ)  be the IPOD screening statistic corresponding to the slicing scheme of Λju for 

covariate Xj such that 

ℐ j, Λ ju
(γ) = maxr1, r2

supt ∈ [0, τ] ∫ 0
t f

T X j

γ s | X ju = r1 ds − ∫ 0
t f

T X j

γ s | X ju = r2 ds . Then, the fused 

IPOD screening statistic ℐ j
(γ) is

ℐ j
(γ) = ∑

u = 1

N
ℐ j, Λ ju

(γ) ,

leading to the following screening criterion:

ℳ2 = j:  ℐ j
(γ) > cn−v, j = 1, …, p , (3)

where c > 0 is a constant. As our numerical experiment suggests that the fused method 

performs better than the single slicing-based, we opt to use (3) as the screening criterion in 

practice.

3. Sure Screening Properties

To establish the sure screening property, we need to set regularity conditions. First, we 

stipulate the conditions for when all the variables are categorical.

(C1) P(T > τ|Xj) > θ1 > 0 for 1 ⩽ j ⩽ p, where θ1 is a positive constant.

(C2) For any t ∈ [0, τ], fT|Xj (t|r) is greater than a positive constant c0, and has a bounded 

second order derivative for r ∈ 1, …, R j , j ∈ ℳ.

(C3) There exist c > 0 and 0 < v < 1/2 such that min j ∈ ℳ ℐ j
(γ) ⩾ 2cn−v for a specific γ.

(C4) K(·) is a symmetric probability density function defined on a bounded support with 

bounded variation VK < ∞ and bandwidth hn = O(n−μ), where μ > 0 is a constant.
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(C5) R = max1 ⩽ j ⩽ pR j = O nκ , where Rj is the number of categories for Xj (j = 1, …,p), κ 

⩾ 0, and 2v + 3κ + 2μ < 1.

Condition (C1) is imposed to avoid problems with estimating the tail of the conditional 

survival functions, which is common in survival analysis; see Dabrowska (1989). Conditions 

(C2) and (C4) are assumed for the kernel function involved in conditional density estimation 

of censored data, which are common in the nonparametric literature; see Lo et al. (1989) and 

Chen et al. (2015). Condition (C3) is typical in the feature screening literature; see 

Condition 3 in Fan and Lv (2008) and Ni and Fang (2016). Condition (C5) allows the 

number of the classes for covariates diverge with a specific order. A similar assumption was 

also made in Ni and Fang (2016).

Theorem 1: If all the covariates are categorical, under conditions (C1)–(C5), we have

P ℳ ⊂ ℳ1 ⩾ 1 − O p exp −b0n1 − 3κ − 2v − 2μ + κ log n ,

where b0 is a positive constant. Hence, if log p = O(nα) where 0 < α < 1 − 3κ − 2v − 2μ, 

IPOD has the sure screening property.

Corollary 1: Under the conditions of Theorem 1, and assuming ∑ j = 1
p ℐ j

(γ) = O nζ  for some 

ζ > 0, we have

P ℳ1 ⩽ O nζ + v ⩾ 1 − O p exp −b0n1 − 3κ − 2v − 2μ + κ log n .

If Xj is continuous, we replace condition (C5) by the following:

(C6) R = max1 ⩽ j ⩽ pR j = O nκ , where Rj is the number of slices for Xj. Moreover, there 

exist a positive constant c1 and 0 ⩽ ρ < 1/2 such that 2v + 3κ + 2μ + 2ρ < 1 and 

f X j
(x) ⩾ c1n−ρ for any 1 ⩽ j ⩽ p, where f X j

(x) is continuous and bounded from above on the 

support of Xj.

Theorem 2: When the covariates include both continuous and categorical types, under 
conditions (C1)–(C4) and (C6), we have

P ℳ ⊂ ℳ1 ⩾ 1 − O p exp −b1n1 − 3κ − 2v − 2μ − 2ρ + κ logn ,

where b1 is a positive constant. Hence, if log p = O(nα) and 0 < α < 1 − 3κ − 2v − 2μ − 2ρ, 

IPOD has the sure screening property.

Corollary 2: Under the conditions of Theorem 2 and assuming ∑ j = 1
p ℐ j

(γ) = O nζ  for some 

ζ > 0, we have

Hong et al. Page 7

Biometrics. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P ℳ1 ⩽ O nζ + v ⩾ 1 − O p exp −b1n1 − 3κ − 2v − 2μ − 2ρ + κ log n .

Let Λjuo be the partition using the theoretical quantiles qju(r), r = 0, …,Rju of Xj as the 

slicing points. Denote the true value of IPOD for the specific partition Λjuo by ℐ j, Λ juo
(γ)  and 

let ℐ jo
(γ) = ∑u = 1

N ℐ j, Λ juo
(γ) . The fused IPOD screening method needs some different regularity 

conditions:

(C7) There exist a c > 0 and 0 < v < 1/2 such that min j ∈ ℳ ℐ jo
(γ) ⩾ 2cn−v for a specific γ.

(C8) Let R = max1 ⩽ j ⩽ p, 1 ⩽ u ⩽ NR ju Rju and assume R = O(nκ). There exist a positive 

constant c3 and 0 ⩽ ρ < 1/2 such that 2v + 3κ + 2μ + 2ρ < 1, and f X j
(x) ⩾ c3n−ρ for any 1 ⩽ 

j ⩽ p and f X j
(x) is bounded from above and continuous with respect to x.

Theorem 3: When the covariates include both continuous and categorical types, under 
conditions (C1)–(C2), (C4) and (C7)-(C8), we have

P ℳ ⊂ ℳ2 ⩾ 1 − O N p exp −b2n1 − 3κ − 2v − 2μ − 2ρ + κ log n ,

where b2 is a positive constant. If N = O(log n) and log p = O(nα) where 0 < α < 1 − 3κ − 2v 

− 2μ − 2ρ, then the fused IPOD has the sure screening property.

Corollary 3: Under the conditions of Theorem 3 and assuming ∑ j = 1
p ℐ jo

(γ) = O nζ  for some 

ζ > 0, we have

P ℳ2 ⩽ O nζ + v ⩾ 1 − O N p exp −b2n1 − 3κ − 2v − 2μ − 2ρ + κ log n .

4. Simulation Studies

The finite sample performance of the proposed method was assessed by comparing it with 

the following methods that are often used for screening survival data.

• PSIS: the principled sure independence screening for Cox models by Zhao and 

Li (2012).

• CRIS: the censored rank independence screening proposed by Song et al. (2014).

• CS: the conditional screening for survival outcome by Hong et al. (2016).

• SII: the survival impact index by Li et al. (2016) with the uniform weight W(t, x) 

= 1.
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• IPOD (γ): the proposed screening with power index γ. Note that γ = 1 

corresponds to the Kolmogorov statistic.

Example 1. The survival time was generated from the proportional hazards model,

h(t |X) = 0.1 exp ∑
j = 1

p
β jI X j ∈ 2, 3 ,

where β = 0 . 55, 0p − 5
T T

. The covariates x* underlying these discrete variables were 

generated from a multivariate normal distribution with mean 0 and a covariance matrix Σ = 

(σjj′)p×p, where σjj = 1 and σjj′ = 0.5 for j ≠ j′. For each j, x j* was further quarterized by its 

quartile values: the obtained quarterly variable x j* is less than the lower quartile, 2 if between 

the lower quartile and the median, 3 if between the median and the upper quartile, and 4 

otherwise.

Example 2. The survival time was generated from the Cox model λ(t|X) = 2t(|X1| + |X2|), 

where all the covariates Xj ,j = 1, …,p, were generated from an independent standard normal 
distribution. In this case, the marginal correlation between each of the active variables, X1 

and X2, and the survival time is 0.

Example 3. The survival time was generated from log(t) = g1(X1)+g2(X2)+g3(X3)+g4(X4) + 

ϵ, where g1(x) = 5x, g2(x) = −4x(1−x), g3(x) = 10[exp{−3(x−1)2}+exp{−4(x−3)2}]−1.5, and 
g4(x) = 4sin(2πx). The vector of covariates X was generated from the multivariate normal 
distribution with mean 0 and a covariance matrix Σ = (σjj′)p×p, with σjj = 1 and σjj′ = ρ|j−j′| 

for j ≠ j′ and ϵ ~ N(0, 1) is independent of X. The censoring time C was generated from a 3-
component normal mixture distribution N(0, 4) − N(5, 1) + 0.5N(25, 1).

Example 4. The survival time was generated from log(t) = g1(X1) + g2(X2) + g3(X3) + 

g4(X4) + 0.3(X5 + X6 + X7 + X8 + X9 + X10) + ϵ, where all other conditions are the same as 
in Example 3.

In all examples, we used p = 1000 and n = 300 and 500. In Examples 1–2, the censoring 

times Ci were independently generated from a uniform distribution U[0, c], with c chosen to 

give approximately 20% and 50% of censoring proportions. Example 3 was adopted from Li 

et al. (2016). The censoring proportions of Examples 3–4 were set around 35%. In addition, 

we explored the simulation studies when the censoring times Ci were dependent on 

covariates; see Table S1 in the Supplementary Web Materials.

The bandwidth hn was chosen to be h0n−1/5 with h0 = 2 based on the exploratory analysis 

reported in Figure S1 in the Supplementary Web Materials; when covariate Xj was 

continuous, we took various slicings (3, …,⌈log(n)⌉) and reported the fused results.

As the conditional screening (Hong et al., 2016) requires prior information, we chose X1 as 

the conditioning variable for Examples 1–4. For each configuration, a total of 500 simulated 

datasets were generated. We considered the minimum model size (MMS) to ensure inclusion 

of the true model, the true positive rate (TPR), and the probability of including all active 
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variables (PIT) as metrics to compare the performance between different methods. To 

compute the TPR and PIT, we selected the first [n/log n] variables in relation to selection 

criteria. In general, smaller MMS and larger TPR and PIT indicate better performance of a 

method in efficiently discovering true signals.

Table 1 demonstrates that the proposed IPOD method worked well in a variety of set tings, 

with improving performance as the sample size increased. This is an appealing feature not 

necessarily shared by the competing methods. For IPOD, we investigated γ = 0.8, 1, 1.2, 

1.5, 1.7, but we only presented here the results of γ = 0.8, 1, 1.2 as they well represented the 

overall results. More results can be found in Figure S1 of the Supplementary Web Materials.

With active variables all being categorical as in Example 1, the results for all competing 

methods were poor since these methods were not originally developed for screening 

categorical variables. When the marginal correlations between the active variables and the 

survival time were 0 as in Examples 2, all the competing methods, including CS that even 

assumed one active variable was known, had difficulty recruiting active variables. In 

Example 3, where the active covariates have nonlinear relationships with the response 

variable, IPOD worked better than the other methods, especially when ρ was high. When the 

size of active variables was moderate as in Example 4, the performance was poor for all 

methods when the covariates were independent of each other, but was better with higher 

correlations among the covariates.

Finally, it is of interest to note that the “optimal” γ varied across examples. However, this 

optimal γ is rarely known in reality. Illustrated by a real example in the next section, we 

briefly discuss how to combine results from the IPOD with different γ’s.

5. An Application

We applied the proposed methods to analyze a multiple myeloma (MM) study (Shaughnessy 

et al., 2007), concerning the development and evaluation of a gene-based prognostic tool 

among 554 newly diagnosed MM patients treated on 2 separate but similar protocols, 

namely, total treatment 2 (TT2) and total treatment 3 (TT3). The former served as the 

training set (n1 = 340 patients), while the latter served as the validation set (n2= 2 1 4 

patients). The outcome for our investigation is event-free survival. Gene expressions on 

54,675 probe sets were measured for each subject using Affymetrix U133Plus2.0 

microarrays. Prior to analysis, we standardized the gene expressions.

For comparisons, we also applied the other competing methods, including PSIS, CRIS, SII 

and CS to screen genes that may be relevant to event-free survival. Based on our 

investigation in the simulation setup, we chose γ = 0.7, 1.0, 1.3, 1.5, 1.7 for our IPOD 

method. In addition, we also considered the overlapping genes selected by all these γ’s and 

termed the way of obtaining these genes as composite IPOD. We took the bandwidth to be 

2n1
−1/5. Since the gene expressions were continuous, we chose the combination of Λ = 3, 

…,⌈log(340)⌉ = 6 for slicing in the proposed IPOD. Moreover, as CS requires a pre-

specified conditioning set, we identified the candidates as the overlapping genes selected by 

composite IPOD, PSIS, SII, and CRIS. These were Probes 225834, 218595, 206332, 
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208965, and 208966. In our analysis, we used various subsets of these genes as the 

conditioning sets. We found that CS was sensitive to the choice, leading to quite variable 

predictive performance; see Table 3.

In a finite sample setting, there are no established ways to select v in (3). Instead, 

practitioners commonly use the screening statistic to rank variables and select the top 

variables. We used [n/ log(n)] as suggested by Fan and Lv (2008), which may have become a 

convention in the follow-up screening works; see Li et al. (2016), He et al. (2013), Gorst-

Rasmussen and Scheike (2013), and Zhao and Li (2012). To proceed, we first applied each 

screening method to the training data to reduce the dimension from p = 54, 675 to d = [n1/

log(n1)] = 58.

Table 2 shows the numbers of overlapping genes selected by different methods and reveals 

that IPOD with different γ’s ended up with various genes.

We next examined how variable screening helps predict the response variable by using 

random survival forest (Ishwaran et al., 2008), a nonparametric machine learning strategy 

for building a predictive survival model. We fitted a random survival forest model, based on 

a total of 1000 replicate trees by using the R package, namely, randomSurvivalForest 

(Ishwaran and Kogalur, 2007). In the interest of space, we reported the results of the 

composite IPOD method, for which the importance of each selected variable in the “forest” 

was shown in Figure 2.

To measure the prediction accuracy, we reported the C-index, which gauges the agreement 

between the observed and predicted responses. The average C-index based on 100 bootstrap 

replicates of the validation data is listed in Table 3.

Overall, IPOD performed better than or at least on par with the other competing methods, 

and the IPOD with a larger γ tends give better predictions for this particular dataset.

Finally, we highlight some biological insight offered by our method. Probe 222777 

(WHSC1), the most important gene as identified in Figure 2, has been found involved in the 

chromosomal translocation in multiple myeloma (Xie et al., 2013). Over-expression of 

Probe 221606 (HMGN5), the second on the list, has been linked to bladder cancer (Gan et 

al., 2015), prostate cancer (Guo et al., 2015) and breast cancer (Weng et al., 2015). On the 

other hand, neoplastic B-cell growth is regulated by gene TNIP1 (Probe 207196, the third 

gene of importance), whose dysfunction may cause multiple myeloma (Naji et al., 2012). 

Moreover, reduction or loss of IFI16 expression (Probe 208965, the fourth gene in the list) in 

cells is associated with the development of certain cancers, such as breast and prostate 

cancer (Choubey et al., 2008). Finally, CHML (Probe 226350, the last gene shown in Figure 

2) is able to induce apoptosis or programmed cancer cell death and suppress tumor cell 

growth in multiple tumor lines (Zhan et al., 2001).

6. Discussion

Motivated by a multiple myeloma genomic study, we introduced a new framework for 

variable screening based on IPOD. As the method is model-free, it can be applicable in a 
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variety of parametric, semiparametric, and nonparametric settings. In addition, it is 

theoretically justifiable, and computationally efficient. Using the proposed method, we 

identified a predictive gene signature model which was more accurate than the models 

obtained by using other screening methods.

Our work enlightens a few future directions. As our simulations revealed, the optimal γ may 

vary by the particular simulation configuration. Without knowing the true model in reality, it 

is challenging, conceptually and computationally, to identify an optimal γ, even in a data-

driven way. However, the established framework may lead to some systematic ways of 

combining the results from IPOD with various γ’s. For example, we are currently 

investigating the means of combining the results of L possible values of γ’s using the 

following composite screening statistics:

ℐ1 j = max1 ⩽ l ⩽ L ℐ j
γl , ℐ2 j = min

1 ⩽ l ≤ L
ℐ j

γl , ℐ3 j =
ℐ j

(γ) − ℐ2 j
ℐ1 j − ℐ2 j

,

where γl, l = 1, …,L. Each option has pros and cons. In ℐ1 j, covariates selected by any γl, l 

= 1, …,L are to be included in the final selected set. This method could guarantee recovery 

of the true active set to the greatest extent in theory, though at the cost of inflating false 

discoveries. In ℐ2 j, only the covariates which are selected by all γl, l = 1, …,L could be 

included in the final selected set. This method could guarantee exclusion of the unimportant 

covariates to the greatest extent. However, the rather restrictive criterion may lead to many 

false negatives, which may not be ideal for knowledge discovery at the exploratory phase. 

The third option ℐ3 j may be a compromise between these two extreme cases. Through 

rescaling to be a number between 0 and 1, it makes screening statistics across γ comparable. 

Comprehensively evaluating and studying all these proposals are currently undergoing and 

may be out of scope of this current paper. We expect to report the results elsewhere.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Integrated Powered Density: ∫ 0
t f γ(s | x)ds is shown for x = 1 (solid line) and x = 0 (dashed 

line) with γ = 1 and γ = 0.5, respectively. Here, f(s|x) is the density function corresponding 

to the crossing hazard function of λ(s|x) = 0.1 exp(−0.5x){s exp(−0.5x)−2}2, which is 

adapted from Zhang and Peng (2009). This figure appears in color in the electronic version 

of this article.
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Figure 2. 
The ranking of variable importance (vimp) among those selected by the composite IPOD 

method for the multiple myeloma training set.
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Table 1

Comparisons of competing methods with (n, p) = (300, 1000) and (n, p) = (500, 1000) in terms of the 

minimum model size to ensure inclusion of the true model (MMS) with interquartile range in parentheses, the 

true positive rate (TPR), and the probability of including all active variables (PIT)

Method MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

(n, p) = (300, 1000) (n, p) = (500, 1000) (n, p) = (300, 1000) (n, p) = (500, 1000)

Example 1 CR=20% CR=50%

IPOD (γ = .8) 201 (254) 0.63 0.11 59 (92) 0.91 0.60 298 (279) 0.50 0.02 115 (165) 0.82 0.38

IPOD (γ = 1) 161 (218) 0.70 0.16 41 (71) 0.94 0.71 254 (277) 0.57 0.06 182 (135) 0.87 0.49

IPOD (γ = 1.2) 159 (217) 0.71 0.17 38 (65) 0.94 0.73 234 (273) 0.59 0.08 72 (112) 0.89 0.56

PSIS 855 (211) 0.06 0.00 858 (217) 0.09 0.00 874 (91) 0.05 0.00 849 (198) 0.08 0.00

CRIS 919 (133) 0.03 0.00 921 (128) 0.04 0.00 913 (155) 0.03 0.00 914 (135) 0.04 0.00

CS 834 (245) 0.24 0.00 830 (230) 0.25 0.00 842 (218) 0.24 0.00 837 (219) 0.26 0.00

SII 258 (274) 0.51 0.02 82 (110) 0.86 0.49 327 (277) 0.41 0.01 136 (181) 0.75 0.28

Example 2 CR=20% CR=50%

IPOD (γ = .8) 2 (2) 0.99 0.99 2 (0) 1.00 1.00 5 (10) 0.94 0.89 2 (0) 1.00 1.00

IPOD (γ = 1) 2 (3) 0.99 0.99 2 (0) 1.00 1.00 4 (11) 0.94 0.89 2 (0) 1.00 1.00

IPOD (γ = 1.2) 2 (4) 0.99 0.99 2 (0) 1.00 1.00 5 (15) 0.95 0.90 2 (1) 1.00 1.00

PSIS 721 (330) 0.03 0.00 727 (349) 0.06 0.01 700 (392) 0.07 0.01 714 (371) 0.08 0.01

CRIS 738 (339) 0.04 0.00 707 (325) 0.07 0.01 732 (324) 0.06 0.00 706 (324) 0.06 0.00

CS 461 (532) 0.54 0.09 426 (502) 0.55 0.11 457 (571) 0.56 0.12 459 (557) 0.56 0.12

SII 19 (27) 0.90 0.84 3 (4) 1.00 1.00 67 (119) 0.63 0.43 11 (32) 0.95 0.92

Example 3 ρ = 0 ρ = 0.8

IPOD (γ = 0.8) 84 (173) 0.85 0.39 22 (51) 0.96 0.83 6 (10) 0.98 0.93 4 (0) 1.00 1.00

IPOD (γ = 1) 114 (226) 0.82 0.30 35 (84) 0.92 0.69 8 (19) 0.97 0.90 4 (1) 1.00 1.00

IPOD (γ = 1.2) 158 (280) 0.81 0.24 61 (132) 0.89 0.57 14 (36) 0.95 0.80 4 (3) 0.99 0.98

PSIS 560 (466) 0.61 0.03 539 (429) 0.67 0.03 330 (624) 0.50 0.17 206 (454) 0.66 0.36

CRIS 619 (415) 0.57 0.02 579 (505) 0.62 0.03 314 (591) 0.53 0.16 183 (384) 0.73 0.37

CS 703 (505) 0.55 0.03 659 (518) 0.62 0.04 886 (993) 0.74 0.38 27 (109) 0.92 0.69

SII 376 (405) 0.69 0.04 296 (330) 0.77 0.12 24 (82) 0.90 0.64 8 (14) 0.99 0.98

Example 4 ρ = 0 ρ = 0.8

IPOD (γ = 0.8) 867 (166) 0.38 0.00 863 (178) 0.47 0.00 57 (166) 0.89 0.49 13 (19) 0.99 0.90

IPOD (γ = 1) 876 (171) 0.37 0.00 872 (156) 0.45 0.00 96 (253) 0.84 0.36 22 (47) 0.97 0.81

IPOD (γ = 1.2) 881 (171) 0.36 0.00 868 (178) 0.43 0.00 155 (347) 0.78 0.23 44 (110) 0.94 0.64

PSIS 895 (162) 0.29 0.00 882 (182) 0.36 0.00 102 (267) 0.84 0.37 31 (80) 0.96 0.73

CRIS 925 (121) 0.25 0.00 926 (112) 0.28 0.00 111 (277) 0.82 0.32 24 (51) 0.97 0.80

CS 892 (150) 0.31 0.00 877 (167) 0.38 0.00 774 (305) 0.51 0.00 689 (366) 0.68 0.01

SII 870 (163) 0.31 0.00 874 (192) 0.38 0.00 33 (95) 0.92 0.58 12 (11) 0.99 0.93
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Table 2

Numbers of overlapping genes selected by different screening methods on the multiple myeloma training set

IPOD PSIS CRIS CS SII

γ = 0.7 γ = 1 γ = 1.3 γ = 1.5 γ = 1.7 Composite

IPOD

γ = 0.7 58

γ = 1 40 58

γ = 1.3 29 46 58

γ = 1.5 24 39 51 58

γ = 1.7 20 34 46 53 58

Composite 20 20 20 20 20 20

PSIS 18 23 20 17 16 10 58

CRIS 0 0 1 1 1 0 1 58

CS 1 1 10 10 8 7 6 18 5 58

SII 6 5 5 5 5 5 7 5 15 58
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Table 3

Comparisons of the C-index (standard errors) in the multiple myeloma validation set based on 100 bootstraps

IPOD

γ = .7 γ = 1 γ = 1.3 γ = 1.5 γ = 1.7 Composite

0.639 (0.003) 0.638 (0.003) 0.655 (0.003) 0.651 (0.003) 0.657 (0.003) 0.652 (0.003)

PSIS CRIS CS STT

0.620 (0.003) 0.602 (0.004) 0.641 (0.004) 0.638 (0.003)
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