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Abstract

Accurate and reliable prediction of clinical progression over time has the potential to improve the 

outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use 

(generalized) linear mixed-effect models (GLMM). However, linear parametric models are 

predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine 

learning methods can be applied to derive insight from the raw data without a priori assumptions. 

However, the underlying theory of most machine learning algorithms assume that the data is 

independent and identically distributed, making them inefficient for longitudinal supervised 

learning. In this study, we formulate an analytic framework, which integrates the random-effects 

structure of GLMM into non-linear machine learning models capable of exploiting temporal 

heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal 

data. We applied the derived mixed-effect machine learning (MEml) framework to predict 

longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well 

controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional 

GLMM, but substantially outperformed standard machine learning models that do not account for 

random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 

3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient 

boosted model respectively, with similar results for the other methods. To further demonstrate the 

general applicability of MEml, a series of experiments were performed using real publicly 

available and synthetic data sets for accuracy and robustness. These experiments reinforced the 

superiority of MEml over the other methods. Overall, results from this study highlight the 

importance of modeling random-effects in machine learning approaches based on longitudinal 

data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, 

and predicts change of a longitudinal clinical outcome in real-world clinical settings with high 

accuracy.
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1. Introduction

Data science has transformed nearly all sectors of the economy, driving rapid innovation, 

optimization, and growth. For predictive analytics in particular, increasing use of machine 

learning algorithms has enabled data-driven extraction of information from complex raw 

data rather than predefined, and often inadequate, a priori assumptions. Despite the potential 

for data science to improve the efficiencies of healthcare delivery, lower costs of care, and 

improve patient outcomes, healthcare has lagged behind other fields in adapting and 

implementing advanced analytic approaches. This is due, in part, to the complexity, 

heterogeneity, and longitudinal nature of most health-related data; and frequent inadequate 

quality, availability, and usability of clinical data. In addition, the underlying theory of most 

machine learning algorithms assume that the training data is independent and identically 

distributed (i.i.d). However, this assumption is frequently violated in real-world applications, 

where there are sub-groups of patient observations with multiple distinct repeated 

measurements exhibiting high degree correlations. Thus, without modifications, most 

machine learning algorithms are not directly applicable to non i.i.d data.

To overcome this limitation, we developed a novel machine learning framework for the 

analysis of complex longitudinal data and applied it to a challenging clinical question: which 

patients with currently controlled and stable type 2 diabetes (T2D) will experience 

deterioration of glycemic control in the future?

Maintaining glycemic control is important for reducing the risk of diabetes complications 

and measures of glycemic control (specifically, glycosylated hemoglobin [HbA1c]) are 
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subject to public reporting, pay-for-performance reimbursement, and quality of care 

benchmarking. For most adults with diabetes, optimal glycemic control is achieved if 

HbA1c is < 7.0%.[1, 2] Patients with uncontrolled diabetes often receive close monitoring 

and intervention aimed at improving their glycemic control.[1–3] However, patients with 

controlled diabetes who are nonetheless at risk for future deterioration would also benefit 

from early identification and preemptive management.[4, 5] Such efforts have been hindered 

by the seemingly homogenous difficulty of identifying high-risk individuals, who are 

usually a minority within a large and patient population.

Our proposed approach combines the structure of GLMM with advanced modeling 

capabilities of machine learning for efficient estimation of longitudinal outcomes. 

Specifically, we combine two regression tree methods for longitudinal data: the generalized 

mixed-effects regression trees (GMERT) structure proposed in [6] and the random-effects 

expectation maximization (RE-EM) tree structure proposed in [7] to alternatively estimate 

the fixedand random-effects components of a non-linear mixed-effect model (NLMM). This 

mixed-effect machine learning (MEml) approach allow us to incorporate random-effects into 

more accurate, robust and interpretable machine learning models for efficient analysis of 

longitudinal data.

For the main clinical application problem in this study, we evaluated MEml models by 

applying it to predict change in HbA1c measured one, two, three, and four encounters in the 

future using data for patients with controlled T2D from OptumLabs Data Warehouse 

(OLDW) These models relied on readily available clinical data: baseline patient 

characteristics (sex, race, comorbidities, geographic region), current HbA1c, and medication 

use.

To further demonstrate the general applicability of MEml, a series of experiments were 

performed using two public available longitudinal healthcare data sets and a synthetic 

clustered data set for accuracy and robustness with respect to correlation introduced by 

multiple repeated observations. Specifically, we applied MEml to predict: (1) longitudinal 

enlargement of the liver (hepatomegaly) using the Mayo Clinic primary cirrhosis (PBC) data 

set [8, 9]; (2) longitudinal increase in left ventricular mass index using the aortic valve 

replacement surgery data available from the R package joineR [10]; and (3) lung cancer 

remission using a synthetic three level clustered data.[11].

2. Materials and Methods

2.1. Notations

In longitudinal studies, patients are observed multiple times at varying time intervals, 

typically with different information about patient characteristics, exposures, and outcomes 

collected at each time point. For each time t and patient i, we observe a p dimensional vector 

xit of fixed-effect covariates (e.g. age, gender, race, etc.), a q dimensional vector zit of 

random-effect covariates (i.e. subject-varying effects), and a response variable yit. The 

covariates may be constant or varying over time and/or across patients. While this study 

focuses on binary outcomes, the presented methods can be directly extended to other 

outcome types.
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2.2. Data

2.2.1. Type 2 diabetes data: Source and Study population—The primary data 

used to demonstrate the methods developed in this study consist of 27,005 adults, age ≥ 18 

years, with stable and controlled T2D included in OLDW between January 1, 2001 and 

December 31, 2011. OLDW is a large administrative claims database of commercially-

insured and Medicare Advantage beneficiaries across the U.S.[12, 13] Stability of diabetes 

control was ensured by two successive measurements of HbA1c < 7.0%. In Figure 1, h0 is a 

reference HbA1c value at time t0, where static variables are measured, and the patient is 

subsequently followed for 24 months. The value h−1 is the HbA1c value not more than 3 

months prior to t0 controlling for diabetes stability. To predict glycemic change, patients 

were required to have ≥ 2 ht values during the 24 months follow-up. Diabetes was defined by 

Healthcare Effectiveness Data and Information Set criteria [14] ascertained using claims-

computable diagnosis codes and pharmacy claims from 12 months preceding t0. To restrict 

the study to patients at lowest risk of glycemic deterioration, we excluded people using 

insulin within 12 days prior to t0; or with history of diabetic ketoacidosis (ICD-9-CM 

250.1x), hyperglycemic hyperosmolar state (ICD-9-CM 250.2x), diabetic coma (ICD-9-CM 

250.3x), severe hypoglycemia (ICD-9-CM 251.x, 250.8x [15]), or poisoning by insulin or 

anti-diabetic drugs (ICD-9-CM 962.3) within one year of t0.

Independent variables: Baseline static patient characteristics used for analysis included 

sex; race/ethnicity; comorbidities documented within 12 months of t0 and categorized 

according to the Charlson/Deyo comorbidity measure [16]; geographic region; and h−1. 

Time varying characteristics included age, diabetes medications use within the follow up 

period; and all available HbA1c test results (ht) during follow up; and follow up time. 

HbA1c results were identified using LOINC codes 4548–4, 4549–2, 17856–6, 59261–8, 

62388–4 and 4547–6. The time varying diabetes medications were grouped into nine 

diabetes medication classes (insulins, sulfonylureas, glinides, biguanides, α-glucosidase 

inhibitors, thiazolidinediones, glucagon-like peptide-1 agonists, amylinomimetics, and 

dipeptidyl peptidase-4 inhibitors). We included a time varying measure of HbA1c testing 

frequency during 24-months of follow-up, categorized as: ≤ 2, 3−4, or ≥ 5 tests per year to 

reflect different intensities of therapeutic monitoring which may influence glycemic control. 

[17] That is, at each encounter, the number of HbA1c tests performed since baseline is 

reported. Similarly at each encounter, medication changes in reference to t0 were recorded 

and classified as: no change, class change, intensification (addition of ≥ 1 drug or insulin), or 

de-intensification (removal of ≥ 1 drug). The fixed-effect covariates p includes the baseline 

and time-varying predictors while the random-effect covariates q includes the time varying 

predictors.

At baseline (t0), the median age was 58 years; 49% were women; and 58% White. h0 was ≤ 

5.6% in 10.4% of patients; 5.7–6.4% in 57.1%; and 6.5–6.9% in 32.5%. One-third of the 

patients were not receiving any glucose lowering medications, while 37.7% received 1 drug, 

21.3% received 2 drugs, and 8.2% received ≥ 3 drugs. Table 1 shows a summary of the 

number of clinical encounters or visits per patient in the data. Full details on cohort 

construction, variable engineering, and descriptive statistics at t0 can be found in [18].
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Response variable - glycemic control: For each patient i, the change in HbA1c between a 

future time point t and the reference t0 was used as a measure of glycemic control status and 

represented by the binary variable:

yit =
1  if hi0 − hit < 0,
0  if hi0 − hit ≥ 0 (1)

We consider time at the granularity of a day, and each day t corresponds to a clinical visit.

2.2.2. Mayo clinic primary biliary cirrhosis data—This publicly available 

longitudinal data set is from the Mayo Clinic clinical trial in primary biliary cirrhosis (PBC) 

[8, 9] of the liver conducted between 1974 and 1984. A total of 424 PBC patients referred to 

Mayo Clinic during that ten-year interval met the well-established clinical, biochemical, 

serologic, and histologic creteria for PBC and also fulfilled standard eligibility criteria for 

randomized placebo controlled trial of the drug D-penicillamine. [19] However, only the 

first 312 patients in the data set participated in the randomized trial. Multiple laboratory 

measurements were collected for these patients. We imputed missing variables with less than 

20% missing values with the missForest [20] package in R.

We used the PBC data to predict longitudinal enlargement of the liver or hepatomegaly. At 

each longitudinal time point corresponding to a clinical visit, the binary hepatomegaly 

variable in the data set indicates if the patient has enlarge liver or not.

2.2.3. Aortic valve replacement data—This is a publicly available longitudinal data 

set (available in the R package joineR [10]) from an observational study on detecting effects 

of different heart valves implanted in the aortic position. The data consists of longitudinal 

measurements (three cardiac functions) from patients who underwent aortic valve 

replacement (AVR) from 1991 to 2001 at the Royal Brompton Hospital, London, United 

Kingdom. The data was first reported in [21] where the authors used all patients during the 

10 years period with at least a year of follow-up with serial echocardiographic 

measurements and applied a linear mixed-effect model to predict left ventricular mass index 

(LVMI). Similarly, we predict longitudinal profile laboratory variables. of LVMI categorized 

as high or normal using several patient baseline characteristics and LVMI is considered 

increased if LVMI >134 g/m2 in male patients and LVMI >110 g/m2 in female patients, thus 

values in this range for both sex was considered as the positive class in MEml.

2.2.4. Artificial Data: Hospital, Doctor, Patient data—The Hospital, Doctor, Patient 

(HDP) [11] dataset is a simulated three-level, hierarchical structured data with patients 

nested within doctors, and doctors within hospitals. The data is different from the previous 

three examples of longitudinal data and represents a clustered data structure, i.e there is no 

time component. The HDP data is generated to mimic a real-world study of a clinical 

outcome across multiple doctors and hospitals. Several outcomes are generated, however in 

this study we will consider the problem of predicting whether a patient’s lung cancer goes 

into remission after treatment or not based on patient, physician, and hospital factors.
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The R code for generating the data can be downloaded from [11].Thus, the user can easily 

modify certain parameters of the data generation process. In addition to the predictors 

generated in [11], we also generated 9 additional predictors. Specifically, we define 

nonlinear functions involving the exponential function (x2 + 0.5 exp (−0.5(x − 0.5)2)), the 

sin function (2 sin(x × y)), and the arctangent function (arctan((x × y − (1/(x × y)))/z) (see 

Friedman simulations systems for regression modeling [22]), where x, y, z can be any of the 

variables age, body mass index (BMI), red blood count (RBC), or white blood count (WBC). 

We then perform a series of experiment where the minimum number of patient per doctor is 

2 and the maximum number is taken in {5,10,20,30,40,50,60}. We considered 25 different 

hospitals with 4 −10 doctors each.

2.3. Generalized Linear Mixed Effects Models

In GLMM [23] random-effects are used to account for the level-wise variabilities in 

longitudinal data. Specifically, conditional on a vector bi ∈ ℝq of subject-specific regression 

coefficients, the model assumes that the responses yit for a single subject i are independent 

and follow a distribution from the exponential family with mean and variance specified as:

E yit bi = μit = h ηit (2)

Var yit bi = ϕ2V μit (3)

where ηit = β⊤xit + bi
⊤zit; β ∈ ℝp is the population fixed-effect parameters; g(·) = h−1(·) is a 

pre-specified link function; ϕ is a dispersion parameter; and V (·) is a variance function (see 

[23] for details). The vectors bi are called the random-effects parameters and are assumed to 

be i.i.d normal random variables. For binary response, g(·) is the logit link function:

ηit = g μit = log
μit

1 − μit
= β⊤xit + bi

⊤zit (4)

where μit = E[yit|bi] is the success probability and Var(yit|bi) = ϕ2μit(1 − μit). Estimation of 

the parameters (β, bi) in (4) can be done through the penalized quasi-likelihood (PQL) [24]. 

PQL approximates the data by the mean μit plus an error term εit, and then takes the first 

order Taylor expansion about the current parameter estimates β, bi :

yit = μit + εit = h ηit + εit
≈ h ηit + h′ ηit ηit − ηit + εit

where h′ is the first derivative of h. Using the relationship between the derivative of a 

function and its inverse g′ = 1
h′  and rearranging gives
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yit − μit g′ μit + g μit = g μit + g′ μit εit

Letting yit* = yit − μit g′ μit + g μit  and εit* = g′ μit εit, we obtain the linear mixed-effects 

model (LMM)

yit* = β⊤xit + bi
⊤zit + εit* (5)

with Var εit* = ϕ2 g′ μit
2V μit .

2.4. Random-Effects for Machine Learning Models

The GLMM assumes a parametric distribution and imposes restrictive linear relationships 

between the link function g(·) and the covariates, which can be difficult to verify and often 

are not applicable to complex clinical settings. Alternatively, advanced non-linear machine 

learning methods can be applied to extract informative patterns from the data without a 
priori assumptions. Despite the many advances in machine learning algorithms, most assume 

that the training data is i.i.d. The underlying theory of Random forest (RF), gradient boosted 

machine (GBM), support vector machine (SVM), neural networks, and deep learning 

algorithms all implicitly make the i.i.d assumption. Nevertheless, this where sub-groups 

assumption is commonly violated in real-world applications, including longitudinal studies 

of observations exhibit high degree of correlations. Nonetheless, these methods are used for 

analysis of longitudinal data without accounting for the inherent correlation structure in the 

data often leading to mediocre performance [6, 7] and potential for misleading inference.

Several techniques have been proposed to extend tree based algorithms to longitudinal data. 

The earliest approach was done in [25], in which the regression tree split function was 

modified to accommodate multiple responses. The classification and regression trees 

(CART) [26] algorithm was extended in [27] for longitudinal data with multiple binary 

outcomes. The CART algorithm was equally extended in [28] for multivariate outcomes. 

However, none of these methods allow for modeling time-varying covariates.

More recently, two studies [6] (GMERT) and [7] (RE-EM tree) took the mixed-effects 

approach and extended the CART algorithm to incorporate random-effects. The basic idea of 

the approach was to disassociate the fixed-effect component of a LMM from the random-

effect and iteratively estimate each component in expectation maximization (EM) [29] 

manner. Specifically, in [7], the CART algorithm was used to estimate the fixed-effects of a 

LMM assuming that the random-effects are known, and then estimate the random-effects in 

the next step assuming the fixed-effects estimated by the CART algorithm in the previous 

step are correct. Both modifications of the CART algorithm by [6, 7] could naturally 

accommodate time-varying covariates.

However, both GMERT and RE-EM tree have limitations that make them unsuitable for 

general longitudinal supervised learning. First, both techniques are based on the CART 
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algorithm which is prone to overfitting and selective bias towards variables with many 

possible splits. A general framework for mixed-effect machine learning that can deploy 

advanced learning algorithms such as RF, GBM, SVM, neural networks and deep learning is 

thus needed. Second, while GMERT can be used to predict binary outcomes, RE-EM tree 

can only predict continuous outcomes. The proposed MEml framework can be used for 

different types of outcomes and machine learning algorithms.

We propose a new machine learning framework that combines the GMERT structure for 

modeling general types of outcomes and the expectation maximization structure of RE-EM 

tree for estimating the fixed and random-effects components of NLMM.

We note that there are other machine learning approaches for sequential data such as hidden 

Markov model, [30] and the recent popular recurrent neural network models (RNN). [31] 

The RNN in particular, is designed to efficiently model sequential data, however, most RNN 

models are unable to model sparse and irregularly sampled sequential data, [32] which are 

very common features in longitudinal health care data. Training these models can also be 

computationally expensive. Thus, we did not consider these approaches as our focus was to 

develop a simple and interpretable framework for training general machine learning methods 

on longitudinal and clustered data sets, which we achieved with the MEml framework.

2.5. Formulation of Mixed-Effects Machine Learning

The proposed MEml framework estimates the fixed-effects component (β⊤xit) in (5) using a 

powerful machine learning algorithm and the random-effects bi using GLMM. Thus 

equations (4) and (5) can be written as:

ηit = f xi + bi
⊤zi (6)

yi* = f xi + bi
⊤zi + εi* (7)

where the function f is unknown. We estimate f in equation (7) using 4 tree-based machine 

learning algorithms: random forest (RF) [33], gradient boosted machine (GBM) [34], model-

based recursive partitioning [35], and conditional inference trees [36]. We focus on tree 

based algorithms for interpretability, however as demonstrated below, any supervised 

learning algorithm can be used.

RF and GBM are ensemble machine learning methods that construct a committee of models 

and then combine the predictions. In RF, multiple decision trees are learned on a random 

sample of observations from the training set and the predictions combined by averaging or 

majority vote. In contrast, boosting methods iteratively add basis functions (learners) in the 

ensemble in a greedy fashion such that each additional base-learner further reduces a loss 

function. In GBM, the new weak base-learner is constructed to be maximally correlated with 

the negative gradient of the loss function.
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RF and GBM have several appealing properties that make them attractive for complex 

clinical longitudinal data: (i) the methods can easily handle large and high dimensional 

longitudinal data, (ii) all variables, including those with weak effects, highly correlated and 

interacting have the potential to contribute to the model fit, (iii) the models easily 

accommodate complex interactions between variables, (iv) they can perform both simple and 

complex classification and regression accurately and are less prone to overfitting.

Despite these appealing properties, RF and GBM are not interpretable, i.e. it is difficult to 

understand how the models make prediction decisions. To overcome this limitation, we 

apply the inTrees (interpretable trees) [37] algorithm to extract insights from the tree 

ensembles. Specifically, inTrees consists of algorithms that can extract rules, measure and 

rank rules, prune irrelevant or redundant rules, find frequent variable interactions, and 

summarize rules into a simple rule model that can be used for predicting new data without 

need for the original RF or GBM model.

Model-based recursive partitioning (MOB) is a powerful combination of the recursive 

partitioning algorithm and classical statistical regression models. The method partitions the 

feature space into subgroups of observations based on the statistical model and then predicts 

the response within subgroups. Conditional inference trees (Ctree) is a modification of the 

CART algorithm to overcome the problems of overfitting and selection bias towards 

covariates with many possible splits.

Algorithm for Mixed-effect Machine Learning—Tree-base algorithms recursively 

partition the feature space into disjoint regions such that observations with similar values of 

the response are grouped in the same region. If Rv v = 1
V  is the collection of disjoint regions, 

the goal of the algorithm is to approximate the unknown functional relationship between the 

response and the predictors f by a piece-wise constant function that can be written as

f (x) ≡ ∑
v = 1

V
cvI x ∈ Rv (8)

where cv is the constant term for the v’th region (e.g., the mean of the response for those 

observations x ∈ Rv)) and I(·) is the indicator function.

Instead of a single partition, the RF and GBM construct an ensemble of partitions of the 

feature space. As previously mentioned, the fitted ensemble model f  is not easy to interpret. 

To solve this problem and also to facilitate the extension of the RE-EM technique to 

accommodate RF and GBM, we extracted interpretable and learnable rules from the fitted 

model f  using inTrees. The extracted rules equally partition the feature space into disjoint 

regions Rv v = 1
V , making equation (8) to also apply to RF and GBM.

The proposed MEml follows the EM approach in RE-EM trees with the difference that RE-

EM trees estimate a continuous response and is based on alternatively estimating the fixed 

and random-effects component of a single LMM. In MEml, we can estimate both continuous 
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and binary outcomes, and the EM algorithm is based on alternatively estimating two 

equations: (6) and (7). Briefly, from equation (7), if the random-effects bi are known, then 

we can estimate f(xi) using a machine learning model based on the modified response 

yit* − bi
⊤zit. Assuming that the means μit are also known, we can re-weight each observation 

in the training set by wit = ϕ2 g′ μit
2V μit . This re-weighting scheme can help reduce the 

variability of the repeated measurements in the machine learning model. On the other hand, 

from equation (6) if the population-level effects f(xi) were known, then we can estimate the 

random-effects using traditional GLMM with population-level effects corresponding to f(xi).

This two-step approach for estimating (6) and (7) works well only if the fixed or random-

effects are known. However, in practice these values are not known, so we can alternate 

between estimating the fixed-effects with a machine learning model, and estimating the 

random-effects with GLMM until convergence. The proposed algorithm for MEml is shown 

in Algorithm 1.

Note that in estimating equation (6), the fixed-effects component f(xi) estimated in one step 

can be set as an off-set term in the GLMM model in the next step. Many software packages 

such as the lme4 package in the R statistical programming environment can readily 

accommodate an off-set term. This off-set technique allows other general machine learning 

algorithms such as SVM or neural networks to be used.

2.6. Experimental setup

In this section, we describe the training and validation data structure for the longitudinal data 

sets (T2D, PBC, and AVS), making predictions, and performance measures. For training and 

validation on the clustered data (HDP), we randomly split the number of patients for each 

doctor into equal parts of training and test sets. We trained models on the training set and 

evaluate on the test set and then repeated the procedure 50 times.

Training and validation data structure for longitudinal data: To predict whether a 

patient will stay or fall out of glycemic control in the future, we use information in the 

current and past visits and glycemic control status in the anticipated future visit to construct 

the training and evaluation data sets. For example, if the goal is to predict the status of the 

i’th patient at the next visit (t1), we combined information available in the current and past 

visits 𝕏it0
= xit0

, zit0
, yit0

 and the control status in the next visit yit1 to create the training 

and validation data i.e. 𝒟it1
= 𝕏it0

, yit1
 where yit0 and yit1 are computed using equation (1). 

Thus, in real application, during each visit, a clinician may want to know if at the next, 
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second, third, etc. scheduled visits in advanced, the patient will lose glycemic control or not. 

So predictor variables available in the current and past visits: 𝕏current + past are used in the 

model to predict glycemic change at the future visit: ynext, second, third, etc.

In general, to predict a longitudinal clinical outcome (e.g. glycemic change, hepatomegaly 

and increase in LVMI) at any future visit λ time units in advance from a reference visit t, the 

training and evaluation data can be constructed as 𝒟itλ
= 𝕏it, yit + λ , such that the 

independent variables always lag the response by λ time units. Note that is technically not 

required to include a lag version of the dependent variable as a predictor in the data.Table 2 

shows the data structure for λ = 2, which represents two visits in advance.

2.6.1. Bootstrap training and validation for longitudinal data—We performed 

100 bootstrap resamples from Ditλ, where on each bootstrap iterate, the models are trained 

on approximately 63% of the data and the left out samples not selected in the bootstrap are 

used for testing. Simple bootstrap resampling with replacement from Ditλ treats the 

observations as independent and does not account for the dependence structure in the data, 

which may lead to invalid inference [38]. In order to preserve the hierarchical structure in 

the bootstrap resamples, we mimic the data generating mechanism, e.g. by resampling in a 

nested fashion. In multi-stage bootstrap, we first resample the highest level, then for each 

sampled unit, we resample the next lower level, and so forth. Each level may be resampled 

with or without replacement. For the experiments, we implemented the double bootstrap 

procedure in [38], where we first resample without replacement the individual patients, and 

then resample with replacement the visit times for each patient.

2.6.2. Prediction—For binary response, the mean μit = E[yit|bi] is the conditional 

probability of success given the random-effects and covariate values:

μit = 1
1 + exp − f xit − bi

⊤zit

For out of sample prediction, we identify two types:

1. Predictions for new visit times for patients in the training data. If xit* and zit* are 

new fixed and random-effect covariates for patient i observed at the new visit t, 
then using the estimated random-effects bi for the patient and fixed-effects model 

f , the predicted conditional probability is given by

μit = 1
1 + exp − f xit* − bi

⊤zit*

1. Predictions for new visit times for patients not in the training data. In this case, 

the random-effects for the new patient is not known, and we simply set bi = 0 in 

the equation above.
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Performance measures: We used the following performance measures to validate the 

models: balanced accuracy (ACC), area under the ROC curve (AUC), sensitivity (Sens), 

specificity (Spec), and positive predictive value (PPV). The balanced accuracy is average 

accuracy on each class and control for any imbalance in the class distributions. [39] We 

report the average of these measures over the 100 bootstraps (or 50 repeated training and 

testing) and the 95% confidence intervals in brackets.

3. Results

For experimental evaluation, we compared the performance of MEml models (MErf, 

MEgbm, MEmob, and MEctree) against GLMM, logistic regression (GLM), GBM and RF 

in predicting glycemic change using the diabetes data, hepatomegaly using the PBC data, 

increase in LVMI using the AVS data, and lung cancer remission using the HDP data. We 

did not train the Model-based recursive partitioning (MOB) and Conditional inference trees 

(Ctree) models in the bootstrap experiments.

3.1. Predicting future glycemic change

Employing the proposed MEml framework, we learn and validate risk stratification models 

for identifying patients at risk of future glycemic deterioration at each clinical visit. 

Specifically, we evaluate how far in advance (e.g. 1st, 2nd, 3rd, and 4th visits) we can 

correctly identify deteriorating cases. This is an important evaluation criteria for longitudinal 

supervised learning that is often overlooked, but has crucial implication regarding the utility 

of the model in clinical practice, where early patient risk stratification can help individualize 

care and improve health outcomes.

Table 3 presents the performance of MEml models: MErf, MEgbm, MEmod, and MEctree, 

traditional GLMM; and standard machine learning models without random effects: RF, 

GBM, and GLM at the 1st, 2nd, 3rd, and 4th visits. Comparable performance can be seen for 

all MEml models, and GLMM, except for the standard machine learning models. Overall, 

MEml models predicting future glycemic change at the third and fourth visits are more 

accurate than the first or second. More generally, as the number of repeated observations 

used for training increases, models that account for random-effects perform better, whereas 

those that do not deteriorate. Because we required patients to have at least 2 HbA1c 

measurements during the 24 months of follow up, to predict future glycemic change using 

the lagged longitudinal structure described in Table 1 the number of repeated observations 

used for training is λ + 2. Thus, 3, 4, 5, and 6 repeated observations are used for training 

models for predicting glycemic change at the 1st, 2nd, 3rd, and 4th visits in advance, 

respectively. The poor performance of the standard machine learning models as the number 

of repeated observations increases, reinforces the importance of modeling random-effects in 

longitudinal supervised learning.

3.2. Predicting future hepatomegaly and increase in LVMI

We used the PBC and AVR data sets to further demonstrate the robustness of MEml models 

to increasingly correlated data and their predictive superiority compared to the other 

methods. Table 4 and 5 presents the performance of MEml models in predicting 
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hepatomegaly and increase in LVMI at the 1st, 2nd,…, 7th and 1st, 2nd,…, 4th clinical visits 

respectively compared to that of GLMM, RF, GBM, and GLM. Specifically, in terms of the 

AUC, Table 4 shows that the performance of MEml models on the PBC data remains 

somewhat consistent as the number of repeated observations increases, while the 

performance of GLMM slowly drop and drops significantly for the non mixed-effect 

machine learning methods. We find similar results for the AVR data set (Table 5). The 

AUC’s of MEml models slowly drops to the low .80’s as the number of repeated 

observations used for training increases, while that for GLMM and the non mixed-effect 

machine learning approaches significantly deteriorates. An exception was found for the RF 

model, which appeared to be resistant to increasing correlated data, but was still inferior to 

MEml.

3.3. Predicting Lung Cancer Remission using the HDP data set

The performance of MEml shown thus far is based on longitudinal data sets, where repeated 

measurements from the same patients are observed at different time periods. In clustered 

data (e.g. clustered randomized clinical trials), groups of patients are nested within larger 

units such as different treatment arms or providers. To demonstrate the performance of 

MEml on clustered data, we used the synthetic HDP to predict lung cancer remission, where 

patients are nested within doctors, and doctors within hospitals. Table 6 shows that the 

performance of all the models increases with increasing number of patients per doctor. 

Recalled that the number of patients per doctor ranges in 2–60. Given that the data was 

generated following a linear model and normally distributed variables, which favors the 

GLMM model, its performance was consistently better than MEml, while that of MEml was 

consistently better than the non mixed-effect machine learning models.

3.4. Interpretability: Variable Importance and Prediction Rules for T2D data

Of the models examined, MErf and MEgbm are best suited to describe patient characteristics 

that influence glycemic deterioration, as both methods can produce a variable importance 

score. This score can aid in hypothesis generation about potential risk factors and 

interventions, and improve our understanding of model predictions and the disease.

Figures 2 (a) and (b) show the top 20 variable importance (scaled between 0 and 1) plots for 

MErf and MEgbm at the 1st, 2nd, 3rd, and 4th clinical visits. Significant changes can be 

seen in the relative importance of some features over time. Prior glycemic control status and 

follow-up time are the most important features; however, their importance (time for MErf 

and both for MEgbm) becomes less significant when predicting glycemic control far in the 

future. Conversely, age (and h−1 or StabilityHbA1c) becomes important in predicting 

glycemic control only far in advance. For MErf, the importance of metformin decreases 

slightly while sulfonylurea/glinide drugs become more influential.

Figure 3 shows a decision tree representation of the top relational rules of the MErf model 

for the 1st, 2nd, 3rd, and 4th. The rules indicate how frequent the individual trees of MErf 

combine a set of influential variables to make final predictions of a patients’ future glycemic 

control status. We selected all rules of length between 2 and 4, with frequency 0.01 and error 

≤ 0.35 in predicting glycemic control (shown in the leaves). Thus, instead of relying on the 
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complex MErf model for predictions, this simple and transparent relational rule set can be 

deployed into practice via a simple clinical web application delivering the same prediction 

accuracy as the original model, with the additional benefit of conveying relevant clinical 

information about the model. A similar set of rules can be obtained from the MEgbm model.

4. Conclusion and Discussion

Classical machine learning classification and regression algorithms do not generate high 

quality models on correlated data. In this study, we developed a methodology for nonlinear 

longitudinal/clustered data analysis, which is an extension of traditional machine learning 

methods to longitudinal/clustered data. We formalized the problem of longitudinal/clustered 

supervised machine learning, as that of learning the two components of a NLMM separately 

through an iterative expectation maximization-like algorithm, in which we alternatively 

estimate the fixed-effect component using machine learning methods and the random-effect 

component using GLMM. This allows the proposed mixed-effect machine learning 

framework (MEml) to address common real-world data issues like high-dimensionality, non-

linearity, variable interactions, and dependencies between variables and observations or 

groups of observations.

Our MEml framework was successfully applied to the problem of identifying patients with 

previously controlled T2D who are at increased risk of losing glycemic control in the future. 

We observed a significant improvement of MEml over classical machine learning methods. 

In particular, as the number of repeated observations increased, the performance of MEml 

increased, whereas the performance of classical methods deteriorated. This demonstrates 

that MEml is able to take advantage of increasing sample sizes and dependencies between 

the observations to generate more robust and accurate models.

To demonstrate the general applicability of our method, we obtained similar findings on two 

publicly available longitudinal health care data sets and on an artificially generated clustered 

data set. In the longitudinal experiments, either the performance of MEml remained 

consistent or gradually worsened as the correlation in the training data increases compared 

to the rapid deterioration in performance of the other methods. These results indicates that 

MEml is resistant to variabilities introduced by correlated data and can predict a clinical 

outcome with high accuracy using both longitudinal and clustered data.

Another key finding is that while we expected the traditional machine learning methods to 

perform better in determining a patients’ glycemic control status with more data and as more 

information about prior status became available, as they do with i.i.d data, this was not 

observed in our study. This suggests that mere availability of more data does not necessarily 

translate to better performance when using traditional machine learning methods. This 

important finding somewhat contradicts the popular view that machine learning models 

perform better with more data. In fact, our study demonstrates that without taking the i.i.d 

assumption into account, more data can be detrimental to learning, and researchers should 

exercise caution when using standard machine learning approaches for longitudinal/

clustered supervised learning.
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With respect to the main clinical problem addressed in this study, early warning of future 

glycemic deterioration is important for targeting high-risk patients for monitoring and 

intervention. The machine learning methods developed in this study can help predict future 

glycemic change with high accuracy, sensitivity and specificity. Though the proposed MEml 

did not improve performance over classical GLMM for our main T2D study population, we 

showed using the three additional data sets that it may be preferred in other studies and 

health-related research settings as the framework is data-centric, makes fewer assumptions, 

and effectively identifies temporal heterogeneous and systematic differences in treatment 

response in large, high dimensional longitudinal datasets.

The developed MEml models are also interpretable, transparent, and easy to deploy in 

clinical practice. We observed changes in the relative importance of patient characteristics 

overtime, suggesting that MEml and the introduced lagged training and validation data 

structure can be used to further investigate temporal effects of risk factors over successive 

patient visits. By superimposing multiple successive clinical visit times using advanced 

visualization techniques, we may uncover new insights, shed light on the relationship 

between risk factors and time, and ultimately improve our understanding of the disease.

By demonstrating the use of MEml methods in deriving knowledge from non i.i.d data and 

through a series of experiments analyzing the relationships between a longitudinal or 

clustered outcome and predictors, this study may contribute to facilitate a wider use of 

machine learning in health care research.
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Research highlights

• Integrate random effects into standard machine learning algorithms.

• Framework for longitudinal supervised learning with common machine 

learning models.

• Developed interpretable tree based mixed-effect machine learning models.

• Method prospectively identifies patients at risk for future glycemic 

deterioration.
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Figure 1: 
Diabetes stability and glycemic control: h0 is the reference HbA1c value at time t0, h−1 is 

HbA1c value use to control for stability, while ht is the HbA1c value at time t in the 24 

months follow up period. For diabetic stability both h−1, h0 ≤ 7% and t0 − t−1 ≤ 3 months
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Figure 2: 
MErf and MEgbm Variable Importance at 1st, 2nd, 3rd, and 4th clinical visits
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Figure 3: 
MErf Prediction Rules for the 1st and 2nd visits
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Table 1:

Clinical visits per patient (Total no of observations = 109,397)

No of visits 2 3 4 5 6 7 8 9 ≥ 10

No of patients 5820 6131 5584 4219 2603 1545 741 239 126
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Table 2:

Lagged training data structure for predicting a longitudinal outcome

t0 t1 t2 t3 t4 …

(X0, Y0), Y2 (X1, Y1), Y3 (X2, Y2), Y4 (X3, Y3), Y5  …
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Table 3:

Predicting Change in Glycemic Control using the T2D data set

Clinical visits in advanced Model ACC AUC Sens Spec PPV

1 MErf 0.73(0.72,0.73) 0.78(0.76,0.79) 0.78(0.76,0.80) 0.66(0.63,0.68) 0.77(0.75,0.78)

MEgbm 0.73(0.72,0.74) 0.78(0.76,0.80) 0.75(0.71,0.78) 0.70(0.66,0.75) 0.78(0.76,0.81)

MEmob 0.73(0.68,0.74) 0.78(0.71,0.80) 0.76(0.73,0.78) 0.67(0.57,0.71) 0.77(0.71,0.79)

MEctree 0.72(0.71,0.73) 0.78(0.76,0.80) 0.71(0.67,0.77) 0.73(0.67,0.77) 0.79(0.76,0.81)

GLMM 0.73(0.73,0.74) 0.78(0.76,0.79) 0.74(0.72,0.77) 0.72(0.67,0.75) 0.79(0.76,0.81)

GLM 0.73(0.72,0.74) 0.73(0.72,0.74) 0.75(0.73,0.78) 0.70(0.65,0.72) 0.78(0.75,0.79)

GBM 0.74(0.74,0.74) 0.75(0.74,0.76) 0.78(0.76,0.79) 0.69(0.67,0.71) 0.78(0.77,0.79)

RF 0.72(0.71,0.73) 0.76(0.74,0.77) 0.74(0.71,0.77) 0.70(0.66,0.72) 0.78(0.76,0.79)

2 MErf 0.74(0.73,0.75) 0.79(0.78,0.81) 0.77(0.75,0.80) 0.70(0.66,0.74) 0.79(0.77,0.81)

MEgbm 0.74(0.73,0.76) 0.79(0.78,0.81) 0.77(0.75,0.80) 0.71(0.68,0.74) 0.80(0.78,0.81)

MEmob 0.74(0.73,0.75) 0.79(0.78,0.81) 0.76(0.74,0.78) 0.72(0.71,0.74) 0.80(0.79,0.81)

MEctree 0.74(0.73,0.75) 0.79(0.78,0.81) 0.75(0.74,0.76) 0.73(0.70,0.75) 0.80(0.79,0.81)

GLMM 0.74(0.73,0.76) 0.79(0.78,0.81) 0.74(0.73,0.75) 0.74(0.73,0.77) 0.81(0.80,0.82)

GLM 0.69(0.68,0.71) 0.71(0.69,0.75) 0.69(0.67,0.71) 0.68(0.64,0.71) 0.76(0.74,0.77)

GBM 0.73(0.73,0.74) 0.73(0.72,0.75) 0.77(0.76,0.78) 0.68(0.67,0.68) 0.78(0.77,0.78)

RF 0.69(0.67,0.71) 0.75(0.72,0.76) 0.69(0.66,0.74) 0.69(0.67,0.71) 0.77(0.75,0.78)

3 MErf 0.75(0.75,0.76) 0.79(0.78,0.80) 0.80(0.79,0.81) 0.69(0.67,0.71) 0.79(0.78,0.79)

MEgbm 0.76(0.75,0.76) 0.79(0.78,0.80) 0.80(0.79,0.83) 0.69(0.64,0.71) 0.79(0.76,0.80)

MEmob 0.75(0.74,0.75) 0.79(0.78,0.80) 0.78(0.77,0.80) 0.70(0.68,0.72) 0.79(0.77,0.80)

MEctree 0.75(0.73,0.76) 0.78(0.78,0.79) 0.78(0.71,0.80) 0.70(0.68,0.75) 0.79(0.78,0.80)

GLMM 0.75(0.74,0.76) 0.78(0.78,0.80) 0.78(0.76,0.83) 0.71(0.68,0.71) 0.79(0.78,0.80)

GLM 0.66(0.65,0.67) 0.69(0.69,0.70) 0.68(0.66,0.70) 0.64(0.63,0.64) 0.73(0.73,0.73)

GBM 0.68(0.67,0.69) 0.71(0.70,0.72) 0.70(0.66,0.73) 0.65(0.62,0.70) 0.74(0.73,0.76)

RF 0.69(0.67,0.70) 0.74(0.73,0.76) 0.69(0.67,0.70) 0.69(0.65,0.71) 0.76(0.74,0.77)

4 MErf 0.78(0.78,0.78) 0.81(0.81,0.81) 0.80(0.80,0.80) 0.75(0.75,0.75) 0.80(0.80,0.80)

MEgbm 0.78(0.78,0.78) 0.80(0.80,0.80) 0.80(0.80,0.80) 0.75(0.75,0.75) 0.80(0.80,0.80)

MEmob 0.78(0.78,0.78) 0.81(0.81,0.81) 0.80(0.80,0.80) 0.75(0.75,0.75) 0.80(0.80,0.80)

MEctree 0.78(0.78,0.78) 0.80(0.80,0.80) 0.80(0.80,0.80) 0.75(0.75,0.75) 0.80(0.80,0.80)

GLMM 0.79(0.79,0.79) 0.81(0.81,0.81) 0.80(0.80,0.80) 0.76(0.76,0.76) 0.81(0.81,0.81)

GLM 0.66(0.66,0.66) 0.69(0.69,0.69) 0.66(0.66,0.66) 0.66(0.66,0.66) 0.71(0.71,0.71)

GBM 0.66(0.64,0.67) 0.70(0.69,0.71) 0.70(0.63,0.73) 0.61(0.58,0.66) 0.69(0.69,0.70)

RF 0.73(0.71,0.75) 0.78(0.77,0.78) 0.74(0.68,0.79) 0.72(0.66,0.78) 0.77(0.74,0.80)
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Table 4:

Predicting Hepatomegaly using the PBC data set

Clinical visits in advanced Model ACC AUC Sens Spec PPV

1 MErf 0.83(0.78,0.86) 0.88(0.83,0.91) 0.86(0.81,0.90) 0.79(0.72,0.83) 0.86(0.82,0.90)

MEgbm 0.83(0.77,0.87) 0.87(0.84,0.90) 0.88(0.80,0.91) 0.76(0.67,0.81) 0.85(0.80,0.89)

MEmob 0.84(0.81,0.87) 0.85(0.81,0.91) 0.86(0.79,0.90) 0.81(0.77,0.84) 0.88(0.86,0.90)

MEctree 0.84(0.78,0.87) 0.85(0.81,0.89) 0.86(0.79,0.90) 0.80(0.63,0.85) 0.87(0.79,0.91)

GLMM 0.85(0.82,0.88) 0.90(0.87,0.92) 0.86(0.79,0.90) 0.85(0.79,0.89) 0.90(0.86,0.93)

GLM 0.85(0.82,0.88) 0.90(0.87,0.93) 0.86(0.80,0.90) 0.84(0.78,0.88) 0.89(0.86,0.92)

GBM 0.85(0.82,0.87) 0.90(0.87,0.92) 0.85(0.79,0.90) 0.86(0.80,0.91) 0.91(0.87,0.94)

RF 0.84(0.81,0.87) 0.90(0.87,0.93) 0.83(0.78,0.89) 0.86(0.81,0.92) 0.90(0.86,0.94)

2 MErf 0.83(0.77,0.87) 0.87(0.80,0.92) 0.85(0.76,0.92) 0.79(0.76,0.86) 0.85(0.80,0.90)

MEgbm 0.83(0.77,0.88) 0.87(0.79,0.91) 0.86(0.78,0.93) 0.78(0.72,0.85) 0.84(0.79,0.89)

MEmob 0.81(0.76,0.88) 0.86(0.80,0.90) 0.84(0.77,0.93) 0.76(0.70,0.82) 0.83(0.77,0.87)

MEctree 0.81(0.76,0.86) 0.85(0.78,0.89) 0.84(0.74,0.91) 0.76(0.71,0.82) 0.83(0.78,0.87)

GLMM 0.82(0.76,0.86) 0.86(0.78,0.90) 0.84(0.74,0.91) 0.80(0.76,0.85) 0.85(0.81,0.89)

GLM 0.78(0.74,0.81) 0.84(0.77,0.87) 0.81(0.73,0.87) 0.74(0.68,0.80) 0.81(0.74,0.86)

GBM 0.79(0.74,0.82) 0.85(0.81,0.88) 0.80(0.72,0.87) 0.78(0.71,0.85) 0.83(0.78,0.87)

RF 0.81(0.77,0.85) 0.87(0.81,0.91) 0.81(0.73,0.90) 0.81(0.73,0.87) 0.85(0.78,0.89)

3 MErf 0.83(0.74,0.88) 0.87(0.79,0.91) 0.88(0.74,0.94) 0.78(0.67,0.84) 0.84(0.75,0.88)

MEgbm 0.83(0.74,0.87) 0.87(0.79,0.90) 0.88(0.76,0.94) 0.77(0.63,0.82) 0.83(0.74,0.87)

MEmob 0.82(0.74,0.86) 0.86(0.80,0.89) 0.87(0.76,0.93) 0.75(0.69,0.81) 0.82(0.77,0.86)

MEctree 0.82(0.75,0.86) 0.85(0.80,0.89) 0.86(0.74,0.92) 0.77(0.71,0.82) 0.83(0.79,0.86)

GLMM 0.82(0.78,0.87) 0.87(0.82,0.91) 0.84(0.77,0.91) 0.80(0.74,0.85) 0.84(0.79,0.88)

GLM 0.77(0.72,0.81) 0.83(0.77,0.86) 0.78(0.67,0.82) 0.77(0.70,0.83) 0.81(0.75,0.86)

GBM 0.78(0.74,0.82) 0.84(0.79,0.88) 0.77(0.70,0.86) 0.79(0.73,0.89) 0.82(0.78,0.89)

RF 0.78(0.73,0.83) 0.87(0.83,0.90) 0.76(0.69,0.82) 0.81(0.70,0.87) 0.83(0.76,0.88)

4 MErf 0.81(0.64,0.86) 0.85(0.65,0.89) 0.83(0.67,0.88) 0.78(0.55,0.85) 0.83(0.69,0.89)

MEgbm 0.81(0.65,0.86) 0.85(0.63,0.89) 0.84(0.71,0.90) 0.76(0.53,0.84) 0.82(0.68,0.88)

MEmob 0.82(0.75,0.86) 0.86(0.78,0.90) 0.84(0.76,0.89) 0.80(0.71,0.83) 0.84(0.79,0.87)

MEctree 0.82(0.65,0.87) 0.84(0.61,0.89) 0.84(0.72,0.91) 0.78(0.55,0.83) 0.83(0.70,0.87)

GLMM 0.85(0.79,0.88) 0.87(0.81,0.90) 0.86(0.81,0.92) 0.83(0.76,0.87) 0.86(0.82,0.89)

GLM 0.73(0.67,0.79) 0.78(0.71,0.85) 0.73(0.66,0.81) 0.73(0.64,0.83) 0.78(0.69,0.85)

GBM 0.73(0.68,0.79) 0.78(0.72,0.84) 0.72(0.58,0.84) 0.74(0.66,0.83) 0.78(0.72,0.83)

RF 0.76(0.71,0.81) 0.80(0.73,0.86) 0.76(0.69,0.82) 0.75(0.64,0.83) 0.79(0.72,0.86)

5 MErf 0.85(0.80,0.89) 0.88(0.84,0.91) 0.87(0.78,0.93) 0.83(0.79,0.90) 0.87(0.83,0.92)

MEgbm 0.85(0.79,0.88) 0.89(0.85,0.91) 0.87(0.76,0.92) 0.83(0.79,0.89) 0.87(0.83,0.92)

MEmob 0.84(0.76,0.89) 0.87(0.77,0.91) 0.85(0.74,0.94) 0.83(0.77,0.88) 0.86(0.81,0.91)

MEctree 0.86(0.78,0.90) 0.88(0.85,0.91) 0.87(0.78,0.92) 0.84(0.79,0.89) 0.87(0.82,0.92)

GLMM 0.85(0.81,0.90) 0.86(0.80,0.92) 0.86(0.79,0.92) 0.85(0.77,0.91) 0.88(0.82,0.93)

GLM 0.67(0.61,0.73) 0.73(0.62,0.81) 0.65(0.58,0.78) 0.70(0.60,0.79) 0.73(0.66,0.81)

GBM 0.70(0.64,0.76) 0.74(0.68,0.81) 0.67(0.56,0.76) 0.73(0.61,0.87) 0.76(0.69,0.85)
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Clinical visits in advanced Model ACC AUC Sens Spec PPV

RF 0.74(0.70,0.78) 0.79(0.76,0.83) 0.75(0.65,0.83) 0.74(0.65,0.83) 0.78(0.72,0.84)

6 MErf 0.82(0.78,0.86) 0.87(0.82,0.90) 0.85(0.75,0.92) 0.80(0.75,0.84) 0.83(0.78,0.87)

MEgbm 0.83(0.78,0.86) 0.87(0.82,0.90) 0.85(0.77,0.91) 0.80(0.76,0.85) 0.83(0.79,0.87)

MEmob 0.82(0.79,0.85) 0.86(0.82,0.90) 0.84(0.78,0.92) 0.79(0.75,0.82) 0.82(0.79,0.85)

MEctree 0.82(0.74,0.86) 0.87(0.81,0.90) 0.83(0.67,0.92) 0.80(0.76,0.84) 0.83(0.78,0.87)

GLMM 0.83(0.79,0.86) 0.85(0.80,0.89) 0.84(0.77,0.89) 0.82(0.77,0.86) 0.84(0.81,0.87)

GLM 0.66(0.57,0.72) 0.69(0.57,0.78) 0.62(0.56,0.68) 0.69(0.57,0.77) 0.70(0.58,0.79)

GBM 0.65(0.57,0.72) 0.68(0.59,0.74) 0.65(0.52,0.76) 0.66(0.52,0.83) 0.68(0.58,0.80)

RF 0.71(0.63,0.78) 0.76(0.68,0.82) 0.71(0.60,0.81) 0.73(0.61,0.82) 0.74(0.63,0.84)

7 MErf 0.82(0.80,0.85) 0.88(0.83,0.92) 0.84(0.78,0.90) 0.81(0.76,0.86) 0.84(0.80,0.90)

MEgbm 0.82(0.78,0.85) 0.88(0.83,0.91) 0.83(0.76,0.89) 0.82(0.77,0.86) 0.84(0.80,0.89)

MEmob 0.82(0.77,0.85) 0.87(0.79,0.91) 0.82(0.72,0.89) 0.81(0.75,0.87) 0.84(0.78,0.89)

MEctree 0.82(0.80,0.85) 0.89(0.84,0.92) 0.83(0.76,0.89) 0.81(0.77,0.86) 0.84(0.80,0.89)

GLMM 0.82(0.71,0.86) 0.84(0.72,0.88) 0.85(0.74,0.92) 0.78(0.63,0.84) 0.82(0.71,0.88)

GLM 0.62(0.58,0.70) 0.61(0.57,0.68) 0.63(0.49,0.80) 0.61(0.52,0.74) 0.66(0.60,0.71)

GBM 0.65(0.57,0.70) 0.66(0.57,0.73) 0.66(0.47,0.80) 0.63(0.51,0.75) 0.68(0.62,0.74)

RF 0.67(0.57,0.72) 0.70(0.60,0.75) 0.69(0.57,0.82) 0.64(0.52,0.78) 0.70(0.58,0.78)
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Table 5:

Predicting Increase in LVMI using the AVR data set

Visits in advanced Classifier PCC AUC Sens Spec PPV

1 MErf 0.80(0.77,0.83) 0.87(0.82,0.91) 0.79(0.73,0.85) 0.84(0.75,0.89) 0.92(0.88,0.94)

MEgbm 0.80(0.76,0.83) 0.87(0.82,0.91) 0.77(0.73,0.83) 0.85(0.69,0.92) 0.92(0.86,0.96)

MEmob 0.79(0.74,0.84) 0.84(0.76,0.90) 0.78(0.70,0.83) 0.82(0.76,0.89) 0.91(0.87,0.94)

MEctree 0.77(0.66,0.82) 0.86(0.76,0.90) 0.74(0.60,0.81) 0.85(0.77,0.92) 0.92(0.89,0.96)

GLMM 0.85(0.78,0.88) 0.86(0.77,0.89) 0.86(0.80,0.90) 0.82(0.73,0.87) 0.92(0.88,0.95)

GLM 0.81(0.75,0.85) 0.82(0.76,0.88) 0.81(0.72,0.85) 0.82(0.75,0.88) 0.91(0.88,0.95)

GBM 0.84(0.82,0.87) 0.83(0.79,0.88) 0.85(0.82,0.89) 0.81(0.75,0.86) 0.91(0.89,0.94)

RF 0.82(0.78,0.86) 0.85(0.80,0.88) 0.81(0.76,0.90) 0.83(0.74,0.91) 0.92(0.88,0.96)

2 MErf 0.81(0.77,0.86) 0.86(0.81,0.90) 0.83(0.77,0.89) 0.75(0.63,0.85) 0.89(0.84,0.93)

MEgbm 0.81(0.77,0.84) 0.86(0.80,0.90) 0.82(0.75,0.87) 0.78(0.68,0.86) 0.90(0.87,0.93)

MEmob 0.79(0.76,0.83) 0.83(0.75,0.88) 0.81(0.78,0.85) 0.75(0.69,0.78) 0.88(0.84,0.91)

MEctree 0.79(0.75,0.84) 0.85(0.76,0.91) 0.78(0.73,0.84) 0.81(0.73,0.89) 0.91(0.86,0.94)

GLMM 0.77(0.73,0.82) 0.79(0.72,0.86) 0.77(0.69,0.84) 0.80(0.62,0.87) 0.90(0.84,0.94)

GLM 0.80(0.74,0.83) 0.79(0.75,0.88) 0.79(0.72,0.85) 0.81(0.77,0.86) 0.91(0.88,0.93)

GBM 0.79(0.76,0.83) 0.80(0.75,0.83) 0.80(0.74,0.86) 0.78(0.69,0.85) 0.90(0.85,0.93)

RF 0.81(0.73,0.86) 0.84(0.80,0.88) 0.81(0.69,0.89) 0.80(0.67,0.89) 0.91(0.86,0.94)

3 MErf 0.78(0.71,0.86) 0.86(0.81,0.90) 0.80(0.69,0.91) 0.74(0.65,0.90) 0.87(0.82,0.95)

MEgbm 0.80(0.75,0.87) 0.87(0.83,0.93) 0.83(0.74,0.93) 0.75(0.61,0.89) 0.88(0.80,0.95)

MEmob 0.64(0.29,0.83) 0.76(0.57,0.85) 0.57(0.00,0.90) 0.80(0.50,1.00) 0.86(0.70,1.00)

MEctree 0.79(0.73,0.86) 0.86(0.83,0.93) 0.80(0.73,0.87) 0.79(0.67,0.89) 0.89(0.83,0.95)

GLMM 0.76(0.68,0.87) 0.76(0.68,0.90) 0.77(0.68,0.92) 0.74(0.60,0.83) 0.86(0.80,0.92)

GLM 0.77(0.73,0.86) 0.77(0.69,0.88) 0.77(0.70,0.86) 0.77(0.70,0.86) 0.88(0.84,0.92)

GBM 0.77(0.71,0.84) 0.78(0.72,0.87) 0.79(0.72,0.86) 0.73(0.65,0.84) 0.86(0.82,0.92)

RF 0.80(0.73,0.87) 0.83(0.74,0.91) 0.81(0.69,0.95) 0.78(0.70,0.89) 0.89(0.85,0.95)

4 MErf 0.78(0.70,0.83) 0.82(0.70,0.90) 0.82(0.68,0.89) 0.68(0.56,0.88) 0.87(0.82,0.95)

MEgbm 0.79(0.72,0.85) 0.82(0.69,0.87) 0.81(0.70,0.94) 0.75(0.63,0.91) 0.90(0.84,0.96)

MEmob 0.79(0.77,0.81) 0.81(0.76,0.87) 0.81(0.78,0.82) 0.74(0.64,0.83) 0.89(0.85,0.94)

MEctree 0.77(0.72,0.79) 0.83(0.75,0.86) 0.78(0.70,0.82) 0.77(0.57,0.87) 0.90(0.82,0.94)

GLMM 0.78(0.73,0.83) 0.77(0.74,0.80) 0.77(0.67,0.86) 0.81(0.71,0.92) 0.92(0.87,0.96)

GLM 0.78(0.73,0.83) 0.77(0.74,0.81) 0.77(0.67,0.86) 0.81(0.71,0.92) 0.92(0.87,0.96)

GBM 0.79(0.75,0.81) 0.77(0.70,0.85) 0.80(0.77,0.85) 0.75(0.64,0.83) 0.89(0.84,0.94)

RF 0.79(0.73,0.88) 0.82(0.74,0.92) 0.80(0.73,0.92) 0.76(0.60,0.91) 0.90(0.85,0.96)
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Table 6:

Predicting Lung Cancer Remission using the HDP data set

Maximum no of patients Model ACC AUC Sens Spec PPV

5 MErf 0.81(0.75,0.87) 0.61(0.50,0.68) 0.15(0.02,0.33) 0.93(0.89,0.99) 0.29(0.11,0.54)

5 MEgbm 0.81(0.74,0.87) 0.72(0.63,0.80) 0.39(0.25,0.56) 0.89(0.81,0.96) 0.40(0.29,0.60)

5 MEmob 0.34(0.13,0.79) 0.68(0.58,0.79) 0.85(0.39,1.00) 0.24(0.00,0.85) 0.20(0.13,0.40)

5 MEctree 0.79(0.75,0.84) 0.70(0.61,0.78) 0.51(0.37,0.62) 0.85(0.80,0.90) 0.38(0.28,0.49)

5 GLMM 0.66(0.60,0.73) 0.69(0.61,0.75) 0.65(0.53,0.75) 0.67(0.58,0.75) 0.26(0.21,0.35)

5 GLM 0.63(0.55,0.71) 0.66(0.57,0.74) 0.63(0.52,0.75) 0.63(0.54,0.73) 0.24(0.18,0.30)

5 GBM 0.61(0.49,0.71) 0.65(0.56,0.71) 0.64(0.53,0.73) 0.60(0.46,0.73) 0.23(0.17,0.31)

5 RF 0.63(0.54,0.69) 0.65(0.58,0.71) 0.63(0.52,0.73) 0.63(0.51,0.71) 0.23(0.18,0.29)

10 MErf 0.85(0.80,0.89) 0.76(0.71,0.84) 0.30(0.19,0.46) 0.95(0.90,0.99) 0.56(0.42,0.74)

10 MEgbm 0.82(0.75,0.88) 0.79(0.73,0.84) 0.54(0.35,0.68) 0.87(0.78,0.94) 0.44(0.34,0.55)

10 MEmob 0.72(0.33,0.85) 0.76(0.69,0.84) 0.64(0.50,0.96) 0.73(0.21,0.87) 0.33(0.19,0.45)

10 MEctree 0.75(0.68,0.82) 0.77(0.69,0.84) 0.69(0.61,0.77) 0.76(0.69,0.83) 0.34(0.26,0.40)

10 GLMM 0.73(0.67,0.79) 0.78(0.72,0.84) 0.70(0.63,0.79) 0.73(0.67,0.81) 0.32(0.26,0.41)

10 GLM 0.65(0.56,0.73) 0.70(0.63,0.77) 0.67(0.56,0.77) 0.65(0.54,0.75) 0.26(0.18,0.32)

10 GBM 0.64(0.58,0.70) 0.69(0.62,0.78) 0.65(0.58,0.75) 0.64(0.57,0.71) 0.25(0.18,0.32)

10 RF 0.64(0.57,0.73) 0.69(0.63,0.76) 0.64(0.52,0.76) 0.64(0.56,0.76) 0.24(0.19,0.31)

20 MErf 0.86(0.83,0.89) 0.81(0.76,0.87) 0.34(0.20,0.49) 0.95(0.92,0.98) 0.58(0.48,0.71)

20 MEgbm 0.81(0.77,0.84) 0.83(0.78,0.88) 0.64(0.52,0.76) 0.84(0.80,0.89) 0.43(0.37,0.49)

20 MEmob 0.78(0.66,0.83) 0.82(0.77,0.87) 0.70(0.59,0.80) 0.79(0.64,0.86) 0.38(0.28,0.46)

20 MEctree 0.75(0.70,0.80) 0.81(0.76,0.86) 0.74(0.68,0.81) 0.75(0.70,0.80) 0.35(0.30,0.41)

20 GLMM 0.77(0.72,0.83) 0.84(0.80,0.89) 0.77(0.72,0.84) 0.77(0.71,0.84) 0.38(0.32,0.45)

20 GLM 0.67(0.62,0.72) 0.72(0.66,0.78) 0.66(0.57,0.75) 0.67(0.61,0.74) 0.27(0.23,0.34)

20 GBM 0.68(0.59,0.75) 0.73(0.65,0.80) 0.66(0.57,0.74) 0.68(0.58,0.75) 0.28(0.22,0.34)

20 RF 0.67(0.58,0.73) 0.72(0.65,0.80) 0.66(0.60,0.74) 0.67(0.57,0.74) 0.27(0.21,0.32)

30 MErf 0.87(0.82,0.89) 0.84(0.78,0.89) 0.40(0.27,0.52) 0.95(0.91,0.97) 0.58(0.41,0.70)

30 MEgbm 0.81(0.77,0.86) 0.85(0.81,0.90) 0.70(0.55,0.82) 0.83(0.79,0.91) 0.43(0.36,0.52)

30 MEmob 0.79(0.70,0.84) 0.84(0.78,0.89) 0.74(0.67,0.81) 0.80(0.70,0.86) 0.40(0.31,0.45)

30 MEctree 0.75(0.70,0.79) 0.83(0.77,0.89) 0.79(0.72,0.87) 0.74(0.69,0.79) 0.35(0.32,0.40)

30 GLMM 0.79(0.75,0.84) 0.86(0.82,0.90) 0.79(0.73,0.85) 0.79(0.75,0.86) 0.40(0.35,0.48)

30 GLM 0.68(0.62,0.73) 0.74(0.66,0.78) 0.68(0.60,0.73) 0.68(0.61,0.73) 0.27(0.20,0.34)

30 GBM 0.71(0.65,0.77) 0.78(0.73,0.84) 0.71(0.64,0.78) 0.71(0.64,0.77) 0.30(0.25,0.36)

30 RF 0.69(0.61,0.78) 0.76(0.69,0.83) 0.70(0.65,0.75) 0.69(0.60,0.80) 0.29(0.22,0.37)

40 MErf 0.87(0.83,0.90) 0.85(0.79,0.91) 0.40(0.28,0.54) 0.95(0.92,0.97) 0.59(0.47,0.68)

40 MEgbm 0.82(0.78,0.87) 0.87(0.82,0.91) 0.73(0.64,0.80) 0.83(0.78,0.89) 0.44(0.37,0.53)

40 MEmob 0.79(0.74,0.84) 0.86(0.81,0.91) 0.77(0.69,0.86) 0.79(0.74,0.85) 0.40(0.33,0.45)

40 MEctree 0.74(0.70,0.78) 0.85(0.79,0.90) 0.83(0.76,0.90) 0.72(0.67,0.77) 0.34(0.31,0.38)

40 GLMM 0.80(0.75,0.85) 0.88(0.84,0.92) 0.81(0.76,0.87) 0.80(0.74,0.85) 0.41(0.34,0.45)

40 GLM 0.66(0.62,0.71) 0.73(0.67,0.78) 0.70(0.61,0.76) 0.65(0.61,0.71) 0.26(0.22,0.32)

40 GBM 0.72(0.65,0.78) 0.79(0.73,0.83) 0.71(0.64,0.77) 0.72(0.63,0.79) 0.31(0.26,0.38)
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40 RF 0.72(0.64,0.79) 0.78(0.71,0.85) 0.70(0.63,0.76) 0.73(0.64,0.80) 0.31(0.24,0.36)

50 MErf 0.87(0.84,0.90) 0.86(0.82,0.90) 0.42(0.32,0.51) 0.95(0.93,0.97) 0.61(0.53,0.71)

50 MEgbm 0.82(0.78,0.84) 0.87(0.84,0.91) 0.76(0.70,0.83) 0.83(0.79,0.86) 0.43(0.40,0.48)

50 MEmob 0.80(0.77,0.85) 0.87(0.83,0.90) 0.77(0.73,0.85) 0.81(0.77,0.85) 0.42(0.38,0.47)

50 MEctree 0.74(0.70,0.79) 0.86(0.81,0.90) 0.83(0.77,0.89) 0.73(0.68,0.78) 0.35(0.31,0.39)

50 GLMM 0.81(0.77,0.83) 0.89(0.85,0.91) 0.81(0.73,0.85) 0.81(0.77,0.85) 0.43(0.38,0.48)

50 GLM 0.66(0.62,0.72) 0.73(0.70,0.77) 0.69(0.64,0.74) 0.66(0.60,0.72) 0.26(0.23,0.31)

50 GBM 0.73(0.68,0.79) 0.80(0.75,0.84) 0.72(0.64,0.77) 0.73(0.67,0.80) 0.32(0.29,0.38)

50 RF 0.73(0.68,0.79) 0.79(0.73,0.84) 0.71(0.63,0.75) 0.74(0.68,0.81) 0.32(0.28,0.36)

60 MErf 0.86(0.83,0.90) 0.84(0.80,0.89) 0.42(0.33,0.51) 0.95(0.92,0.96) 0.59(0.52,0.66)

60 MEgbm 0.81(0.76,0.85) 0.86(0.81,0.90) 0.73(0.66,0.80) 0.82(0.77,0.87) 0.43(0.38,0.49)

60 MEmob 0.79(0.74,0.83) 0.86(0.82,0.90) 0.75(0.69,0.82) 0.80(0.74,0.83) 0.41(0.37,0.45)

60 MEctree 0.72(0.68,0.76) 0.84(0.79,0.89) 0.82(0.76,0.88) 0.71(0.66,0.75) 0.34(0.31,0.37)

60 GLMM 0.79(0.75,0.83) 0.87(0.84,0.91) 0.80(0.75,0.85) 0.79(0.75,0.83) 0.41(0.38,0.44)

60 GLM 0.66(0.62,0.71) 0.74(0.70,0.78) 0.69(0.65,0.73) 0.66(0.61,0.71) 0.27(0.23,0.32)

60 GBM 0.73(0.69,0.78) 0.80(0.76,0.84) 0.72(0.67,0.79) 0.73(0.67,0.79) 0.32(0.30,0.37)

60 RF 0.73(0.66,0.78) 0.79(0.74,0.83) 0.71(0.66,0.76) 0.73(0.66,0.79) 0.32(0.27,0.37)
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