
computer programs

J. Appl. Cryst. (2019). 52, 219–242 https://doi.org/10.1107/S1600576718018046 219

Received 8 August 2018

Accepted 20 December 2018

Edited by D. I. Svergun, European Molecular

Biology Laboratory, Hamburg, Germany

Keywords: solution X-ray scattering; data

analysis programs; macromolecular complexes;

reciprocal grid algorithm; hierarchical data tree

structure.

Supporting information: this article has

supporting information at journals.iucr.org/j

D+: software for high-resolution hierarchical
modeling of solution X-ray scattering from complex
structures

Avi Ginsburg,a,b Tal Ben-Nun,a,b,c Roi Asor,a,b Asaf Shemesh,a,b Lea Fink,a,b Roee

Tekoah,a,b Yehonatan Levartovsky,a,b Daniel Khaykelson,a,b Raviv Dharan,a,b Amos

Felliga,b and Uri Raviva,b*

aInstitute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem,

Israel, bCenter for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus,

Givat Ram, 9190401, Jerusalem, Israel, and cSchool of Computer Science and Engineering, The Hebrew University of

Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel. *Correspondence e-mail:

uri.raviv@mail.huji.ac.il

This paper presents the computer program D+ (https://scholars.huji.ac.il/

uriraviv/book/d-0), where the reciprocal-grid (RG) algorithm is implemented.

D+ efficiently computes, at high-resolution, the X-ray scattering curves from

complex structures that are isotropically distributed in random orientations in

solution. Structures are defined in hierarchical trees in which subunits can be

represented by geometric or atomic models. Repeating subunits can be docked

into their assembly symmetries, describing their locations and orientations in

space. The scattering amplitude of the entire structure can be calculated by

computing the amplitudes of the basic subunits on 3D reciprocal-space grids,

moving up in the hierarchy, calculating the RGs of the larger structures, and

repeating this process for all the leaves and nodes of the tree. For very large

structures (containing over 100 protein subunits), a hybrid method can be used

to avoid numerical artifacts. In the hybrid method, only grids of smaller subunits

are summed and used as subunits in a direct computation of the scattering

amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray

scattering data. This article describes how D+ applies the RG algorithm,

accounts for rotations and translations of subunits, processes atomic models,

accounts for the contribution of the solvent as well as the solvation layer of

complex structures in a scalable manner, writes and accesses RGs, interpolates

between grid points, computes numerical integrals, enables the use of scripts to

define complicated structures, applies fitting algorithms, accounts for several

coexisting uncorrelated populations, and accelerates computations using GPUs.

D+ may also account for different X-ray energies to analyze anomalous solution

X-ray scattering data. An accessory tool that can identify repeating subunits in a

Protein Data Bank file of a complex structure is provided. The tool can compute

the orientation and translation of repeating subunits needed for exploiting the

advantages of the RG algorithm in D+. A Python wrapper (https://scholars.

huji.ac.il/uriraviv/book/python-api) is also available, enabling more advanced

computations and integration of D+ with other computational tools. Finally, a

large number of tests are presented. The results of D+ are compared with those

of other programs when possible, and the use of D+ to analyze solution

scattering data from dynamic microtubule structures with different protofila-

ment number is demonstrated. D+ and its source code are freely available for

academic users and developers (https://bitbucket.org/uriraviv/public-dplus/src/

master/).

1. Introduction

Most involved biomolecular complexes (cytoskeleton protein

complexes, for example) cannot be crystallized and therefore

can only be investigated in their native solution conditions.

ISSN 1600-5767

2019 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576718018046&domain=pdf&date_stamp=2019-02-01

The challenge of structural biophysics is to determine the

high-resolution structure of large self-assembled complexes,

made of many subunits, in their biologically relevant solution

conditions. Solution small- and wide-angle X-ray scattering

(SAXS/WAXS) methods are one of the important label-free

and highly sensitive bulk methods for investigating the

structure of and interactions between complex molecular

constructs (Rädler et al., 1997; Koltover et al., 1998; Schilt et

al., 2016; Dvir et al., 2013, 2014; Chung et al., 2015, 2016; Lotan

et al., 2016; Ojeda-Lopez et al., 2014; Moshe et al., 2013; Saper

et al., 2012; Steiner et al., 2012; Szekely, Schilt et al., 2011;

Szekely, Steiner et al., 2011; Nadler et al., 2011; Choi et al.,

2009, 2016; Wong et al., 2000; Deek et al., 2013; Beck et al.,

2010; Kornreich et al., 2016; Shaharabani et al., 2016; Ginsburg

et al., 2017; Asor et al., 2017; Fink et al., 2017). With modern

synchrotron facilities the temporal and spatial resolution of

these methods has been greatly improved (Ginsburg et al.,

2016; Kler et al., 2012).

In solution X-ray scattering experiments, an X-ray beam is

focused either on a detector or onto a solution containing

structures with random orientations. As the intensities of the

scattered photons are recorded rather than their amplitudes,

the phase information is lost. Azimuthally integrating the

intensities yields 1D curves of the scattered intensity as a

function of q, which is the magnitude of the elastic momentum

transfer (or scattering) vector, q. q ¼ ð4�=�Þ sin �, where � is

the X-ray wavelength and � is half the scattering angle. Owing

to the lack of phase and 3D information (resulting from the

free rotation of molecules in solution), data analysis is chal-

lenging. Problems include addressing the contribution to the

scattering signal from individual objects and from their

arrangement in space, and accounting for the contribution of

the solvating shell and thermal fluctuations, and involve

computational and model-fitting aspects [see for example

Louzon et al. (2017)]. Multiple computer programs and algo-

rithms have been developed for analyzing the scattering data

from soluble macromolecules or oligomers (Virtanen et al.,

2011; Svergun et al., 1995; Petoukhov & Svergun, 2005;

Bardhan et al., 2009; Koutsioubas & Pérez, 2013; Schneidman-

Duhovny et al., 2010, 2013, 2016; Poitevin et al., 2011; Knight &

Hub, 2015; Franke et al., 2015; Hura et al., 2009; Franke &

Svergun, 2009; Spinozzi et al., 2014; Sarje et al., 2014; Grant,

2018; Curtis et al., 2012; Wright & Perkins, 2015; Gumerov et

al., 2012; Watson & Curtis, 2013; Ravikumar et al., 2013;

Petoukhov et al., 2012; Grudinin et al., 2017).

The program X+ (https://scholars.huji.ac.il/uriraviv/software/x)

was our first attempt to address the challenges when analyzing

more complicated and larger self-assembled structures

(Székely et al., 2010; Ben-Nun et al., 2010, 2016). Similar types

of programs have been developed by others (Pedersen et al.,

2013; Förster et al., 2010; Ilavsky & Jemian, 2009). X+ can

model multilayer single-geometry-based structures that may

also be in space-filling lattices. The geometries include

rectangular cuboids, a stack of layered structures, multiple

spherical shells, concentric hollow cylindrical or distorted

cylindrical structures, and a series of coaxial shifted helical

structures. Each layer or subunit has an electron density

profile that can be uniform, Gaussian or a sum of hyperbolic

tangents (Ben-Nun et al., 2016). The features of X+ include

phase-fitting algorithms to obtain lattice parameters and peak

indices, accounting for instrument resolution function and

sample polydispersity. The range of models that X+ can

compute is limited. Geometrical models may be used to fit

low-angle X-ray scattering data (corresponding to relatively

low-resolution information in real space). High-quality solu-

tion X-ray scattering data at ultra-low to wide angles (Möller

et al., 2016), however, can be obtained using modern

synchrotron facilities, high solute concentrations, appropriate

background measurement protocols in flow-cell setups

(Ginsburg et al., 2016) and online size exclusion chromato-

graphy (Graewert et al., 2015; Pérez & Koutsioubas, 2015).

D+ (https://scholars.huji.ac.il/uriraviv/book/d-0) is our new

64 bit computer program, designed to accurately compute the

solution X-ray scattering curves from supramolecular struc-

tures by docking repeating subunits into their assembly

symmetry. Structures can be defined in a hierarchical manner

using a data tree structure (Fig. 1). Subunits may include

geometric shapes (like the models of X+) or atomic models

when available. Atomic models are presented in Protein Data

Bank (PDB; https://www.rcsb.org/) files, containing a list of

atoms and the coordinates of their real-space location. The

assembly symmetry describes the position and orientation of

repeating subunits. The assembly symmetry can be defined in

D+ by providing the lattice parameters, position and orien-

tation of each subunit in the graphical user interface (GUI), by

uploading a file containing the information, or by writing a

script using the Lua (https://www.lua.org/) programming

language, which computes these parameters. D+ has a Python

application programming interface (API) (https://scholars.

huji.ac.il/uriraviv/book/python-api) that can be used to define

sophisticated assembly symmetries. Subunits can be added and

grouped together at any node in the hierarchical data tree

structure to form a new and more involved subunit. At any

level of structural complexity, identical copies of any subunit

may be shifted and/or rotated in any way. The level of

complexity of the elements and the entire structure can be as

computer programs

220 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

Figure 1
Modeling a supramolecular assembly in a hierarchical manner. Each
‘Assembly Symmetry’ may contain multiple children. Children can either
be ‘Assembly Symmetries’ or ‘Subunits’. A ‘Subunit’ represents a PDB
file or a geometric model. Internal nodes consist of ‘Assembly
Symmetries’, whereas each leaf must be a ‘Subunit’. There may be an
arbitrary number of hierarchy levels and nodes at each level.

high as needed. Solvation layers can be computed for any

assembly. For each structure or subunit, a finite domain size is

directly defined or fitted to data. Advanced features including

thermal fluctuations and intermolecular interactions can also

be taken into account by using the Python wrapper of D+ or

by writing Lua scripts (https://scholars.huji.ac.il/uriraviv/book/

examples) inside D+, which can extend, modify or control the

arrangements of subunits. The Python API of D+ can also be

used to integrate D+ with advanced computations or simula-

tions, as demonstrated by Louzon et al. (2017).

In an earlier publication (Ginsburg et al., 2016), we

described the reciprocal-space grid (RG) hierarchical algo-

rithm for computing solution X-ray scattering intensity curves

from complex structures. We then showed results obtained

with the algorithm, discussed its limits and presented ways to

address them. In particular, we showed that the algorithm is

slower than alternative algorithms (Svergun et al., 1995) for

small structures like a soluble protein. The efficiency of the

RG algorithm, however, dramatically increases as the number

of repeating subunits increases. A fivefold increase in effi-

ciency is obtained above three or four subunits. Above 40

subunits the efficiency increases by a factor of 20. Above

about 100 subunits the hybrid method of the RG algorithm is

used.

In this paper, we focus on the implementation of the RG

algorithm in D+. We describe the 3D spherical grid, its

mapping with a single index, how we access the mapped grid

and how we interpolate between grid points. The direct and

hybrid methods (the latter should be used for very large

structures) are explained. We then describe the numerical

integration methods used in D+ as well as other algorithms

and features that were implemented in the program, including

how D+ processes atomic models in vacuum or in solution and

accounts for hydrogen atoms and solvation layers of complex

structures in a scalable manner, computes numerical integrals,

applies fitting algorithms, analyzes anomalous X-ray scattering

data, accounts for several coexisting uncorrelated populations

of different sizes and/or shapes, and accelerates computations

using graphics processing units (GPUs). Finally, we demon-

strate how D+ was tested and cross validated, and how solu-

tion X-ray scattering data analysis is performed with D+.

When possible, we compare D+ with other programs.

2. Applied theory

The goal of D+ is to evaluate the following solution scattering

equations:

FðqÞ ¼ �r0

R
��ðrÞ expðiq � rÞ dr; ð1Þ

IðqÞ ¼ IðqÞ
� �

�q
¼

1

4�

Z
�q

FðqÞ
�� ��2 d�q: ð2Þ

Here F is the scattering amplitude, r is the position vector in

real space, ��(r) is the electron density contrast with respect

to the medium as a function of r and r0 = 2.82 � 10�5 Å is the

Thomson scattering length, which in D+ is set to 1 unless the

anomalous scattering option is used (see Section 5.10). I(q) is

the orientation-averaged scattering intensity in solution. �q is

the reciprocal-space solid angle. Equation (2) describes

structures in solution that are uniformly distributed in all

orientations.

The process used by D+ to compute the scattering intensity

from a hierarchical assembly (Fig. 1) is described in our

previous paper (Ginsburg et al., 2016) and can be summarized

as follows:

(1) Define a 3D RG, which is essentially a lookup table of

the scattering amplitudes at each scattering vector, q.

(2) Compute the amplitude of the lowest node (leaf) for

each q point in the grid.

(3) For each level of hierarchy, compute the amplitudes in

the grid using the already computed lower level’s amplitudes.

Use cubic spline interpolation to compute values between

precomputed points on the lower-level grid. Save the new

amplitude and discard the old.

(4) Use the highest level’s amplitudes to compute the

scattering intensities at each point.

(5) Orientation average the intensity of points on the grid

with the same |q|.

In the case of large or elongated assemblies, a hybrid

method, which combines direct amplitude computations with

RG, should be used. This method can be summarized as

follows:

(1) Define an RG and compute the amplitude of the lowest

node (leaf) for each q point in the grid.

(2) For each level of hierarchy up to a predetermined level,

compute the amplitude using the lower level’s amplitude. For

q values between precomputed points, use cubic spline inter-

polations.

(3) At higher hierarchy levels, grids are no longer

computed. Instead, the highest level of computed RG is used

as a subunit leaf.

(4) Repeat the last three steps for all the other leaves.

(5) Flatten all the remaining higher-level symmetry nodes

by applying them recursively on their subunits until the tree is

depth 1 (i.e. root and leaves). For each leaf, the flattening is

done by determining the number of identical subunits of the

highest level computed, their translations and their rotations.

Directly compute the scattering intensity using multiple

lookups (depending on the number of subunits) of the scat-

tering amplitude.

(6) Compute the orientation average by repeating the last

step for each random orientation of the highest hierarchy

(root) level.

In the following we present a rigorous and detailed

description of how the RG algorithm is applied in D+.

2.1. Definitions and conventions

2.1.1. Coordinates. q is the momentum transfer vector (or

the scattering vector), given in reciprocal space by q = (qx, qy,

qz) = (q, �q, �q), in Cartesian and spherical coordinates,

respectively. The position vector, r, in real space is r = (x, y, z) =

(r, �, �) in the corresponding coordinates.

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 221

2.1.2. Rotation convention. The convention used for rota-

tions is the following Tait–Bryan angles (Goldstein et al.,

2001):

Að�; �; 	Þ ¼ Axð�ÞAyð�ÞAzð	Þ ¼

1 0 0

0 cos� � sin �

0 sin � cos�

0
B@

1
CA

�

cos� 0 sin �

0 1 0

� sin � 0 cos�

0
B@

1
CA

cos 	 � sin 	 0

sin 	 cos 	 0

0 0 1

0
B@

1
CA

¼

cos� cos 	 � cos� sin 	 sin �

cos � sin 	 cos� cos 	 � cos� sin �

þ cos 	 sin � sin � � sin � sin � sin 	

sin � sin 	 cos 	 sin � cos � cos �

� cos � cos 	 sin � þ cos� sin � sin 	

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð3Þ

The rotation matrix Ai rotates a column vector v by an angle ai

about the i axis, where i 2 {x, y, z} and ai 2 {�, �, 	}. The

rotation starts about the z axis, with subsequent rotation about

the y axis and finally about the x axis. The rotated vector is

then given by Av.

2.2. Rotation and translation in real and reciprocal space

The RG algorithm is efficient when a structure contains

identical objects with different positions and orientations. We

therefore need to define the relation between rotation/trans-

lation of the objects in real space and the effect of these

operations in reciprocal space, in which scattering amplitudes

are evaluated. Given an isolated object in real space, r, with an

electron density contrast ��(r) with respect to its

surrounding, its scattering form factor amplitude is given by

equation (1). When the object is translated by a vector R and

then rotated by a rotation matrix A, its electron density

contrast is given by ��[A�1(r�R)] and the form factor of the

translated and rotated object is

~FFðqÞ ¼ �r0

R
�� A�1 r� Rð Þ
� �

exp iq � rð Þ dr: ð4Þ

We define the vector s � A�1(r � R) and then r = As + R. As

detA = 1, ds = dr. Substituting in ~FFðqÞ gives

~FFðqÞ ¼ �r0

R
��ðsÞ exp iq � Asþ Rð Þ½ � ds

¼ �r0 exp iq � Rð Þ
R

��ðsÞ exp iq � Asð Þ½ � ds

¼ �r0 exp iq � Rð Þ
R

��ðsÞ exp iqA � sð Þ ds

¼ �r0 exp iq � Rð Þ
R

��ðsÞ exp iA�1q � s
� �

ds: ð5Þ

The last equation holds because rotating the vector s, given by

(As), or rotating the vector q by the same amount in the

opposite direction, given by (A�1q), yields the same phase (or

scalar product): q � (As) = A�1q � s, as the magnitude of the

two new vectors and the angle between them remain

unchanged upon rotation (Papoulis, 1968). Note that because

A is a rotation matrix A�1= AT. We therefore get that

~FFðqÞ ¼ exp iq � Rð ÞF A�1q
� �

: ð6Þ

D+ uses this relation when objects are translated and rotated.

2.3. Docking

In real space, the electron density of a complex structure

made of Kj, m identical repeats of subunit j, whose orientation

is m, is given by

��j;m
ob ðrÞ �

PKj;m

k¼1

 r� Rj;m;k

� �
: ð7Þ

��ob
j, m(r) is the subunit electron density contrast, � is the

convolution operation and the collection of delta functions

describe the subunit centers of mass, Rj, m, k. In reciprocal q

space, this convolution becomes a multiplication of the two

contributions. The scattering amplitude, Fj(q), of an object j is

given by the Fourier transform of its electron density contrast,

��ob
j (r), relative to its surroundings. The square of this

amplitude, |Fj(q)|2, is the form factor of the scattering object.

The lattice sum is associated with the relative real-space

arrangement of those objects.

If copy k of object j is shifted by Rj, m, k and rotated by a

rotation matrix Aj, m with respect to its principal axes, its

electron density contrast is given by

��j A�1
j;m r� Rj;m;k

� �� �
ð8Þ

and its contribution to the scattering amplitude is given by the

Fourier transform of the electron density contrast, which

according to equation (6) is

FjðA
�1
j;mqÞ exp iq � Rj;m;k

� �
: ð9Þ

For large assemblies, with repeating subunits (identical or not)

that are shifted, rotated and docked onto one another (Fig. 1),

the scattering amplitude is

FðqÞ ¼
PJ

j¼1

PMj

m¼1

FjðA
�1
j;mqÞ exp iq � Rj;m

� �� �
: ð10Þ

J is the number of different types of objects, which can be

either geometry-based or atom-based models, taken, for

example, from PDB files. Mj is the number of instances

(rotations and translations) of object type j, given by rotation

matrices Aj, m and real-space translation vectors Rj, m. The total

number of subunits, ns, is therefore
PJ

j¼1 Mj. Another way to

write equation (10) is

FðqÞ ¼
PJ

j¼1

PMu
j

m¼1

FjðA
�1
j;mqÞ

PKj;m

k¼1

exp iq � Rj;m;k

� �" #
; ð11Þ

where Mu
j is the number of unique orientations of an object of

type j, given by the rotation matrices Aj, m. Kj, m is the number

of real-space translations of object j with orientation Aj, m.

Equation (11) is used in the direct and hybrid methods,

discussed in Section 3.2.

computer programs

222 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

In Section 3 we describe our implementation of the RG

algorithm. Numerical integration methods are explained in

Section 4. We then explain how our atomic (Section 5) and

geometric (Section 6) models are computed. Ways to account

for repeating subunits are explained in Section 7. Uncorre-

lated mixed structures and key features of D+ are described in

Sections 8 and 9, respectively. Accessory tools are presented in

Section 10. Validation tests are discussed in Section 11,

program modules and workflow are presented in Section 12,

and usage examples are given in Section 13.

3. Implementation of the RG algorithm

3.1. Reciprocal grids

In our earlier paper (Ginsburg et al., 2016), we provided a

detailed analysis and demonstration of the RG algorithm and

its efficiency. We showed that the efficiency considerably

increases when the structure contains an increasing number of

identical repeats of subunits. The core principle of the RG

algorithm is to compute the scattering amplitudes of an object

on a 3D grid (or lookup table) containing Gq points in reci-

procal q space and to store that computation for later use.

When moving up in the hierarchy of the data tree structure

(Fig. 1), the precomputed grid can be used to obtain the

scattering amplitudes of the larger structures, containing

copies of the smaller object (subunit) at various locations and

orientations.

Although the geometry of the RG can be arbitrary

(Cartesian, for example), we chose to implement spherical

geometry owing to the following distinct advantages. First, as

the area of interest is determined by the magnitude of the

scattering vector, q, using a Cartesian grid would result in

‘wasted’ corners, which contain about half the grid points [see

supporting online materials (SOM) Section 1]. Second, in

order for the method to work well on GPUs, we needed a

bijective relation between an index m (representing the

position in the 1D array onto which the grid is mapped) and

the spherical coordinates q, �q and �q. Finally, orientation

averaging in reciprocal space becomes simpler as we can fix q

and average over �q and �q. To this end, we designed the

following spherical-shell-based grid.

The grid origin is stored at m = 0. Surrounding the origin we

position N evenly spaced shells, with a spacing of �q ¼ qmax=N,

where qmax is the largest q. Note that in the GUI of D+ the

parameter Grid Size corresponds to 2N, and hence it should

be an even number. Each shell represents the �q�q plane of a

given radius q. To obtain the bijective relation, D+ uses a

modified version of a 3D semi-uniform spherical grid,

resulting in a nonuniform grid. In a semi-uniform 3D spherical

grid, on the ith shell, at qi = i�q, half the circumference is �qi.

Hence, there are

Ji ¼
�qi

�q

	

þ 1 ¼ d�ie þ 1 ð12Þ

evenly spaced points along the polar axis, �q, where

i 2 f0; 1; . . . ;N;N þ 1;N þ 2;N þ 3g. Note that for inter-

polation reasons (see Section 3.1.3) three additional shells are

added to the grid; hence imax ¼ N þ 3 rather than N. The jth

polar angle on the ith shell is �i;j
q ¼ j�=ðJi � 1Þ, where

j 2 f0; . . . ; ðJi � 1Þg. On the jth polar angle of the ith shell, the

azimuthal circumference is 2�qi sin �i;j
q ; hence there are

Ki;j ¼
2�qi sin �i;j

q

�q

	

¼ 2�i sin

j�

Ji � 1

� �	

ð13Þ

evenly spaced points along the azimuthal axis, �q. The kth

azimuthal angle of the jth polar angle on the ith shell is then

given by �i;j;k
q ¼ 2�k=Ki;j, where k 2 f0; . . . ; ðKi;j � 1Þg. In D+,

however, to obtain simple bijective relations, the expressions

for Ji and Ki, j were changed to Ji = id� + 1 and Ki, j = id�. We

chose d� = 3 and d� = 6 instead of � and 2� sin½ j�=ðJi � 1Þ�,

used in the corresponding relations. The grid is nonuniform

and the ith shell contains id�(id� + 1) points in its �qi
�qi

plane,

which is approximately twice the density in the corresponding

semi-uniform 3D spherical grid. The resulting total number of

grid points is similar to that of the corresponding 3D Cartesian

grid; however, all the grid points are within the sphere (see

SOM Section 1).

Within each plane, the values are arranged in a �q-major

storage order (i.e. two neighboring �q values with the same �q

will be adjacent in memory, whereas two �q values with the

same �q will be separated by d� i other values). The total

number of reciprocal grid points, Gi
q, inside i spheres is

therefore

Gi
q ¼

Pi

n¼1

d�d�n2 þ d�n
� �

¼
3þ d�
� �

d�i

6
þ

1þ d�
� �

d�i2

2
þ

d�d�i3

3
: ð14Þ

With this, we can find the relation between any index m and

three indices used to indicate the discrete values of q, �q and �q

(i, j and k, respectively). First, note that for all positive i

d�d�i3

3
<Gi

q <
d�d�ðiþ 1Þ3

3
: ð15Þ

Hence

i ¼
3m

d�d�

� �1=3
$ %

; ð16Þ

unless

m>Gi�1
q ; ð17Þ

in which case

i ¼
3m

d�d�

� �1=3
$ %

þ 1: ð18Þ

The remainder is

Ri ¼ m�Gi�1
q � 1: ð19Þ

The last two indices are

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 223

j ¼
Ri

id�

 �
¼ Ri divðid�Þ ð20Þ

and

k ¼ Ri � ijd� ¼ Ri modðijd�Þ: ð21Þ

Note that using floating point numbers to compute

powð3m=d�d�; 1:0=3:0Þ to calculate i can be inaccurate.

Therefore, a modified stable algorithm is used in D+ for

integer values (Warren, 2012).

Given a point in reciprocal space {q, �q, �q} and the values

of qmax and N of the spherical grid, we can find the corre-

sponding point array that is below (or equal to) the given

point. Its indices would be

i ¼ qN=qmax

� �
: ð22Þ

If i = 0 then j = 0 and k = 0. For i > 0,

j ¼ id��q=�
� �

ð23Þ

and

k ¼ id��q=2�
� �

: ð24Þ

If, however, k = id� then we reset k = 0. We can then compute

the index m. If i = 0, m = 0. For i > 0,

m ¼ Gi�1
q þ ijd� þ kþ 1: ð25Þ

The additions of id� + 1 and id� in the expressions for j and k,

respectively, ensure that small negative angles (owing to

floating point arithmetic) are accounted for correctly.

3.1.1. Hollow grids. If the minimal q value, qmin, is not close

to the origin (q = 0), a hollow grid that covers the q range of

interest, qrange = qmax � qmin, should be used. The spacing

between shells is �q ¼ qrange=N, where now N is the number of

shells in the hollow grid (N is half the Grid Size). The

number of shells in the full grid (from qmin = 0 to qmax) would

be

Nfull ¼ dqmax=�qe: ð26Þ

The full and hollow grids may not coincide. To address this

situation and to allow interpolations close to qmin and qmax,

three shells are added below qmin and above qmax. Hence the

modified qmin is q0min = qmin � 3�q. Following equations (22),

(23) and (24) we get

i0min ¼ bq
0
minNfull=qmaxc: ð27Þ

Because the first point in the grid is {q, �q, �q} = {q0min, 0, 0}, we

get

j 0min ¼ 0 ð28Þ

and

k0min ¼ 0: ð29Þ

In the full grid, the index of the first point in the hollow grid is

then given by equation (25):

mq0
min ¼ G

i0
min
�1

q þ i0min j 0mind� þ k0min þ 1

¼
3þ d�
� �

d�i0min

6
þ

1þ d�
� �

d�i02min

2
þ

d�d�i03min

3
þ 1: ð30Þ

The hollow grid is built exactly as the full grid is built, but it

contains only the amplitudes that start from mq0
min . The grid

points are located at qi = i�q, where i 2 fi0min; . . . ;Nfull þ 3g,

�i;j
q ¼ j�=id�, where j 2 f0; . . . ; id�g, and �i;j;k

q ¼ 2�k=id�,

where k 2 f0; . . . ; id�g. In the hollow grid, the indices, m, of

the amplitudes are offset by mq0
min with respect to the indices of

the same amplitudes in the full grid, given by equation (25):

mHollow Grid ¼ mFull Grid �mq0
min : ð31Þ

3.1.2. Grid density. As explained in our earlier paper

(Ginsburg et al., 2016), to get accurate results, the grid density

should be sufficiently high. To find the minimal number of grid

points, we need to know the distance L, which is the maximum

between the diameter of the sphere that envelopes the

structure and the distance of the most distant point in the

structure from the origin (0, 0, 0). According to the Nyquist–

Shannon sampling rate (Shannon, 1949; Beaulieu, 2002),

accurate representation using reciprocal grids requires that

the grid density satisfies �q ’ 2�=L (Ginsburg et al., 2016).

The number of grid points, G, is therefore

G ’ 2qmaxð Þ
3
� 2qminð Þ

3
� � L

2�

� �3

: ð32Þ

D+ has a Suggest Parameters tool (https://scholars.

huji.ac.il/uriraviv/book/suggests-parameters) that gets qmax

and the coordinates of the most distant point in the structure,

with respect to the origin (0, 0, 0), and returns the Grid Size

parameter (or 2N) required for D+:

2N ¼ 10
qmax � qminð ÞLþ 3

10

 �
þ 1

� �
; ð33Þ

where N is the number of shells in the spherical grid. In the

current version, qmin is assumed to be zero. Equation (33)

returns a multiple of ten.

It is faster to compute the same structure after placing its

center of mass at the origin. G will then depend only on the

dimension of the object itself rather than the size of the object

plus the length of its translation vector [see equation (32)].

3.1.3. Interpolation. As we often need amplitude values

that do not necessarily fall out exactly on a precomputed RG

point, we need to interpolate for most values. Cubic spline

interpolation is carried out serially, first �q, then �q and finally

q (Fig. 2). As the �q values are periodic and evenly spaced, all

the n derivatives (Di) for a given qi and � i, j
q can be computed

simultaneously by solving (Bartels et al., 1998)

computer programs

224 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

4 1 1

1 4 1

1 4 . .
.

. .
. . .

.
1

1 1 4

0
BBBBB@

1
CCCCCA

D0

D1

..

.

Dn�2

Dn�1

0
BBBBB@

1
CCCCCA ¼

3 F1 � Fn�1ð Þ

3 F2 � F0ð Þ

..

.

3 Fn�1 � Fn�3ð Þ

3 F0 � Fn�2ð Þ

2
666664

3
777775;

ð34Þ

where Fi are the amplitudes at each grid point and n = Ki, j.

This calculation is done once, upon computation of the RG,

and the derivatives are saved for later use. All subsequent (q,

�) cubic splines are calculated on the fly from four evenly

spaced q points, two above [ðqa1
;Fa1
Þ, ðqa2

;Fa2
Þ] and two below

[ðqb1
;Fb1
Þ, ðqb2

;Fb2
Þ] the desired q point (where qa2

is closer to

q than qa1
and qb1

is closer to q than qb2
). At each interpola-

tion, all the q points differ only in one component, whereas the

other two components are fixed. The amplitudes at the four

points are calculated using splines from previous interpola-

tions, using the following to calculate the derivatives:

2 1 0 0

1 4 1 0

0 1 4 1

0 0 1 2

0
BB@

1
CCA

Db1

Db2

Da1

Da2

0
BB@

1
CCA ¼

3 Fb2
� Fb1

� �
3 Fa1

� Fb1

� �
3 Fa2

� Fb2

� �
3 Fa2

� Fa1

� �

2
6664

3
7775; ð35Þ

which gives

Db1

Db2

Da1

Da2

0
BB@

1
CCA ¼ 1

15

�19Fb1
þ 24Fb2

� 6Fa1
þ Fa2

�7Fb1
� 3Fb2

þ 12Fa1
� 2Fa2

2Fb1
� 12Fb2

þ 3Fa1
þ 7Fa2

�Fb1
þ 6Fb2

� 24Fa1
þ 19Fa2

0
BB@

1
CCA: ð36Þ

The amplitude, F, at q values between points qb2
and qa1

is

calculated as

FðqÞ ¼ Fb2
þDb2

t þ 3 Fa1
� Fb2

� �
� 2Db2

�Da1

� �
t2

þ 2 Fb2
� Fa1

� �
þDb2

þDa1

� �
t3; ð37Þ

where

t ¼
jq� qb2

j

jqa1
� qb2

j
: ð38Þ

A crude error estimate of the cubic interpolation is deter-

mined by the RG density,	�3
q, which dictates an error of order

Oð�4
qÞ (Sonneveld, 1969).

Three additional shells beyond qmax are added to the grid,

so that interpolations can be performed all the way up to qmax.

When the required values fall between the first and the second

shells, the grid amplitudes that are used for interpolations are

taken from the origin (q = 0) and the first, the second and the

third shells. When the required values fall between the origin

and the first shell, the grid amplitudes that are used for

interpolations are taken from the first and second shells, the

origin, and the points on the first shell whose azimuthal and

polar angles are closest to

�þ �q

� �
mod 2� ð39Þ

and

�� �q

� �
: ð40Þ

3.2. The direct and hybrid methods

For large self-assembled structures the scattering amplitude

becomes highly oscillatory in q space. As a result the required

RG density (or RG size, Gq) becomes too high (Shannon,

1949; Beaulieu, 2002). D+ has two ways to overcome this issue:

the direct and hybrid methods. For both methods, the number

of computations or lookups can be reduced by identifying

identically oriented objects and for each only multiplying by

the phase factor associated with its unique position

[equation (11)].

3.2.1. The direct method. In the direct method, no RG is

used. Instead, the amplitude is directly computed at each one

of the required points in q space. Each geometry or PDB

object is identified and all its copies (orientations and loca-

tions) in space are collected. The intensity is then computed as

INðqÞ ¼
1

N

XN

i¼1

XJ

j¼1

XMu
j

m¼1

Fj A�1
j;mqi

� �XKj;m

k

exp iqi � Rj;m;k

� �������
������

2

; ð41Þ

where J is the number of different objects (or the total number

of different leaves; see Fig. 1). Mu
j is the number of unique

rotations Aj, m of object j. Kj, m is the number of copies of

object j with orientation m that were translated in real space

by vectors Rj, m, k. Orientation averaging is done according to

equation (47). The total number of directly calculated subunits

is

ns ¼
PJ

j¼1

PMu
j

m¼1

Kj;m: ð42Þ

3.2.2. The hybrid method. In the hybrid method, RGs are

combined with the direct method. All geometries and PDB

files (in other words, all the leaves in the hierarchical data tree

structure; see Fig. 1) are calculated to grids. Grids of assembly

symmetries are computed up to predetermined nodes in the

hierarchical data tree structure (Fig. 1). Once grids of

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 225

Figure 2
Illustration of the interpolations used in D+. To compute a specific q = (qi,
�i

q, �i
q) point (indicated in red), we first interpolate the �q values in the grid

(the orange points show a few grid points), which are periodic (along the
broken circle) and evenly spaced. We get the green points that are lying in
the (q, �q, �i

q) plane (solid thick black curves), shown in the figure. We
then use the green points to interpolate the �q values and obtain the blue
points, which are on the (q, �i

q, �i
q) line (solid thin line). Finally, we use the

blue points to interpolate at the required q values (red points). The
interpolation is done simultaneously for all the red points that are located
between adjacent blue points.

assembly symmetries are computed, their children are

discarded and not used. Assembly symmetries at higher hier-

archy levels continue as in the direct method [equation (41)]

but use the last computed RG for looking up values once per

copy of those structures at each one of the required points in q

space.

The evaluation is the same as in the direct method, except

that if RGs are computed Fj(Aj, m
�1 qi) is retrieved from the grid,

using interpolations (see Section 3.1.3), and not directly

computed. In other words, RGs are computed for all leaves;

grids may be calculated for internal nodes and if they are then

the node’s leaves are discarded and the internal node is

treated as a leaf. The new number of leaves, J, in the data tree

structure does not include the discarded grids. The hybrid

method can retain near atomic resolution while significantly

reducing the computation times. A more comprehensive

analysis of the hybrid method is provided in our earlier

publication (Ginsburg et al., 2016). Validation tests of the

direct and hybrid methods are shown in SOM Sections 9.1

and 9.2.

4. Numerical integration methods

To compute the scattering intensity of the assembled structure,

the squared norm of the final amplitude (or the amplitude of

the root in the data tree structure; Fig. 1) is calculated. In

solution, we have to average over all the orientations of the

structure in q space. Hence, the scattering intensity is

IðqÞ ¼

R 2�

0 d�q

R �
0 d�q F qð Þ

�� ��2sin �qR 2�

0 d�q

R �
0 d�q sin �q

; ð43Þ

where �q and �q are the polar and azimuthal angles in reci-

procal space, respectively (see Section 2.1.1). The actual

integration is done numerically using one of the methods

below.

Some numerical integration methods require generation of

random numbers. Pseudo-random numbers were generated by

the Mersenne twister algorithm, which has a period of 219937
�

1 [instead of 232 in the rand() function of C++]. Validation

tests of the integration methods used in D+ are shown in SOM

Sections 9.1 and 9.2.

4.1. Classic Monte Carlo integration

To compute equation (43), random �q
i and �q

i angles should

be generated, from which the vectors qi = (q, �q
i , �q

i) can be

obtained. The orientation average

INðqÞ ¼

PN
i¼1 F qið Þ
�� ��2sin �i

qPN
i¼1 sin �i

q

¼
�

2N

XN

i¼1

F qið Þ
�� ��2sin �i

q ð44Þ

needs to be computed until N is large enough, between the

limits Nmin and Nmax, that for each q we get

1�
INðqÞ

If ðqÞ

�����
�����
 "; ð45Þ

where " is a small number that defines our error. The value of

" is provided by the user (through the Convergence para-

meter). We chose f = N� pk with k 2 {1, 2, 3, 4}, where p = 100

for CPU computations and 8192 for GPU computations. In

practice, computations are often done up to Nmin, and INmin
is

saved. Each time the number of iterations has increased by p

from the previously saved curve, another curve is saved to a

matrix, which can contain up to four curves. After the first four

curves are saved, D+ checks if equation (45) is satisfied. If it is,

the computation ends; if not, the number of iterations is

increased by an additional p iterations and the last curve is

saved. The curves are saved on a first in, first out basis. Each

time a new curve is saved, the saved intensity curves are used

to check if equation (45) is satisfied.

To uniformly sample the polar and azimuthal angles we use

�i
q ¼ 2�u;

�i
q ¼ cos�1 2v� 1ð Þ;

ð46Þ

where u and v are random variates in the [0, 1] range (Weis-

stein, 2015). The intensity is then computed by

INðqÞ ¼
1

N

XN

i¼1

F qið Þ
�� ��2: ð47Þ

4.2. VEGAS: an adaptive Monte Carlo integration

As with numerical integrations in general, integrating the

Fourier space intensity does not always result in fast conver-

gence. In some cases (see later), using an adaptive method

leads to quicker convergence. To that end, we have included

two adaptive integration methods in D+.

Lepage (1978) introduced an effective method for a biased

sampling for the Monte Carlo integration. In this method, the

calculation cost grows linearly with the dimension of the

integral. The integration domain is divided into bins. After

each step of N evaluations, the bins are resized so that the

variance within each bin is roughly the same. This method

leads to a faster convergence when certain areas of the inte-

gration domain fluctuate faster than others. In the case of

scattering data, objects that are long in one or two dimensions

(and shorter in the remaining dimensions) have this char-

acteristic and therefore the adaptive integration method can

be helpful. The VEGAS method is implemented only for the

GPU in D+.

4.2.1. Implementation. We divide the integration space

from equation (46) (u and v) into Nb bins, each with a not

necessarily equal volume Vk
bin. For each bin, the same number

of intensity points, ip, are evaluated. The variance in each bin

is calculated with the following algorithm.

Per bin, the difference between the ith (unit offset,

i ¼ 1; 2; . . . ; ip) evaluation and the previous mean is

�i ¼ Vk
binIi � Mh ii�1: ð48Þ

computer programs

226 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

The ith mean is then

Mh ii¼
�i

i
þ Mh ii�1 ð49Þ

and the ith variance is

�2
i ¼ �2

i

i� 1

i

� �
þ �2

i�1: ð50Þ

In the case where there are multiple q values that are calcu-

lated simultaneously between two shells (see Section 9.2.3)

�2
i ¼

PNq

q

�2
i;q; ð51Þ

where Nq is the number of q points between the shells. The

boundaries between the bins are then adjusted such that the

variance among the �2
i values is minimized. Convergence is

determined by equation (45).

4.3. Adaptive Gauss–Kronrod

An alternative integration method that can be used in D+ is

the adaptive Gauss–Kronrod quadrature algorithm. The

integral is evaluated as a weighted sum at selected points. The

Gauss–Kronrod method used is a seven-point Gauss rule with

a 15-point Kronrod rule (G7, K15) (Kronrod, 1964; Laurie,

1997). The error estimate is given by the relative difference

between the two:

1�G7=K15

�� ��<: ð52Þ

Note that the Integration Iterations value in the

GUI is in fact the maximum recursion depth and should be of

the order of 10 or 15. This method is implemented only for the

CPU. It should be used for structures that have between one

and three large dimensions.

5. Atomic models

To calculate the scattering amplitude from a molecule, we take

its PDB file representation. Atom identification is based on

characters 77, 78 of every ATOM/HETATM entry (PDB v2.0

and greater; Berman et al., 2014). If an older file format is

used, D+ attempts to identify the atom from characters 13, 14

(no charge is assumed in this case; Bernstein et al., 1977).

Other deviations from the standard PDB file format should be

amended (or removed from the file) before loading the file

into D+. The formal charge is taken from characters 79, 80 (for

example, Mg2+). The formal charge changes the atomic

scattering amplitude and can therefore be important (see

Section 5.3). The coordinates of the jth atom are read into rj

and an index that represents the type of atom/ion is saved.

There is an index for each of the 209 atoms and ions listed in

International Tables for Crystallography (Ibers & Hamilton,

1974; Marsh & Slagle, 1983).

5.1. Centering

As the center of mass of many PDB files is not at the origin,

there is an option to find the center of mass and translate the

entire object in the opposite direction so that the origin

coincides with the center of mass, rc:m: ¼
P

j rjmj=
P

j mj,

where mj is the atomic mass of the jth atom. The vector rc.m. is

then subtracted from the coordinates of each atom. Centering

of the molecule is enabled by default in D+, but can be

disabled before adding a PDB file. Objects that are off-center

have an inherent phase in their scattering amplitude. Hence, it

is better to compute the same structure after its center of mass

is at the origin (see Section 3.1.2).

5.2. Computing the scattering amplitude from solvated
atomic models

The solution scattering amplitude from PDB structures can

be computed by using a combination of the following contri-

butions. There are two options to evaluate the scattering

amplitude. One option uses dummy atom Gaussian spheres to

approximate the volume of solvent excluded by the atoms:

FðqÞ ¼ aFv
molðqÞ � �0 f

Dummy Atom
Excluded SolventðqÞ

þ �Solvation Layer � �0

� �
FSolvation LayerðqÞ: ð53Þ

Alternatively, the volume of excluded solvent can be taken

into account as a collection of voxels:

FðqÞ ¼ aFv
molðqÞ � �0 FVoxel

Excluded SolventðqÞ

þ �Solvation Layer � �0

� �
FSolvation LayerðqÞ: ð54Þ

Fv
mol is explained in Section 5.3 [equation (56)], f

Dummy Atom
Excluded Solvent in

Section 5.5 [equation (63)], FVoxel
Excluded Solvent in Section 5.8

[equation (68)] and FSolvation Layer in Section 5.9 [equation (70)].

a is equal to 1 unless Solvent Only is indicated in D+, in

which case a = 0. If a is set to 0 and, in addition, the mean

electron density of the solvent, �0, is set to 0, we get the

contribution to the scattering amplitude only from the solva-

tion layer. By loading a PDB file and computing equation (53)

using a finite value for �Solvation Layer and �0, the solvent

contribution to the scattering is computed on the basis of the

radii taken from the literature (Fraser et al., 1978; Slater, 1964;

Svergun et al., 1995). The volumes of excluded solvent and the

solvation layer are then computed on the basis of the chosen

radii.

If �Solvation Layer is set to 0, when a PDB file is loaded, D+

does not add any solvation layer. If the same PDB file is

reloaded and only the contribution from the solvation layer is

computed (by setting a = 0, �0 = 0 and �Solvation Layer to the

mean electron density contrast in the solvation layer, with

respect to the bulk solvent), any other method for calculating

the solvation layer can be applied, and its contribution can be

added to the contributions of the vacuum and dummy atom

terms. Splitting the computation in this mode has another

advantage. Fitting the value of the solvation layer contrast

(�Solvation Layer � �0) becomes faster, as it is equivalent to

setting �Solvation Layer = 1 and fitting the scale factor of the

amplitude, and hence does not require a new grid computation

for the voxels of the solvation layer. In SOM Section 10, we

demonstrate how D+ can be used to compute the contribution

to the scattering amplitude from solvation layers of complex

structures in a scalable manner. The approach is based on

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 227

computing the amplitude of the solvated isolated subunits and

correcting for spatial overlaps between solvated subunits

when they are present in the complex. The corrections are

based on the amplitudes from solvated isolated pairs of

subunits within the complex and the solvated isolated sub-

units. The corrected solvated subunits are then docked into

the complex structure. If the same subunit has different

solvation overlap corrections then its original assembly

symmetry should be divided into smaller assembly symme-

tries, based on the different solvation overlap corrections.

More details and examples are given in SOM Section 10.

5.3. PDB (in vacuo)

The scattering amplitude of an atom j, in units of �r0, is

calculated using the five-Gaussian approximation atomic form

factor expression (Als-Nielsen & McMorrow, 2011; Grudinin

et al., 2017)

f 0
j ðqÞ ¼

X4

k¼1

ak exp �bk

jqj

4�

� �2
" #

þ c: ð55Þ

ak, bk and c are the Cromer–Mann coefficients (Ibers &

Hamilton, 1974; Marsh & Slagle, 1983), given in units of the

Thomson scattering length, r0 = 2.82 � 10�5 Å. Note that in

D+, however, r0 is set to 1.

Given a point in reciprocal space q, and a list of atoms and

their coordinates (as in PDB files), the scattering amplitude of

the entire molecular structure, containing n atoms, is given by

Fv
molðqÞ ¼

Pn
j¼1

f 0
j ðqÞ exp iq � rj

� �
; ð56Þ

where rj is the location in real space of the jth atom.

5.4. Displaced solvent from atomic models

The displaced solvent contribution may be calculated in

multiple ways (Fedorov et al., 1972; Pavlov & Fedorov, 1983;

Fraser et al., 1978; Svergun et al., 1995; Park et al., 2009;

Bardhan et al., 2009; Poitevin et al., 2011; Koutsioubas &

Pérez, 2013; Schneidman-Duhovny et al., 2013; Knight & Hub,

2015; Grudinin et al., 2017). One way is to subtract Gaussian

dummy atoms localized at the center of each atom (Fraser et

al., 1978; Svergun et al., 1995; Förster et al., 2008; Schneidman-

Duhovny et al., 2010, 2013; Grudinin et al., 2017); another way

is to determine the displaced volume and shape using voxels

(Pavlov & Fedorov, 1983; Bardhan et al., 2009; Virtanen et al.,

2011). Both methods can be used in D+. Using the Python API

of D+ and computer simulations, more accurate methods can

be applied [see, for example, Knight & Hub (2015)].

5.5. Solvent as Gaussian dummy atoms

The mean atomic volume Vm ¼
P

j Vj and mean atomic

radius rm ¼ ½ð3=4�ÞVm�
1=3 are computed on the basis of the list

of atoms or atomic groups in the PDB file. Vj ¼ ð4�=3Þr3
j is the

approximated volume of solvent excluded by the jth atom (or

atomic group) and rj is the published experimental atomic

radius of the jth atom (or atomic group) (Fraser et al., 1978;

Svergun et al., 1995; Grudinin et al., 2017). When absent, the rj

values were replaced by empirical radii (Slater, 1964). To

match the radii used in CRYSOL (https://www.embl-hamburg.

de/biosaxs/crysol.html) (ATSAS 2.8.2; Franke et al., 2017), we

modified the carbon and nitrogen radii to be 1.577 and

0.8414 Å, respectively.

A Gaussian dummy atom is placed at the center of each

atom in the PDB file. The electron density of the Gaussian

sphere of atom j is

�jðrÞ ¼ �0

rj

rm

� �3

exp �
9�

16

� �1=3
rj j2

r2
m

" #

¼ �0

Vj

Vm

exp ��V�2=3
m rj j2

� �
; ð57Þ

where �0 is the mean electron density of the bulk solvent (for

example, �water
0 = 334 e nm�3). The Gaussian electron density

profile is normalized so that the total number of excluded

electrons, which is given by
R

dr �jðrÞ dr ¼ �0Vj, is equivalent to

that of a uniform sphere of volume Vj. The reason for using the

mean atomic radius, rm (or the mean atomic volume Vm), in

the exponent is to be able to uniformly adjust (and account

for) the volume of excluded solvent throughout the entire

structure [using equation (60)]. Vm can be slightly varied to

better fit experimental data. The scattering amplitude contri-

bution of the Gaussian dummy atom j is then

Fd
j ðqÞ ¼ �0

Vj

Vm

Z2�
0

d�

Z�
0

d�

Z1
0

exp �
9�

16

� �1=3
r2

r2
m

" #

� expðiq � rÞr2 sin � dr: ð58Þ

The result depends only on the magnitude of the atomic radius

(or the atomic volume, Vj), owing to the spherical symmetry of

�j(r), and is given by

Fd
j ðqÞ ¼ �0Vj exp �

V2=3
m q2

4�

� �
: ð59Þ

This expression reproduces the calculations of CRYSOL

(ATSAS 2.8.2), which has been extensively used and shown to

adequately fit experimental data (Förster et al., 2008;

Schneidman-Duhovny et al., 2010, 2013; Svergun et al., 1995;

Grudinin et al., 2017).

D+ accepts both positive and negative values of bulk

solvent electron density, �0. Negative �0 is unphysical.

However, when �0 > 0 the contribution of Fd
j is subtracted

from other amplitudes [see equation (61)]. Negative �0 values

can only be used to add the contribution of the excluded

solvent, Fd
j [or equation (69)], to other amplitudes. �0 is also

subtracted from the electron density of the solvation layer [see

equations (53), (54) or (70)]. If there is a solvation layer,

negative �0 means that the magnitude of �0 will be added to

the electron density of the solvation layer.

To uniformly adjust Vm, each Fj
d is multiplied by

C1ðqÞ ¼ c3
1 exp �

V2=3
m q2 c2

1 � 1
� �
4�

� �
: ð60Þ

computer programs

228 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

The default value of c1 is 1, corresponding to C1(q) = 1. By

slightly varying the value of c1, the mean volume of solvent

excluded by the atoms is adjusted to better fit experimental

data, as done in FoXS (Förster et al., 2008; Schneidman-

Duhovny et al., 2010, 2013), CRYSOL (Svergun et al., 1995) or

Pepsi-SAXS (Grudinin et al., 2017). The contribution of atom j

to the scattering amplitude in solution is then

f s
j ðqÞ ¼ f 0

j ðqÞ � C1ðqÞF
d
j ðqÞ: ð61Þ

The solution scattering amplitude from a molecule, given a list

of n atoms whose coordinates are ri, is

Fs
molðqÞ ¼

Pn
j¼1

f s
j ðqÞ exp iq � rj

� �
; ð62Þ

and

�0 f
Dummy Atom
Excluded Solvent ¼ C1ðqÞ

Pn
j¼1

Fd
j ðqÞ exp iq � rj

� �
: ð63Þ

5.6. Atomic groups

The PDB files may contain atomic groups. The type of

atomic group is determined by the 14th, 15th and sometimes

16th columns (labeled as CA, CB or CG, for example, corre-

sponding to C�, C� or C) and the 18th to 20th columns that

contain the type of amino acid or nucleic acid. This combi-

nation determines the type of atomic group (CH, CH2 or CH3

in the above example). Other atomic groups are listed in

Table 1 of Svergun et al. (1995). If water molecules are

included in a PDB file, D+ will compute their contribution to

the scattering curve.

5.7. Implicit and explicit hydrogen atoms

If hydrogen atoms are included or added to the PDB file

(Chen et al., 2010), D+ will explicitly compute their contri-

bution to the scattering amplitude. The amplitude of the

hydrogen atoms is computed on the basis of their position, as

listed in the PDB file. In that case, only the contribution from

the heavy atom of each atomic group is taken into account (to

avoid double counting of hydrogen atoms).

If, however, no hydrogen atoms are included in the PDB

file, the contribution of hydrogen atoms will be implicitly

taken into account using a five-Gaussian approximation

[equation (55)], whose coefficients were obtained as follows.

Firstly, the amplitude in vacuum of each type of atomic group

was computed by explicitly adding the hydrogen atoms (Chen

et al., 2010) to the heavy atom of the atomic group. The result

is a sum of Gaussian functions. Secondly, the coefficients of the

five-Gaussian approximation that best fitted each atomic

group amplitude were found (see Table 1), stored and used

when needed. Other combinations of coefficients, however,

may also fit (Grudinin et al., 2017).

Solvent subtraction is done according to equation (59),

using the atomic group radii from Table 1 of Svergun et al.

(1995), with the following adjustments to match the radii used

in CRYSOL (ATSAS 2.8.2). The atomic group radius, RAG,

was obtained by summing the heavy-atom volume, VHA, and

hydrogen-atom volumes, nHVH, where nH is the number of

hydrogen atoms in the atomic group and VH is the volume of a

hydrogen atom. The atomic group volume is therefore VAG =

VHA + nHVH, and its radius is RAG = (3VAG/4�)1/3, in agree-

ment with Svergun et al. (1995). Fig. S3 and the figures in SOM

Section 9.2 show that the results of D+ are in agreement with

those of CRYSOL (ATSAS 2.8.2) for atomic models in solu-

tion with either implicit or explicit hydrogen atoms.

5.8. Voxelized solvent

In this method, we equally divide the space occupied by the

molecule into voxels of a predetermined size, v (whose default

value is v = 0.2 nm, which is smaller than used by Pepsi-SAXS;

Grudinin et al., 2017). For each voxel, we determine whether it

contains an atom (or part of one) or not by applying the

following algorithm.

(1) Allocate space. The occupied space is defined by going

over every atom i, taking its center coordinates

ðci ¼ fci
x; ci

y; ci
zgÞ, adding and subtracting the atomic radius (ri)

to/from each coordinate, and selecting the minimum and

maximum in each of the three dimensions, minðci
j � riÞ and

maxðci
j þ riÞ, respectively, where j 2 {x, y, z}. The atomic radii

used can be selected (by the user) from the dummy atoms’

(Svergun et al., 1995), van der Waals (Bondi, 1964; Mantina et

al., 2009), empirical (Slater, 1964) or calculated radii (Clem-

enti et al., 1967). Once the range is determined, it is expanded

by th ¼ max½rprobe;
�, where rprobe is the Probe Radius and

is the solvation layer thickness. The minimum and maximum

locations are stored as

jmin ¼ min ci
j � ri

� �
� th þ 2vð Þ ð64Þ

and

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 229

Table 1
The coefficients for the five-Gaussian approximation for implicit hydrogen atomic groups.

Atomic group a1 b1 a2 b2 a3 b3 a4 b3 c

CH 0.894937 55.7145 0.894429 4.03158 3.78824 24.8323 3.14683 � 10�6 956.628 1.42149
CH2 1.61908 52.1451 2.27205 24.6589 2.1815 24.6587 1.9254 � 10�3 152.165 1.92445
CH3 12.5735 38.7341 �0.456658 �6.28167 5.71547 54.955 �11.711 47.898 2.87762
NH 5.06991 � 10�3 108.256 2.03147 14.6199 1.82122 14.628 2.06506 35.4102 2.07168
NH2 3.00872 28.3717 0.288137 63.9637 3.39248 3.51866 2.03511 28.3675 0.269952
NH3 0.294613 67.4408 6.48379 29.1576 5.67182 0.54735 6.57164 0.547493 �9.02757
OH �2.73406 22.1288 9.66263 e-3 94.3428 6.64439 13.9044 2.67949 32.7607 2.39981
SH �127.811 7.19935 62.5514 12.1591 160.747 1.88979 2.34822 55.952 �80.836

jmax ¼
max ci

j þ ri
� �

þ th þ vð Þ

v

 �
vþ v ð65Þ

for each j. The space is then allocated, divided into

Q
j

jmax � jminð Þ

" #
=v3

& ’
ð66Þ

voxels of volume v3 and labeled as non-occupied (0 or blue in

Fig. 3).

(2) Mark all the voxels that contain atoms. For each atom, i,

the indices of the lowest neighbor are calculated by

vi
j ¼ bðc

i
j � jminÞ=vc for each j. Each voxel within ri of cj

i is

marked as an atom voxel (1 or green in Fig. 3).

(3) Mark solvent-accessible layers. Around the lowest

neighbor of each atom, vi
j, each voxel within

2þ bðri þ rprobeÞ=vc voxels for each j is tested. Each voxel

within ri þ rprobe of cj
i is marked as solvation (2 or red in Fig. 3)

if it was previously non-occupied (0 or blue in Fig. 3). The

addition of rprobe to each atom allows us to simulate a spherical

probe that would determine the solvent accessibility as done

by Pavlov & Fedorov (1983).

(4) Outer solvent. If the user selects Fill Holes then any

enclosed unoccupied voxels should be marked as excluded

volume. To differentiate between the enclosed and outer

unoccupied voxels, a 3D queue-based flood-fill algorithm

[explained by Heckbert (1990), for example] labels the outer

solvent as 3 (or light blue in Fig. 3). Any remaining 0 (or blue)

voxels will be considered ‘holes’ and marked as 1 (or green in

Fig. 3). If the user did not select Fill Holes then all 0 (or

blue) voxels are marked as 3 (or light blue in Fig. 3).

(5) Mark solvation layer. Find all voxels that are marked as

bulk solvent (3 or light blue) and neighbor a voxel marked as

solvation (2 or red). All red voxels within brprobe=ve voxels of

them are marked as 4 (or pink in Fig. 3).

If rprobe >
 then part of the pink (or 4) layer must be

marked as light blue (3). Therefore, we find all the voxels that

are marked pink (4) and neighbor light blue (3). All pink

voxels within bðrprobe �
Þ=ve voxels of them are marked as

light blue (3).

If rprobe <
 then the pink (4) layer must be expanded by the

difference. Therefore, we find all the voxels that are marked

pink (4) and neighbor light blue (3). All light-blue voxels

within bð
� rprobeÞ=ve voxels of them are marked as pink (4).

To ensure we did not accidentally change a green (or 1) to

pink (or 4), we repeat step 2.

(6) Reduce voxels to irregular boxes. To shorten the

computation time, when possible, voxels are binned into larger

irregular rectangular boxes.

The scattering amplitude of the jth voxel (or box) of

dimensions !j, �j and �j, whose center is at rj
Voxel, is (Székely et

al., 2010)

f Voxel
j qð Þ ¼

8

qxqyqz

sin
qx!j

2

� �
sin

qy�j

2

� �
sin

qz�j

2

� �
� exp iq � rVoxel

j

� �
: ð67Þ

The total scattering amplitude of the excluded voxels is then a

sum over the green voxels,

FVoxel
Excluded SolventðqÞ ¼

P
j2fGreen Voxelsg

f Voxel
j ðqÞ; ð68Þ

and the scattering amplitude of the molecule in the solution is

Fsv
molðqÞ ¼ Fv

molðqÞ � �0FVoxel
Excluded SolventðqÞ: ð69Þ

5.9. Solvation layer

To determine the scattering amplitude of the solvation

layer, we continue and expand upon the method in Section 5.8.

computer programs

230 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

Figure 3
Stages in determining voxelized solvent and solvation. Here, a slice of C60 is shown as an example of the stages. First the required space is determined,
allocated and marked blue (or 0). Second, all voxels within the atomic radius of each atom are marked as excluded volume (green or 1). Third, an
additional Probe Radius is added around each atom, marking only blue voxels as red (2). The fourth step is to determine the interfaces between the
solvent and the molecule. Depending on how the user chooses to treat ‘trapped’ volume (Fill Holes or not), this is either a trivial swap of blue to light
blue (No Fill Holes) or a 3D flood-fill in order to differentiate between inner and outer interfaces. In the case of Fill Holes, the blue voxels that are not
changed to light blue are marked as excluded volume (green, 1). The fifth stage marks all red voxels within one Probe Radius of the interface between
light blue (3) and red (2) as pink (4). In the sixth stage, the solvation layer thickness is completed from the interface between pink (4) and light blue (3).
The final stage marks the remaining red voxels (2) as excluded volume (green, 1). The gray scale bars in the rightmost figures correspond to 1 nm.

The contribution of the solvation layer to the scattering

amplitude is computed as the sum over the scattering ampli-

tudes from the collection of voxels composing that layer (pink

voxels). The scattering amplitude of the solvation layer voxels

is

FSolvation LayerðqÞ ¼
P

j2fPink Voxelsg

f Voxel
j ðqÞ: ð70Þ

The scattering amplitude of the solvated molecule is

FSolvated MoleculeðqÞ ¼ Fs
molðqÞ þ �Solvation Layer � �0

� �
� FSolvation LayerðqÞ; ð71Þ

where Fsv
molðqÞ may be used instead of Fs

molðqÞ.

By default, D+ sets rprobe = 0.14 nm, which corresponds to

the radius of a water molecule (Richards, 1977). �Solvation Layer,

in units of e nm�3, is set to 0. When �Solvation Layer = 0, D+

ignores the contribution from the solvation layer. Other values

should be assigned by the user as relevant. SOM Section 9.3

shows validation tests of the solvation layers of atomic models,

by creating atomic models that form hollow or filled spherical

structures. The scattering curves from the solvated atomic

models were then compared with the scattering curves from

the corresponding geometric models to which solvation layers

were added. In Figs. 5 and 6 (Section 13.2) and S3, and in SOM

Section 10, there are examples in which the contribution of the

solvation layer was taken into account.

5.10. Anomalous scattering

In modern synchrotrons, the energy of the X-ray photons

can be selected by a monochromator. If scattering experi-

ments are repeated at multiple wavelengths and the structure

contains atoms whose resonant scattering terms, f 0 and f 00,

respond to the energy scan, additional structural information

can be derived. When modeling atomic structures with

anomalous scattering, the scattering amplitude from an atom j

in units of �r0, in vacuum, is given by (Als-Nielsen &

McMorrow, 2011)

f va
j ðq; �Þ ¼ f 0

j ðqÞ þ f 0j ð�Þ þ if 00j ð�Þ: ð72Þ

Therefore, one needs to provide input in the form of f 0j(�) and

f 00j(�) for all the atoms whose resonant scattering terms have a

significant contribution to the scattering signal in the relevant

X-ray wavelength. In D+, this is done via a text file loaded

after loading the PDB file of the atomic structure. D+ uses the

input without any sanity checks, so it is the user’s responsi-

bility to ensure that appropriate values are used. In particular,

note that in D+ r0 is set to 1 when f 0
j(q) is computed. The input

is an { f 0j, f 00j} pair with either a list of the atom indices in the

PDB file or an ion type [equation (72) will be applied to all

ions of that type]. This type of input may be obtained from

X-ray fluorescence spectra and the computer program

CHOOCH (Evans & Pettifer, 2001). See the User’s Manual

of D+ (https://scholars.huji.ac.il/uriraviv/book/users-manual)

and Usage Examples (https://scholars.huji.ac.il/uriraviv/book/

examples) for more details.

The anomalous scattering amplitude in solution from atom j

is

f sa
j ðq; �Þ ¼ f va

j ðq; �Þ � Fd
j ðqÞ ð73Þ

and that from a molecule is

Fas
molðq; �Þ ¼

Pn
i¼1

f sa
i ðq; �Þ exp iq � rið Þ: ð74Þ

5.11. DebyeCalculator

DebyeCalculator (https://scholars.huji.ac.il/uriraviv/software/

debyecalculator) is a separate tool for computing the solution

scattering intensity from atomic models using the Debye

formula (Debye, 1915):

IcðqÞ ¼
Xn

i

Xn

k

f c
i ðqÞ f

c
k ðqÞ

sin qrikð Þ

qrik

: ð75Þ

The Debye formula applies for spherically symmetric scat-

terers, which is the case for atoms. fi
c(q) and fk

c(q) are the

atomic form factors in the relevant experimental conditions

(vacuum or solution, c 2 {v, s}) of the ith and kth atoms,

respectively, and rik is the distance between the atoms i and j.

The advantage of the Debye approach is that the orientation

average is computed analytically; hence the accuracy is better

than that of any of the other methods, which numerically

compute the orientation average (Ginsburg et al., 2016;

Svergun et al., 1995; Watson & Curtis, 2013; Schneidman-

Duhovny et al., 2010; Grudinin et al., 2017).

DebyeCalculator is provided with D+ and computes the

scattering intensity using equation (75). DebyeCalculator runs

on both CPUs and GPUs. The results of DebyeCalculator and

D+ are similar when using sufficient integration iterations and

grid density in D+. Comparison tests between CRYSOL

(Svergun et al., 1995), DebyeCalculator and D+ are presented

in SOM Section 9.2.

6. Geometric form factors

Leaves in the hierarchical tree structure (Fig. 1) may also be

geometric models. D+ computes the scattering amplitude of

uniform rectangular cuboids, multiple uniform spherical shells,

concentric uniform or Gaussian hollow cylinders, and helices

with a circular cross section (Székely et al., 2010). Each layer or

shape can have uniform electron density contrast with respect

to the solvent. In X+ (Ben-Nun et al., 2010, 2016), which is a

single-geometry software, the form factor of infinite flat slabs

or infinitely long cylinders can be computed. In contrast, D+

can add different (geometric or atomic) models to one

another. As adding infinite models is unphysical, only models

with finite dimensions can be computed in D+. In SOM

Section 9.1, the geometric models in D+ are tested and

compared with the equivalent models in X+ (Ben-Nun et al.,

2010, 2016). To cross validate the accuracy of the geometric

models of D+, the scattering curves from the geometric models

were compared with their corresponding atomic models. The

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 231

atomic models contained oxygen atoms that were randomly

packed into each of the geometric shapes until they filled the

shape. The adequate agreement between the models is

presented in SOM Section 9.3.

7. Structure factor

Hierarchical data tree structures often include assembly

symmetries, which describe the arrangement in space (shifts

and rotations) of identical subunits. The contribution of

assembly symmetries to the scattering amplitude (structure

factor) may be calculated in the following ways.

7.1. Space-filling symmetry

If identical subunits are only shifted with respect to one

another, as in a finite primitive Bravais lattice, space-filling

symmetries can be defined. In three dimensions, space-filling

symmetries of subunit j are defined by selecting the xy plane

and using the following vectors. A1
j of length aj along the x

direction and A2
j of length bj in the same plane. The angle

between the two vectors is 	 j. We can then add a third vector

A3
j , defined by its length cj and two more angles �j and �j,

where the former is between the vectors A1
j and A3

j , and the

latter is between the vectors A2
j and A3

j . The angles should

satisfy the conditions that the sum of any pair of angles is

larger than (or equal to) the third angle and that sin	 j
6¼ 0. D+

checks that both conditions are satisfied. If the sum of two

angles equals the third angle, or if sin	 j = 0, the symmetry is

2D. In this case, the correct usage of D+ is to project the 2D

symmetry onto the xy plane. The projection is done by

providing the values of aj, bj and 	 j, setting both �j and �j to be

90�, and setting the number of repeating subunits in the third

(z) direction to be 1. For 3D space-filling symmetry, the real-

space basis vectors are given by

A
j
1 ¼ ða

j; 0; 0Þ; ð76Þ

Aj
2 ¼ ðb

j cos 	 j; bj sin 	 j; 0Þ; ð77Þ

A
j
3 ¼ cj cos�j;

cjt j

sin 	 j
;

cjBj

sin 	 j

� �
; ð78Þ

where

t j ¼ cos �j � cos�j cos 	 j ð79Þ

and

Bj ¼ sin2 	 j � sin2 	 j cos2 �j � t j
� �2

h i1=2

: ð80Þ

D+ checks that sin2 	 j � sin2 	 j cos2 �j � ðt jÞ
2 > 0. In real

space, the unit-cell vectors Ah
j can then be rotated by a rota-

tion matrix Oj, so that the final unit-cell vectors are ah
j = OjAh

j ,

where h 2 {1, 2, 3}. If substructure j has a space-filling

symmetry with Nh
j repeating subunits in the âa

j
h directions, the

space-filling scattering amplitude, F j
sf, is

F
j
sfðqÞ ¼ Fj O�1

j q
� �

exp iq � Tj

� �
SF j
ðqÞ: ð81Þ

Here, Fj is the scattering amplitude of repeating subunit j that

was rotated by matrix Oj and shifted by a vector Tj. The

structure factor, SFj(q), is given by

SFj
ðqÞ ¼

PðNj

1
�1Þ

n
j
1
¼0

PðNj
2
�1Þ

n
j
2
¼0

PðNj
3
�1Þ

n
j
3
¼0

exp iq � R
j

n
j
1
;nj

2
;nj

3

� �

¼
Y3

h¼1

1� exp �iN
j
hq � aj

h

� �
1� exp �iq � aj

h

� � ; ð82Þ

where

Rj

n
j
1
;nj

2
;nj

3

¼ n
j
1aj

1 þ n
j
2aj

2 þ n
j
3aj

3 ð83Þ

are the lattice vectors and n
j
h are integers.

7.2. Manual and scripted symmetries

If the orientation Aj
k and location Rj

k of each of n identical

subunits of type j are different, D+ enables manual positioning

of each repeating subunit. The scattering amplitude, F j
man, is

then

Fj
manðqÞ ¼

Pn
k¼1

FjðA
j
k

�1
qÞ exp iq � R

j
k

� �
: ð84Þ

The positions and orientations can be calculated from a Lua

script, taken from a docking list (DOL) file or input manually

in the GUI. Each structure-factor contribution may then be

recursively used in a hierarchical model (Fig. 1). Lattice sum

validation tests are shown in SOM Sections 9.1 and 9.2.

Additional examples can be found in the User’s Manual

(https://scholars.huji.ac.il/uriraviv/book/users-manual, Usage

Examples (https://scholars.huji.ac.il/uriraviv/book/examples)

and Tutorials (https://scholars.huji.ac.il/uriraviv/book/tutorials-d).

8. Mixtures of uncorrelated populations

The scattering intensity from a mixture of multiple uncorre-

lated populations is equal to the weighted sum of their

intensities, where each weight is the corresponding population

molar fraction (Als-Nielsen & McMorrow, 2011; Spinozzi et

al., 2014):

IðqÞ ¼
PNP

i¼1

SiIiðqÞ: ð85Þ

NP is the number of populations. Si � 0 and Ii are the

normalized mass fraction and intensity of the ith population,

respectively. Equation (85) slightly differs from equation (7)

of Konarev et al. (2003), which uses volume fractions rather

than normalized mass fractions.

To simplify this model for optimization, we impose an

implicit normalization constraint:

PNP

i¼1

Si ¼ 1: ð86Þ

The weighted sum [equation (85)] is then multiplied by the

total mass of the measured sample. The motivation behind this

modification is twofold:

computer programs

232 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

(1) To disallow physically incoherent Si weights (for

example, negative values).

(2) To simplify the total mass parameter as a scale constant

multiplier. This causes the derivatives of I(q) in equation (85)

(used when fitting, see Section 9.1) to be faster to compute.

To formulate the new model, we define S �
P
jSij and �i �

|Si|S
�1. The new model is thus given by

IðqÞ ¼ S
PNP

i¼1

�iIiðqÞ: ð87Þ

Equation (87) is equivalent to equation (85).

9. Important features

In our implementation of the above algorithms, D+ employs

several computational components. Below, we highlight some

of the features that make D+ computationally efficient and

versatile.

9.1. Fitting

Whereas all of the above sections deal with generating a

single evaluation given a set of structural parameters, the

purpose of this feature is to allow the fitting of a structural

model to experimental data. To fit models to data, we incor-

porated Ceres Solver (Agarwal et al., 2016) to solve the least-

squares problem

min
X

1
2

P
i

�i fi xi1
; . . . ; xik

� ���� ���2
� �

Subject to : lj
 xj
 uj

ð88Þ

where xi are the model mutable variables. In our case, the sum

over i is just a single term (in Ceres Solver terminology, there is

only one residual block). fi(�) is a cost function that computes

the residuals of the objective function (and calculates the

Jacobian when asked). Before fitting, the cost function is

initialized with the experimental scattering intensity

IexperimentalðqiÞ, an object that computes the expected scattering

intensity ImodelðqiÞ (as explained in the sections above) and a

functor that evaluates the residuals. The residuals, fi, can either

be the normal Iexperimental � Imodel, a ratio

1� ðIexperimental=ImodelÞ
1; ð89Þ

where the is chosen so that the residual is non-negative, or a

logarithmic residual,

j logðIexperimental=ImodelÞj: ð90Þ

�i(�) is a loss function that can be chosen by the user. The

complete standard set of loss functions (trivial, Huber, soft L1,

Cauchy etc.) from Ceres Solver (http://ceres-solver.org/

nnls_modeling.html) is available in the GUI of D+. Cauchy,

for example, provides a robust curve fitting as it can deal with

outliers in the data. The method with which Ceres Solver tries

to minimize �i(�) can also be chosen from several methods

including BFGS, LBFGS, Levenberg–Marquardt or Dogleg.

When using Levenberg–Marquardt, upper and lower bound

constraints for each mutable fitting parameter are also

supported by Ceres Solver. To deal with noisy function

evaluation (owing to Monte Carlo-based orientation aver-

aging), we use the Ridders adaptive numeric differentiation

method in Ceres Solver (Ridders, 1982).

The variables that control the fitting algorithms are Step

Size, which sets a limit on the fraction by which mutable

parameters can be changed, Iterations, the maximum

number of fitting attempts, Convergence, the cost function

cutoff standard, and Der eps, which regulates the value of

Step Size on the basis of the change in the value of the cost

function. D+ can find the local minimum for a plausible set of

initial guess model parameters. Finding the initial guess should

be done by several Generate iterations. Alternatively, one

can use the Python API of D+ to generate the scattering

curves and perform the optimization or fitting using the

available fitting algorithms of Python, which may also include

global fitting algorithms [see Section 9.3 and the examples in

the Python API README file (https://dplus-python-api.

readthedocs.io/en/latest/README.html#readme)].

Fitting with certain options (for example, the thickness of a

solvation layer, as explained in Sections 5.8 and 5.9) can take a

significant amount of time (hours). When this is the case, it is

better to use educated guesses. For small solvated structures

(like soluble proteins), fitting with CRYSOL or FoXS (https://

modbase.compbio.ucsf.edu/foxs/) is faster than with D+ as no

grids are computed in those programs. Examples and valida-

tion tests of the fitting algorithms are shown in Fig. 5 (Section

13.2) and SOM Section 9.4.

9.2. Parallel computation and optimizations

Even when using RGs to speed up the computations, the

computations are relatively long and can take anywhere from

a second or so to several hours. We employed multiple

methods to reduce the computation time.

9.2.1. Precalculation. Often, there are calculations that are

repeated many times that can be cached and retrieved from

memory, saving computation time. For example, when calcu-

lating the scattering amplitudes of a given �q�q plane, all the

atomic form factors for each ion/atom are exactly the same,

with the contribution differing only by the phase. Additionally,

if the atoms’ amplitudes are sorted before the computations,

the calculation can be done once per ion/atom type, improving

some branch prediction or even eliminating it entirely.

When computing the amplitude of assembly symmetries,

multiple copies of identically oriented substructures are

identified and listed together [equation (11)]. This can signif-

icantly reduce the number of lookups to memory during the

amplitude computations, speeding them up in an almost linear

manner. This is particularly important when using the direct or

hybrid methods for orientation averaging, as the number of

amplitude evaluations is usually much higher in the simple

amplitude computations [equation (41)].

9.2.2. Parallelization. The computations of the amplitude

RGs are ‘embarrassingly parallel’, meaning that for each point

on the grid the exact same calculation is performed, differing

only in q. Modern GPUs are geared towards quickly

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 233

computing tasks of this type. Speedups,

compared with a regular CPU

processor, can be between one and four

orders of magnitude. The speedup

depends on the choice of hardware, the

algorithm and the implementation

(Ben-Nun et al., 2015; Rubin et al.,

2015).

For most of the grid operations (leaf

and symmetry amplitude calculation,

orientation averaging) a GPU kernel

was written using CUDA (https://

www.geforce.co.uk/hardware/technology/

cuda). The chosen layout of the grid

minimizes the number of memory

accesses by allowing q to be calculated

from a single index (m in Section 3.1).

Memory accesses tend to be the

bottleneck of GPU kernels and can

even make a GPU computation slower

than a CPU one. Implementations on

the CPU are all parallelized using

OpenMP (https://www.openmp.org/).

One of the most commonly calcu-

lated functions is expðiq � rÞ. In atomic

models, for example, there are many

atoms situated at different points in

space. By arranging r as an array of structs, this can be

vectorized to theoretically achieve up to �4 to �8 speedups

using streaming SIMD extensions (SSE) or advanced vector

extensions (AVX), where SIMD stands for single instruction,

multiple data. We used the Eigen (http://eigen.tuxfamily.org/

index.php?title=Main_Page) library for the vectorization of

the trigonometric functions (Guennebaud et al., 2010).

9.2.3. Batch integration. Our RG is arranged in concentric

layers. In order to evaluate the amplitude at a point between

layers, we first interpolate multiple times in the four layers

surrounding that point (two on either side). During the

numerical orientation averaging, many points need to be

evaluated. In order to minimize the number of accesses to the

RG, the final interpolation (along the q direction) is used to

evaluate the amplitude at all the desired q values (Fig. 2).

Thus, if there is an experimental measurement at every

multiple of 0.0125 nm�1 and the RG is spaced every 0.1 nm�1

then D+ gets the amplitude of eight points at once. The

convergence criterion is simply that all of the points are

individually converged. This results in an approximately 8�

speedup in this example.

9.3. Interfaces

D+ comes with a full-featured user-friendly GUI for

Windows based on the .NET framework. This allows inter-

active construction of models and helps the user gain under-

standing of how all parameters affect the structure using

visualization as well as the scattering intensity (see Fig. 4).

The actual calculation unit is separate from the GUI and

can be compiled on both Windows and Linux. Communication

between the GUI and the separated backend is done via JSON

(https://www.json.org/) and can be easily set up behind a web

server in a scalable manner. In addition to a stand-alone

backend, there is a Python wrapper to D+ (https://scholars.

huji.ac.il/uriraviv/book/python-api), allowing easy integration

into many other models, simulations or advanced tools to

perform more involved analyses, including, for example,

expressing model parameters by rigorous physically based link

functions, accounting for polydispersity in various ways and

applying various fitting algorithms (Spinozzi et al., 2014). The

amplitude of the grid can be exported and used in many

different ways, for example, by multiplying it externally by any

lattice sum or structure factor function, and loading the

resulting grid amplitude back into D+ for orientation aver-

aging.

10. Accessory tools

10.1. PDBUnits

PDBUnits (https://scholars.huji.ac.il/uriraviv/book/pdbunits)

is an accessory software tool for automatically finding the

orientation and translations (assembly symmetry) of repeating

subunits in a complex supramolecular structure. The input of

the tool is (1) the complete structure represented by a PDB

file, (2) the structure of a subunit, represented by a smaller

PDB file, at a specific orientation (that we shall call the

‘original’ orientation) and (3) the tolerance, given by the

computer programs

234 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

Figure 4
A screenshot of the D+ GUI. The pane positions are all customizable. The user can visualize the
structure being modeled alongside its SAXS scattering profile against data.

maximum root-mean-squared-displacement value within

which repeating subunits can be considered similar. The

program reads the PDB file of the complete structure and

finds all the instances of the subunit. If subunits are split at

different locations in a PDB file, the parts should be combined

into complete subunits before using the tool. For each

instance, the rotation and translation with respect to the

original subunit are computed. The tool exports the assembly

symmetry of each kind of subunit as a docking list (DOL) text

file, which is the required input for D+ in order to compute the

entire structure using the RG algorithm (Ginsburg et al.,

2016). More details about the tool are provided in SOM

Section 3.

In some cases, before using D+, it is helpful to find the

principal axes of an atomic structure (using the algorithm

explained in SOM Section 4; Jolliffe, 2002) in order to align

subunits with respect to one another.

10.2. Suggest Parameters

Suggest Parameters (https://scholars.huji.ac.il/uriraviv/book/

suggests-parameters) is a tool that gets as an input qmax and

the x, y and z coordinates of the point, P, that is most distant

from the origin in the structure for which grids are going to be

used. In the current version, qmin is assumed to be zero. If grids

are used for the entire structure, P should be the most distant

point in the entire structure. However, when the hybrid

method is used, P should be the most distant point in the part

of the structure for which grids are used.

The tool computes the distance, L, of the most distant point

from the origin. It can then compute, using equation (33), the

suggested Grid Size for computations that use a grid.

The tool also suggests an integration method and integra-

tion parameters, like the number of Integration Itera-

tions that should be used in D+. If the diameter of the

sphere that envelopes the structure is larger than L, the x, y

and z coordinates should be such that the resulting L will be

that diameter. In that case, the integration parameter may not

be optimal. The fitting method and fitting parameters are also

suggested. In any event, the suggested parameters are only a

guide or a first approximation. In practice, higher values might

be more appropriate for optimal results.

11. Validation tests

In our earlier paper (Ginsburg et al., 2016), several validation

tests of the RG algorithm used in D+ and a comparison with

other programs, when relevant, were presented. Here we

significantly increased the number of tests to cover a much

wider range of computational options in D+. SOM Section 9

shows several dozen tests and cross validation tests that D+

successfully passed. Both atomic and geometric models were

examined and compared with other programs (Svergun et al.,

1995; Ben-Nun et al., 2010). Similar structures were computed

in several different ways in D+ and compared with one

another.

Different combinations of ways for (1) defining assembly

symmetry (space-filling, scripted, manual or using a DOL file),

(2) computing the scattering amplitude (using grids, or the

direct or hybrid methods), (3) performing orientation average

integration (Monte Carlo, Vegas Monte Carlo or Gauss–

Kronrod), and (4) processing computations though CPU or

GPU were compared within D+ and then with the Debye

formula (using DebyeCalculator), CRYSOL (ATSAS 2.8.2) or

X+ as relevant. D+ returned all the expected results (Svergun

et al., 1995; Ben-Nun et al., 2010, 2016). Atomic models were

compared with their corresponding geometric models. In

particular, the solvation layers of atomic models forming

spherical or hollow spherical structures were tested and

compared with the equivalent geometric models. The fitting

algorithms of D+ were also tested (SOM Section 9.4) and gave

adequate results.

12. Program modules and workflow

Fig. 4 shows the GUI interface of D+. The main window

provides access to basic operations including loading experi-

mental signals and precomputed models, exporting and

importing model parameters, amplitudes and graphs,

controlling the program layout (or restoring its default layout

and/or parameters), launching the accessory tools of D+

(PDBUnits and Suggest Parameters), configuring a server, and

getting help.

The workflow in D+ starts by defining the structure by

creating the hierarchical tree. The tree contains subunits (the

leaves) and assembly symmetries (the nodes), which provide

information on how each repeat of a subunit is translated and

rotated in space. This stage is done through the Domain View

window, containing the list of geometric or atomic Models.

Mixtures can also be analyzed by adding Populations in

the same window. For any selected subunit Model, its feature

parameters are provided through the Parameter Editor.

The Symmetry Editor is then used to define the positions

and orientations of the subunit repeats.

The next stage includes defining computational parameters

in the Preferences pane. The orientation average integra-

tion method and convergence criterion are defined, as well as

the q range and some of the 3D View graphics parameters. To

fit a model to data, the fitting algorithm, the loss and cost

functions, and the fitting progress and convergence criteria

should be selected in the Fitting Preferences pane. The

Controls pane enables one to starts the computation itself

and control the 3D View of the computed structure. The

results are presented in a separate 2D Graph pane.

More advanced features [see Louzon et al. (2017) for an

example] are accessed through the Script Editor by

writing Lua scripts (https://scholars.huji.ac.il/uriraviv/book/

examples) or through the Python API (https://scholars.

huji.ac.il/uriraviv/book/python-api). More details are provided

in the User’s Manual (https://scholars.huji.ac.il/uriraviv/book/

users-manual).

13. Usage examples

Usage examples can be found in our recent publications

(Ginsburg et al., 2017; Louzon et al., 2017; Asor et al., 2017,

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 235

2019; Eisenberg et al., 2017; Shemesh et al., 2018). To further

validate and demonstrate the use of D+, we measured and

analyzed the scattering curve from lysozyme and microtubule

(MT) structures in solution. Lysozyme is a soluble stable

protein that has been well investigated (Levartovsky et al.,

2018) and serves as a validation of atomic models in D+ by

comparing the results of D+ with both experimental data and

results from other software (Knight & Hub, 2015;

Schneidman-Duhovny et al., 2010; Svergun et al., 1995).

MTs are made up of ��-tubulin heterodimers that dyna-

mically assemble into hollow nanotubes composed of straight

protofilaments. Tubulin rings may also form under certain

conditions (Dı́az et al., 1994). MT dynamics are facilitated by

hydrolysis of guanosine-50-triphosphate (GTP). Cryo trans-

mission electron microscopy (cryo-TEM) structures of

dynamic MTs with 3.5 Å resolution were recently published

(Alushin et al., 2014; Hyman et al., 1995). In the cryo-TEM

studies, the structure of MTs with 14 protofilaments was

analyzed. There is, however, a distribution of MT protofila-

ment number that varies with conditions (Raviv et al., 2007;

Andreu et al., 1994; Pierson et al., 1978; Wade et al., 1990;

Cueva et al., 2012; Burton et al., 1975; Andreu et al., 1992; Choi

et al., 2009; Chrétien & Wade, 1991; Ginsberg et al., 2017).

High-resolution synchrotron X-ray scattering from solu-

tions of dynamic MTs (in the presence of 4 mM GTP and in

the absence of stabilizing agents), GMPCPP-stabilized MTs

and Taxol-stabilized MTs were measured and analyzed

(Ginsburg et al., 2016, 2017). D+ was used to compute the

expected scattering curves in solution, by docking the atomic

model of tubulin dimer (Alushin et al., 2014) onto a three-start

left-handed helical lattice (Mandelkow et al., 1986) where the

atomic dimer model, the pitch (12.195 0.03 nm), the radius

(11.940 0.03 nm) and the dimer orientations were derived

from PDB ID 3j6f (Alushin et al., 2014), using algorithms

explained by Ginsburg et al. (2016, 2017) and in SOM Section

2. In PDB ID 3j6f, the number of protofilaments was fixed at

14. We then extended our earlier analysis (Ginsburg et al.,

2016) and took into account MT structures containing 12, 13,

14 and 15 protofilaments (Ginsburg et al., 2017; Chrétien &

Wade, 1991). We determined the radii, the pitch and the

distribution of protofilament number that best fit the scat-

tering data from a solution containing dynamic MTs.

However, the solvation layer was not taken into account. Here

we extended the earlier analysis (Ginsburg et al., 2016, 2017)

by taking into account the solvation layer of the entire MT

structure. Initially, the scattering amplitude of the solvated

subunits was computed. We then subtracted the scattering

amplitude from the various overlap regions of the solvation

layers, as explained in SOM Section 10.2. D+ is the only

software that can compute the atomic model of long solvated

MTs. Hence, in this case, the validation was done by

comparison with experimental data. The approach for solva-

tion layer computations was also tested within D+ for the case

of atomic spherical and hollow spherical models (in SOM

Section 9.3), and for the case of a tubulin ring (SOM Section

10.1) which is sufficiently small that the solvation layer of the

entire structure can be computed from a PDB file of the

complete tubulin ringv (Shemesh et al., 2018). The examples

discussed in this section and additional examples are available

through our web site (https://scholars.huji.ac.il/uriraviv/book/

examples) and in our Tutorials (https://scholars.huji.ac.il/

uriraviv/book/tutorials-d).

13.1. Materials and methods

13.1.1. Materials. Lyophilized powder of lysozyme protein

from chicken egg white was purchased from Sigma–Aldrich

(catalog No. L6876-1G, Israel). Lysozyme was dissolved in

50 mM sodium acetate buffer that was adjusted to pH 4.5 at a

protein concentration of 20 mg ml�1 [for more details see

Levartovsky et al. (2018)].

Tubulin was purified from porcine brains by three poly-

merization/depolymerization cycles. The first cycle was at low

salt (Farrell & Wilson, 1984; Ringel & Horwitz, 1987) and the

other two cycles were performed in a high-molarity buffer

(Castoldi & Popov, 2003). Details of the tubulin purification

protocol are provided by Shemesh et al. (2018).

13.1.2. Methods. Solution X-ray scattering measurements

were performed using an energy of 10 keV at the ID02

beamline (headed by T. Narayanan) of ESRF (Grenoble), at

the P12 EMBL BioSAXS beamline (D. Svergun) of PETRA

III (DESY, Hamburg) and at the SWING beamline (J. Perez)

of the Soleil synchrotron (Gif-sur-Yvette), or with our in-

house spectrometer, using an energy of 8 keV. Detailed

experimental descriptions of these setups were provided

elsewhere (David & Pérez, 2009; Blanchet et al., 2015; Van

Vaerenbergh et al., 2016; Nadler et al., 2011; Louzon et al.,

2017; Fink et al., 2017). The intensity frames were normalized

to the intensity of the transmitted beam, azimuthally averaged

(Hammersley, 2016) and background subtracted as explained

below, in SOM Section 5 and in our earlier publications

(Ginsburg et al., 2016, 2017).

The dynamic MT solution was obtained and measured as

explained by Ginsburg et al. (2017). Briefly, 0.2 mM tubulin in

BRB80 buffer [80 mM 1,4-piperazinediethanesulfonic acid,

1 mM MgCl2, 1 mM ethylene glycol-bis(2-aminoethyl ether)-

N,N,N0,N0-tetraacetic acid, adjusted to pH 6.9 with KOH] with

4 mM GTP was incubated at 309 K for 30 min. An aliquot of

the resulting dynamic MT solution was measured in a flow cell,

with subsequent centrifugation at 20 800 g, at 309 K for

30 min, and an MT pellet was obtained. The supernatant,

which contained coexisting small tubulin assemblies, was

measured through the same spot in the flow-cell capillary

(Fig. S2A). The scattering curve of the supernatant was then

subtracted from the scattering intensity of the MT sample

(Fig. S2B). The scattering curves from the MT solution and the

scattering curve from the supernatant are presented in Fig. S2.

13.1.3. Hardware architecture. Computations and tests

were performed on Windows computers with an Intel Core i5

3470 3.2 GHz CPU and an NVIDIA GeForce GTX Titan

GPU card, or Intel Core i5 4590 3.3 GHz CPU and an

NVIDIA GeForce GTX Titan Black GPU card. GeForce

GTX 1070, GTX 970, NVIDIA TESLA K80 and GTX 960

cards have also passed our tests. The backend was tested via

computer programs

236 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

JSON on a Linux computer with an Intel Core i7-5930K

3.5 GHz CPU and a GeForce GTX 980 GPU card as well as on

a Tesla P100 card.

13.2. Results and discussion

Fig. 5 shows a background-subtracted solution scattering

curve from the 20 mg ml�1 lysozyme protein solution. The

calculated scattering curves were based on PDB ID 1lyz

(Diamond, 1974), to which hydrogen atoms were added using

PyMOL (Schrödinger, 2015), and computed by D+ and

CRYSOL (Svergun et al., 1995). The two programs can

adequately fit the experimental data and agree with each other

in most of the q range. Fig. S3 shows a more detailed

comparison between the programs, where solvent is always

subtracted as dummy atoms [equation (62)]. In Fig. S3A the

original PDB structure (1lyz) is used. Hydrogen atoms are

then added to the PDB structure (Fig. S3B). Finally, a solva-

tion layer is taken into account, with a thickness of 0.3 nm and

an electron density contrast of 30 e nm�3 (Fig. S3C). If H

atoms are explicitly added, they are taken into account like

any of the other heavier atoms. If H atoms are not added, their

contribution is implicitly approximated by modifying the

relevant heavy-atom volume of excluded solvent to effectively

account for the added hydrogen atoms. Solvation layers are

computed in each program in a different way. Therefore, the

results slightly differed. Fig. 5, however, shows that after small

fitting adjustments both programs can adequately fit the

experimental data. The difference between models with

implicit and explicit H atoms is negligible. In SOM Section 9.4

similar tests were repeated with ubiqutin (https://www.sasbdb.

org/data/SASDAQ2/) and RNase (https://www.sasbdb.org/

data/SASDAR2/) proteins; the scattering data are available in

the SASBDB database (Valentini et al., 2014).

Solution X-ray scattering curves from dynamic MTs were

measured according to the protocol presented in Section 13.1

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 237

Figure 5
Solution X-ray scattering data and models of lysozyme. Azimuthally
integrated background-subtracted scattering intensity as a function of the
magnitude of the scattering vector, q, from solutions of 20 mg ml�1

lysozyme in 50 mM sodium acetate buffer, adjusted to pH 4.5, at ambient
room temperature. Measurements were performed at the SWING
beamline (Soleil synchrotron). The data at q < 1 nm�1 were taken from
measurements performed at the P12 EMBL BioSAXS Beamline of
PETRA III (DESY, Hamburg), measured under similar solution
conditions but at a lysozyme concentration of 2.5 mg ml�1. The solid
black curve represents the scattering data. The other curves were based
on PDB ID 1lyz. Hydrogen atoms were either implicitly taken into
account or explicitly added to the PDB file by PyMol (Schrödinger, 2015).
The broken scattering curves were computed by CRYSOL (ATSAS 2.8.2)
(Svergun et al., 1995), where the maximum order of harmonics was 50 and
the order of the Fibonacci grid was 18. The solid curves were computed by
D+. In both D+ and CRYSOL the bulk water electron density was set to
334 e nm�3 and the contribution of the solvation layer was taken into
account. In D+, the grid size was 80, and the orientation average was
computed by Monte Carlo integration, using the Mersenne twister
algorithm. The solvent Voxel Size was 0.05 nm, the solvent Probe
Radius was 0.14 nm and Dummy Atoms were used to account for the
volume of excluded solvent [see Section 5.5 and equation (63)]. The
fitting algorithm used the normal residuals cost function and the trivial
loss function, with 20 iterations, Step Size of 0.01, Convergence
Tolerance of 0.01 and Der eps of 0.1 (see Section 9.1). In the implicit
model, the solvation layer thickness was 0.2987 nm and its electron
density was 337.6 e nm�3. The excluded solvent parameter, c1, in equation
(60) was 1.014, and R2 = 0.998. In the explicit model, c1 was 1.012, the
solvation layer thickness was 0.301 nm, its electron density was
337.5 e nm�3 and R2 = 0.9977. In CRYSOL, in both models, the solvation
layer thickness was 0.3 nm and the electron density of the solvation layer
was 339 e nm�3. In the implicit model �2 = 33.53 and in the explicit model
�2 = 35.96. Figs. S38 and S39 in SOM Section 9.4 show two other
examples.

Figure 6
Solution X-ray scattering data and models of dynamic solvated
microtubules. Azimuthally integrated background-subtracted scattering
intensity (obtained as explained in SOM Section 5 and Fig. S2), as a
function of q, from solutions of 0.2 mM tubulin that was polymerized in
the presence of 4 mM GTP. The sample was polymerized and measured at
309 K. The black curve represents the scattering data measured at the
SWING beamline at the Soleil synchrotron. Similar data were obtained at
the ID02 beamline at ESRF. The thin red curve is based on an atomic MT
model with 14 protofilaments, each containing 48 tubulin dimers along the
long MT axis. The tubulin dimers were arranged in a three-start left-
handed helical lattice. The radius and pitch that best fitted the data were
11.9 and 12.214 nm, respectively, in agreement with PDB 3j6f (Alushin et
al., 2014). A solvation layer was added to the entire MT structure, using a
Probe Radius of 0.14 nm and the solvation overlap correction method
explained in SOM Section 10.2. The shell was 0.28 nm thick and its
electron density was 364 e nm�3. The thick blue curve is the computed
scattering curve, which is based on a fit to a linear combination of similar
solvated atomic MT models with radii of 10.2, 11.05, 11.9 and 12.75 nm,
corresponding to 12, 13, 14 and 15 protofilaments. The pitch in all the
models remained 12.214 nm. A Gaussian resolution function with a full
width at half-maximum of 0.01 nm�1 was applied to all individual models
forming the blue curve. The larger inset shows the low-q range on an
expanded scale. The mass fraction distribution of the population that best
fits the data is shown in the smaller inset. Intensity curves were computed
on an NVIDIA Titan GPU, using the hybrid method.

and Fig. S2. A more detailed explanation and verification of

the protocol is provided in our earlier paper (Ginsburg et al.,

2017). Fig. 6 presents the background-subtracted scattering

data from a dynamic MT solution, which reveals features

throughout the measured q range (qmax = 7 nm�1). The

computed scattering curves presented in Fig. 6 are based on

atomic MT models, obtained by docking the tubulin dimer

structure from PDB ID 3j6f (Alushin et al., 2014) into the MT

three-start left-handed helical lattice. The solvation layer of

the tubulin dimer was added to each dimer, and the over-

lapping solvation layers were subtracted to avoid double

counting, as explained in SOM Section 10.2. The thin red

curve in Fig. 6 is based on an MT model with 14 protofila-

ments, where each protofilament contained 48 tubulin dimers

along the long MT axis. To compute the scattering curve from

this type of long structure the hybrid method (presented in

Section 3.2) is required. No other software can compute this

size of atomic model (without the solvation layer and even

more so when the solvation layer is added); hence the vali-

dation is only against experimental data.

The radius and pitch of a single MT helical structure model

that best fitted the experimental data were 11.9 and 12.214 nm,

respectively, in agreement with PDB 3j6f (Alushin et al., 2014),

which contains nine dimers in a similar symmetry (see Fig. S10

and thin red curve in Fig. 6).

The thick blue curve in Fig. 6 is based on a fit to a linear

combination of similar atomic MT models with radii of 10.2,

11.05, 11.9 and 12.75 nm, corresponding to 12, 13, 14 and 15

protofilaments, respectively. The pitch in all the models

remained 12.214 nm. The mass fraction distribution of the

different models, which significantly improved the fit to the

data (thin red versus thick blue curve in Fig. 6), was 20.5 3

and 79.5 3, for MTs with 13 and 14 protofilaments, respec-

tively. This distribution is close to that of an earlier TEM study

(Chrétien & Wade, 1991).

Recently, we have used D+ to analyze various solution

X-ray scattering data (Eisenberg et al., 2017; Asor et al., 2017,

2019; Ginsburg et al., 2017; Chung et al., 2017; Shemesh et al.,

2018). In particular, we have analyzed solutions of SJW1660

flagellar filaments (Louzon et al., 2017). The data were fitted to

models that took into account the atomic structure of the

flagellin subunits. The analysis revealed the exact helical

arrangement and the super-helical twist of the flagellin subu-

nits within the filaments. Under osmotic stress, the filaments

formed two-dimensional hexagonal bundles. Monte Carlo

simulations and D+ were used to determine the fluctuations in

the position of the filaments within the bundles, which were

consistent with the experimental structure-factor data. The

analysis revealed the elastic parameters of the filaments and

was validated against osmotic stress data (Louzon et al., 2017).

14. Performance analysis
In our earlier paper (Ginsburg et al., 2016), we compared the

accuracy and computation time of DebyeCalculator (see

Section 5.11), the golden vector algorithm (Watson & Curtis,

2013) and CRYSOL (ATSAS 2.8.2) with that of D+. Small (a

subunit) and medium-size (ca 100 subunits) atomic models

were compared, based on equation (56), which assumes that

the electron density (ED) of the surrounding solution is zero

(as in a vacuum). CRYSOL was compared with other

programs (Virtanen et al., 2011; Bardhan et al., 2009; Kout-

sioubas & Pérez, 2013; Schneidman-Duhovny et al., 2010;

Poitevin et al., 2011; Knight & Hub, 2015; Wright & Perkins,

2015; Gumerov et al., 2012; Watson & Curtis, 2013; Ravikumar

et al., 2013; Schneidman-Duhovny et al., 2016; Grudinin et al.,

2017) and had accuracy and computation times of the same

order of magnitude as the other programs. We therefore

consider it sufficient to compare D+ only with CRYSOL. We

compared the computation time in solution [equation (62)]

and when solvation layers are taken into account [equation

(71)]. We created a series of atomic models of tubulin

assemblies. Tubulin dimers were gradually added along the

three-start left-handed MT lattice, starting from a single dimer

(PDB ID 3j6f) and up to 700 dimers (see cartoon in Fig. 7).

Intensity curves were computed in D+ and CRYSOL between

qmin = 0 and qmax = 5 nm�1, using a Solvent ED of

334 e nm�3 and c1 = 1 [equation (60)]. Above 42 dimers,

however, CRYSOL could not obtain accurate (relative error

of 5% or less) results even when the number of spherical

harmonics expansion terms, lm, was set to its maximum

value (99).

Fig. 7(a) shows the computation time, Ct, of the models, in

aqueous solution [using equation (62)], as a function of the

number of tubulin dimers, NDimers. Fig. 7(b) compares the

computation times of the same models, when the solvation

layer of each of the structures was also taken into account. The

solvation layer was computed for each structure, using equa-

tion (71) and the subunit overlap correction methods

explained and demonstrated in SOM Section 10.2. D+ could

accurately compute all the structures that contained between

one and 700 tubulin dimers (larger structures are also

possible). In CRYSOL, meaningful results were obtained for

up to six dimers (open black symbols). Larger structures

(between seven and 42 dimers) contained voids, and hence the

results of CRYSOL were inaccurate (these are indicated by

open gray symbols).

The results show that, for a single dimer in solution, the

algorithm of CRYSOL is faster than that of D+, both with and

without solvation layers. As the size of the tubulin assembly

increases, the computation time of D+ is significantly shorter

with and without solvation layers. We note, however, that

fitting to data of a dimer or two dimers, when taking into

account the solvation layer, will be slower in D+, as successive

evaluations of the hydration layer parameters require

computations of new grids, whereas in CRYSOL this is not the

case. D+ should be used for larger structures.

Note that the performance of D+ is sublinear in the number

of dimers [Fig. 7(c)] when the number of tubulin dimers is

smaller than 300 on a CPU and 700 on a GPU. The compu-

tation time per dimer increased for larger structures because

in the MT model the structure is long and hence the orien-

tation average started to be longer on the CPU, which uses

Monte Carlo integration. The adaptive (VEGAS) Monte

computer programs

238 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 239

Figure 7
Performance analysis of D+ and CRYSOL (ATSAS 2.8.2), using atomic models of tubulin assemblies. The cartoon shows examples of the computed
structures. (a) Computation time, Ct, of the atomic models of tubulin assemblies in solution, as a function of the number of tubulin dimers, NDimers. Solid
black squares correspond to computations done by CRYSOL; the minimum numbers (leading to the shortest computation time) of spherical harmonics
expansion terms, lm, used for each NDimers are given in Fig. S4. The solid blue diamonds correspond to the upper limit of the computation time of D+ on a
single CPU processor. D+ uses all the available CPU processors in parallel, whereas CRYSOL uses a single CPU processor. To properly compare the two
programs, we multiplied the actual CPU time of D+ by the number of CPU processors, providing an upper limit on the computation time of D+ using a
single CPU processor. The red solid circles correspond to the computation time of D+ on a Titan Black GPU. The optimal computation method was
determined in Fig. S5. For large structures (on the right side of the arrows), the hybrid method was used with the following parameters: Grid size: 40
without solvation layers [in (a)] and 60 with solvation layer [in (b)]; Convergence: 10�4; Integration Iterations: 107; Integration Method:
Monte Carlo (Meresenne twister) on a CPU and adaptive (VEGAS) Monte Carlo on a GPU. Smaller structures used grids whose sizes are given in (d).
The other parameters were kept the same. (b) Ct as a function of NDimers of the same atomic models when the solvation layer of each model was also
taken into account. Open symbols match the solid symbols in (a) with similar shapes. The gray open squares correspond to the computation times of
CRYSOL. The results of CRYSOL (open gray squares), however, started to be inaccurate, as the structures contained voids in which the solvation layers
are not taken into account by CRYSOL. In D+, the computations of the solvation layers were done using the correction method explained in SOM
Section 10 and the following parameters: Solvent Probe Radius: 0.14 nm; Solvation Thickness: 0.28 nm; Outer Solvent ED: 364 e nm�3.
The Fill Holes option was applied, and the Solvent Voxel Size was 0.2 nm (which is smaller than used by other programs; Grudinin et al., 2017;
Svergun et al., 1995). A much smaller voxel size of 0.05 nm was also tested, and the results are shown in Figs. S6 and S7. (c) The normalized computation
time per dimer, given by Ct/NDimersC t

Dimer, as a function of NDimers, where C t
Dimer is the computation time of a single tubulin dimer. Solid symbols

correspond to the symbols in (a) and open symbols correspond to the symbols in (b). The insets show parts of the graphs on expanded scales. (d) The size
of the grids used in the computations in (a) and (b), as a function of the number of dimers. Solid symbols correspond to computations in (a). Open
symbols correspond to computations in (b). The effects of larger grid sizes are shown in Figs. S8 and S9.

Carlo approach used with the GPU helps to reduce the time

and keep the performance sublinear in the number of dimers

up to 700 dimers. Fig. S5 shows the conditions under which

grids were faster than the hybrid method. The hybrid method

was used in Fig. 7 for larger structures. Fig. 7(d) shows the

optimized (minimal) Grid Size as a function of the number

of dimers (up to 140 dimers).

Figs. S6 and S7 show the effect of Solvent Voxel Size

on the computations times. Figs. S8 and S9 show the effect of

Grid Size and the orientation average integration method

on the computation times.

15. Conclusions

In this paper, we introduced our state-of-the-art solution

X-ray scattering data analysis software D+. Nearly any

complex structure can be modeled in a hierarchical manner

and its solution scattering amplitude and intensity curve can

be efficiently computed using the reciprocal grid algorithm.

3D grids containing the scattering amplitudes from atomic

and/or geometric model subunits are computed and used to

calculate the scattering amplitudes from structures containing

many subunit repeats. When the scatterers are large, a hybrid

method is used, in which grids are computed up to a prede-

termined point in the hierarchical data tree and used as

subunits in direct amplitude computations of the larger

structures. D+ can also take into account the X-ray photon

energy and thereby be used to compute anomalous X-ray

scattering curves from solutions of complex structures at high

resolution. D+ has a script editor through which many

different kinds of involved models can be defined and

computed. The contribution of the solvation layer of complex

and large structures can also be taken into account in a scal-

able manner. The Python wrapper of D+ can be used to

compute more advanced models and integrate D+ with

various computational tools, modeling or computer simula-

tions and thereby reveal the underlying structural biophysics

that leads to the observed scattering data. D+ has been

extensively tested and compared with other software and data,

and its self-consistency was thoroughly examined (see SOM

Section 9). In the future, by applying small adjustments to D+

we shall expand its capabilities to analyze neutron scattering

as well as fiber diffraction data. D+ and its source code are

freely available at https://scholars.huji.ac.il/uriraviv/book/d-0

for academic users.

Acknowledgements

We are grateful for many helpful discussions with D. Harries.

We also thank I. Ringel, D. Svergun and M. Petoukhov for

helpful discussions. L. Sapir and I. Ringel are thanked for

helping with some of the scattering data collection. The ID02

beamline at ESRF synchrotron (T. Narayanan and his team),

SWING beamline at Soleil synchrotron (J. Perez and his team)

and P12 EMBL BioSAXS Beamline of PETRA III at DESY,

Hamburg (D. Svergun and his team), are acknowledged as the

data presented in the paper were acquired there. We also

thank I. Zandbank, D. Witty and Y. Segal (The Research

Software Company, http://www.chelem.co.il/).

Funding information

This project was supported by the Israel Science Foundation

(656/16), the United States–Israel Binational Science Foun-

dation (2016311), the Israel Ministry of Science, the Israel

Ministry of Economy, and the Institute of Chemistry of the

Hebrew University of Jerusalem. We thank the Safra, Wolfson

and Rudin Foundations for supporting our laboratory.

References

Agarwal, S., Mierle, K. et al. (2016). Ceres Solver, http://ceres-
solver.org.

Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray
Physics. Chichester: Wiley.

Alushin, G. M., Lander, G. C., Kellogg, E. H., Zhang, R., Baker, D. &
Nogales, E. (2014). Cell, 157, 1117–1129.

Andreu, J., Bordas, J., Diaz, J., Garcı́a de Ancos, J., Gil, R., Medrano,
F. J., Nogales, E., Pantos, E. & Towns-Andrews, E. (1992). J. Mol.
Biol. 226, 169–184.

Andreu, J. M., Dı́az, J. F., Gil, R., de Pereda, J., Garcı́a de Lacoba, M.,
Peyrot, V., Briand, C., Towns-Andrews, E. & Bordas, J. (1994). J.
Biol. Chem. 269, 31785–31792.

Asor, R., Ben-Nun-Shaul, O., Oppenheim, A. & Raviv, U. (2017).
ACS Nano, 11, 9814–9824.

Asor, R., Khaykelson, D., Ben-nun-Shaul, O., Oppenheim, A. &
Raviv, U. (2019). ACS Omega, 4, 58–64.

Bardhan, J., Park, S. & Makowski, L. (2009). J. Appl. Cryst. 42, 932–
943.

Bartels, R., Beatty, J. & Barsky, B. (1998). An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling, ch. 3. San
Mateo: Morgan Kaufmann.

Beaulieu, N. C. (2002). Proc. IEEE, 90, 276–279.
Beck, R., Deek, J., Jones, J. B. & Safinya, C. R. (2010). Nat. Mater. 9,

40–46.
Ben-Nun, T., Asor, R., Ginsburg, A. & Raviv, U. (2016). Isr. J. Chem.

56, 622–628.
Ben-Nun, T., Ginsburg, A., Székely, P. & Raviv, U. (2010). J. Appl.

Cryst. 43, 1522–1531.
Ben-Nun, T., Levy, E., Barak, A. & Rubin, E. (2015). Proceedings of

the International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 19. New York: ACM.

Berman, H. M., Kleywegt, G. J., Nakamura, H. & Markley, J. L.
(2014). J. Comput. Aided Mol. Des. 28, 1009–1014.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. Jr, Meyer, E. F. Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). J. Mol. Biol. 112, 535–542.

Blanchet, C. E., Spilotros, A., Schwemmer, F., Graewert, M. A.,
Kikhney, A., Jeffries, C. M., Franke, D., Mark, D., Zengerle, R.,
Cipriani, F., Fiedler, S., Roessle, M. & Svergun, D. I. (2015). J. Appl.
Cryst. 48, 431–443.

Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
Burton, P., Hinkley, R. & Pierson, G. (1975). J. Cell Biol. 65, 227–233.
Castoldi, M. & Popov, A. V. (2003). Protein Expr. Purif. 32, 83–88.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino,

R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson,
D. C. (2010). Acta Cryst. D66, 12–21.

Choi, M. C., Chung, P. J., Song, C., Miller, H. P., Kiris, E., Li, Y.,
Wilson, L., Feinstein, S. C. & Safinya, C. R. (2016). Biochim.
Biophys. Acta, 1861, 3456–3463

computer programs

240 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB150
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB150
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB22

Choi, M., Raviv, U., Miller, H., Gaylord, M., Kiris, E., Ventimiglia, D.,
Needleman, D., Kim, M., Wilson, L., Feinstein, S. & Safinya, C. R.
(2009). Biophys. J. 97, 519–527.

Chrétien, D. & Wade, R. H. (1991). Biol. Cell, 71, 161–174.
Chung, P. J., Choi, M. C., Miller, H. P., Feinstein, H. E., Raviv, U., Li,

Y., Wilson, L., Feinstein, S. C. & Safinya, C. R. (2015). Proc. Natl
Acad. Sci. USA, 112, E6416–E6425.

Chung, P. J., Song, C., Deek, J., Miller, H. P., Li, Y., Choi, M. C.,
Wilson, L., Feinstein, S. C. & Safinya, C. R. (2016). Nat. Commun. 7,
12278.

Chung, P. J., Song, C., Miller, H. P., Li, Y., Raviv, U., Choi, M. C.,
Wilson, L., Feinstein, S. C. & Safinya, C. R. (2017). Methods Cell
Biol. 141, 155–178.

Clementi, E., Raimondi, D. & Reinhardt, W. (1967). J. Chem. Phys.
47, 1300–1307.

Cueva, J. G., Hsin, J., Huang, K. C. & Goodman, M. B. (2012). Curr.
Biol. 22, 1066–1074.

Curtis, J. E., Raghunandan, S., Nanda, H. & Krueger, S. (2012).
Comput. Phys. Commun. 183, 382–389.

David, G. & Pérez, J. (2009). J. Appl. Cryst. 42, 892–900.
Debye, P. (1915). Ann. Phys. 351, 809–823.
Deek, J., Chung, P. J., Kayser, J., Bausch, A. R. & Safinya, C. R.

(2013). Nat. Commun. 4, 2224.
Diamond, R. (1974). J. Mol. Biol. 82, 371–391.
Dı́az, J. F., Pantos, E., Bordas, J. & Andreu, J. M. (1994). J. Mol. Biol.

238, 214–225.
Dvir, T., Fink, L., Asor, R., Schilt, Y., Steinar, A. & Raviv, U. (2013).

Soft Matter, 9, 10640–10649.
Dvir, T., Fink, L., Schilt, Y. & Raviv, U. (2014). Langmuir, 30, 14725–

14733.
Eisenberg, I., Harris, D., Levi-Kalisman, Y., Yochelis, S., Shemesh, A.,

Ben-Nissan, G., Sharon, M., Raviv, U., Adir, N., Keren, N. & Paltiel,
Y. (2017). Photosynth. Res. 134, 39–49.

Evans, G. & Pettifer, R. F. (2001). J. Appl. Cryst. 34, 82–86.
Farrell, K. W. & Wilson, L. (1984). Biochemistry, 23, 3741–3748.
Fedorov, B., Ptitsyn, O. & Voronin, L. (1972). FEBS Lett. 28, 188–190.
Fink, L., Feitelson, J., Noff, R., Dvir, T., Tamburu, C. & Raviv, U.

(2017). Langmuir, 33, 5636–5641.
Förster, F., Webb, B., Krukenberg, K. A., Tsuruta, H., Agard, D. A. &

Sali, A. (2008). J. Mol. Biol. 382, 1089–1106.
Förster, S., Apostol, L. & Bras, W. (2010). J. Appl. Cryst. 43, 639–

646.
Franke, D., Jeffries, C. M. & Svergun, D. I. (2015). Nat. Methods, 12,

419–422.
Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A.,

Tuukkanen, A., Mertens, H. D. T., Kikhney, A. G., Hajizadeh, N. R.,
Franklin, J. M., Jeffries, C. M. & Svergun, D. I. (2017). J. Appl.
Cryst. 50, 1212–1225.

Franke, D. & Svergun, D. I. (2009). J. Appl. Cryst. 42, 342–346.
Fraser, R. D. B., MacRae, T. P. & Suzuki, E. (1978). J. Appl. Cryst. 11,

693–694.
Ginsburg, A., Ben-Nun, T., Asor, R., Shemesh, A., Ringel, I. & Raviv,

U. (2016). J. Chem. Inf. Model. 56, 1518–1527.
Ginsburg, A., Shemesh, A., Millgram, A., Dharan, R., Levi-Kalisman,

Y., Ringel, I. & Raviv, U. (2017). J. Phys. Chem. B, 121, 8427–8436.
Goldstein, H., Poole, C. P. & Safko, J. L. (2001). Classical Mechanics,

3rd ed. Harlow: Pearson.
Graewert, M. A., Franke, D., Jeffries, C. M., Blanchet, C. E., Ruskule,

D., Kuhle, K., Flieger, A., Schäfer, B., Tartsch, B., Meijers, R. &
Svergun, D. I. (2015). Sci. Rep. 5, 10734.

Grant, T. D. (2018). Nat. Methods, 15, 191–193.
Grudinin, S., Garkavenko, M. & Kazennov, A. (2017). Acta Cryst.

D73, 449–464.
Guennebaud, G., Jacob, B. et al. (2010). Eigen v3, http://eigen.

tuxfamily.org.
Gumerov, N. A., Berlin, K., Fushman, D. & Duraiswami, R. (2012). J.

Comput. Chem. 33, 1981–1996.
Hammersley, A. P. (2016). J. Appl. Cryst. 49, 646–652.

Heckbert, P. S. (1990). Graphics Gems, edited by A. S. Glassner,
pp. 275–277. San Diego: Academic Press Professional.

Hura, G. L., Menon, A. L., Hammel, M., Rambo, R. P., Poole, F. L. II,
Tsutakawa, S. E., Jenney, F. E. Jr, Classen, S., Frankel, K. A.,
Hopkins, R. C., Yang, S., Scott, J. W., Dillard, B. D., Adams, M. W.
W. & Tainer, J. A. (2009). Nat. Methods, 6, 606–612.

Hyman, A. A., Chrétien, D., Arnal, I. & Wade, R. H. (1995). J. Cell
Biol. 128, 117–125.

Ilavsky, J. & Jemian, P. R. (2009). J. Appl. Cryst. 42, 347–353.
Ibers, J. A. & Hamilton, W. (1974). Editors. International Tables for

X-ray Crystallography, Vol. IV, Revised and Supplementary Tables
to Volumes II and III, Table 2.2B and pp. 273–284. Birmingham:
Kynoch Press.

Jolliffe, I. (2002). Principal Component Analysis. New York: Springer.
Kler, S., Asor, R., Li, C., Ginsburg, A., Harries, D., Oppenheim, A.,

Zlotnick, A. & Raviv, U. (2012). J. Am. Chem. Soc. 134, 8823–8830.
Knight, C. J. & Hub, J. S. (2015). Nucleic Acids Res. 43, W225–W230.
Koltover, I., Salditt, T., Rädler, J. O. & Safinya, C. R. (1998). Science,

281, 78–81.
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. &

Svergun, D. I. (2003). J. Appl. Cryst. 36, 1277–1282.
Kornreich, M., Malka-Gibor, E., Zuker, B., Laser-Azogui, A. & Beck,

R. (2016). Phys. Rev. Lett. 117, 148101.
Koutsioubas, A. & Pérez, J. (2013). J. Appl. Cryst. 46, 1884–1888.
Kronrod, A. (1964). Dokl. Akad. Nauk SSSR, 154, 283.
Laurie, D. (1997). Math. C, 66, 1133–1146.
Levartovsky, Y., Shemesh, A., Asor, R. & Raviv, U. (2018). ACS

Omega, 3, 16246–16252.
Lotan, O., Fink, L., Shemesh, A., Tamburu, C. & Raviv, U. (2016). J.

Phys. Chem. A. 120, 3390–3396
Louzon, D., Ginsburg, A., Schwenger, W., Dvir, T., Dogic, Z. & Raviv,

U. (2017). Biophys. J. 112, 2184–2195.
Mandelkow, E., Schultheiss, R., Rapp, R., Müller, M. & Mandelkow,

E. (1986). J. Cell Biol. 102, 1067–1073.
Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar,

D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.
Marsh, R. E. & Slagle, K. L. (1983). Acta Cryst. A39, 173.
Möller, J., Chushkin, Y., Prevost, S. & Narayanan, T. (2016). J.

Synchrotron Rad. 23, 929–936.
Moshe, L., Saper, G., Szekely, O., Linde, Y., Gilon, C., Harries, D. &

Raviv, U. (2013). Soft Matter, 9, 7117–7126.
Nadler, M., Steiner, A., Dvir, T., Szekely, O., Szekely, P., Ginsburg, A.,

Asor, R., Resh, R., Tamburu, C., Peres, M. & Raviv, U. (2011). Soft
Matter, 7, 1512–1523.

Ojeda-Lopez, M. A., Needleman, D. J., Song, C., Ginsburg, A., Kohl,
P. A., Li, Y., Miller, H. P., Wilson, L., Raviv, U., Choi, M. C. &
Safinya, C. R. (2014). Nat. Mater. 13, 195–203.

Papoulis, A. (1968). Systems and Transforms with Applications in
Optics, McGraw-Hill Series in System Science. Malabar: Krieger.

Park, S., Bardhan, J. P., Roux, B. & Makowski, L. (2009). J. Chem.
Phys. 130, 134114.

Pavlov, M. Y. & Fedorov, B. A. (1983). Biopolymers, 22, 1507–1522.
Pedersen, M. C., Arleth, L. & Mortensen, K. (2013). J. Appl. Cryst.

46, 1894–1898.
Pérez, J. & Koutsioubas, A. (2015). Acta Cryst. D71, 86–93.
Peter Lepage, G. (1978). J. Comput. Phys. 27, 192–203.
Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney,

A. G., Gajda, M., Gorba, C., Mertens, H. D. T., Konarev, P. V. &
Svergun, D. I. (2012). J. Appl. Cryst. 45, 342–350.

Petoukhov, M. V. & Svergun, D. I. (2005). Biophys. J. 89, 1237–1250.
Pierson, G. B., Burton, P. R. & Himes, R. H. (1978). J. Cell Biol. 76,

223–228.
Poitevin, F., Orland, H., Doniach, S., Koehl, P. & Delarue, M. (2011).

Nucleic Acids Res. 39, W184–W189.
Rädler, J. O., Koltover, I., Salditt, T. & Safinya, C. R. (1997). Science,

275, 810–814.
Ravikumar, K. M., Huang, W. & Yang, S. (2013). J. Chem. Phys. 138,

024112.

computer programs

J. Appl. Cryst. (2019). 52, 219–242 Avi Ginsburg et al. � D+ 241

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB130
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB122
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB122
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB122
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB122
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB129
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB149
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB149
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB75
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB75
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB76
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB76
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB76
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB78
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB78
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB79
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB79
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB80
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB81
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB81
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB82
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB83
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB84
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB84
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB84
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB85
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB86
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB86
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB87
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB87
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB88
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB88
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB89
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB89

Raviv, U., Nguyen, T., Ghafouri, R., Needleman, D. J., Li, Y., Miller,
H. P., Wilson, L., Bruinsma, R. F. & Safinya, C. R. (2007). Biophys.
J. 92, 278–287.

Richards, F. M. (1977). Annu. Rev. Biophys. Bioeng. 6, 151–176.
Ridders, C. (1982). Adv. Eng. Softw. (1978), 4, 75–76.
Ringel, I. & Horwitz, S. B. (1987). J. Pharmacol. Exp. Ther. 242, 692–

698.
Rubin, E., Levy, E., Barak, A. & Ben-Nun, T. (2015). ACM Trans.

Archit. Code Optim. 11, 44.
Saper, G., Kler, S., Asor, R., Oppenheim, A., Raviv, U. & Harries, D.

(2012). Nucleic Acids Res. 41, 1569–1580.
Sarje, A., Li, X. S. & Hexemer, A. (2014). 43rd International

Conference on Parallel Processing, ICPP 2014, pp. 201–210. IEEE.
Schilt, Y., Berman, T., Wei, X., Barenholz, Y. & Raviv, U. (2016).

Biochim. Biophys. Acta, 1860, 108–119.
Schneidman-Duhovny, D., Hammel, M. & Sali, A. (2010). Nucleic

Acids Res. 38, W540–W544.
Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A.

(2013). Biophys. J. 105, 962–974.
Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A.

(2016). Nucleic Acids Res. 44, W424–W429.
Schrödinger (2015). The pyMOL Molecular Graphics System,

Version 1.8, https://pymol.org.
Shaharabani, R., Ram-On, M., Avinery, R., Aharoni, R., Arnon, R.,

Talmon, Y. & Beck, R. (2016). J. Am. Chem. Soc. 138, 12159–
12165.

Shannon, C. E. (1949). Proc. IRE, 37, 10–21.
Shemesh, A., Ginsburg, A., Levi-Kalisman, Y., Ringel, I. & Raviv, U.

(2018). Biochemistry, 57, 6153–6165.
Slater, J. C. (1964). J. Chem. Phys. 41, 3199–3204.
Sonneveld, P. (1969). J. Eng. Math. 3, 107–117.

Spinozzi, F., Ferrero, C., Ortore, M. G., De Maria Antolinos, A. &
Mariani, P. (2014). J. Appl. Cryst. 47, 1132–1139.

Steiner, A., Szekely, P., Szekely, O., Dvir, T., Asor, R., Yuval-Naeh, N.,
Keren, N., Kesselman, E., Danino, D., Resh, R., Ginsburg, A.,
Guralnik, V., Feldblum, E., Tamburu, C., Peres, M. & Raviv, U.
(2012). Langmuir, 28, 2604–2613.

Svergun, D., Barberato, C. & Koch, M. H. J. (1995). J. Appl. Cryst. 28,
768–773.

Szekely, O., Schilt, Y., Steiner, A. & Raviv, U. (2011). Langmuir, 27,
14767–14775.

Szekely, O., Steiner, A., Szekely, P., Amit, E., Asor, R., Tamburu, C. &
Raviv, U. (2011). Langmuir, 27, 7419–7438.

Székely, P., Ginsburg, A., Ben-Nun, T. & Raviv, U. (2010). Langmuir,
26, 13110–13129.

Valentini, E., Kikhney, A. G., Previtali, G., Jeffries, C. M. & Svergun,
D. I. (2014). Nucleic Acids Res. 43, D357–D363.

Van Vaerenbergh, P., Léonardon, J., Sztucki, M., Boesecke, P., Gorini,
J., Claustre, L., Sever, F., Morse, J. & Narayanan, T. (2016). AIP
Conf. Proc. 1741, 030034.

Virtanen, J. J., Makowski, L., Sosnick, T. R. & Freed, K. F. (2011).
Biophys. J. 101, 2061–2069.

Wade, R. H., Chrétien, D. & Job, D. (1990). J. Mol. Biol. 212, 775–786.
Warren, H. S. (2012). Hacker’s Delight. Boston: Addison-Wesley

Longman Publishing Co.
Watson, M. C. & Curtis, J. E. (2013). J. Appl. Cryst. 46, 1171–1177.
Weisstein, E. W. (2015). Sphere Point Picking, from MathWorld

– A Wolfram Web Resource, http://mathworld.wolfram.com/
SpherePointPicking.html.

Wong, G. C., Tang, J. X., Lin, A., Li, Y., Janmey, P. A. & Safinya, C. R.
(2000). Science, 288, 2035–2039.

Wright, D. W. & Perkins, S. J. (2015). J. Appl. Cryst. 48, 953–961.

computer programs

242 Avi Ginsburg et al. � D+ J. Appl. Cryst. (2019). 52, 219–242

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB120
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB120
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB120
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB91
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB92
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB93
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB93
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB94
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB94
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB95
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB95
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB96
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB96
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB97
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB97
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB98
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB98
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB101
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB101
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB103
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB104
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB104
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB105
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB106
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB107
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB107
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB108
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB108
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB108
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB108
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB109
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB109
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB110
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB110
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB111
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB111
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB112
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB112
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB113
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB113
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB114
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB114
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB114
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB115
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB115
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB116
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB117
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB117
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB118
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB119
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB119
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB119
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB120
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB120
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vg5099&bbid=BB121

