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Abstract.

 

Pressure in colonic tumours may increase during constipation, obstruction or
peri-operatively. Pressure enhances colonocyte adhesion by a c-Src- and actin-cytoskeleton-
dependent PKC-independent pathway. We hypothesized that pressure activates mitogenic
signals.

 

Methods.

 

Malignant colonocytes on a collagen I matrix were subjected to 15 mmHg
pressure. ERK, p38, c-Src and Akt phosphorylation and PKC

 

α

 

 redistribution were
assessed by western blot after 30 min and PKC activation by ELISA. Cells were counted
after 24 h and after inhibition of each signal, tyrosine phosphorylation or actin
depolymerization.

 

Results.

 

Pressure time-dependently increased SW620 and HCT-116 cell counts on
collagen or fibronectin (

 

P

 

 <

 

 0.01). Pressure increased the SW620 S-phase fraction from
28 

 

±

 

 1 to 47 

 

±

 

 1% (

 

P

 

 =

 

 0.0002). Pressure activated p38, ERK, and c-Src (

 

P

 

 <

 

 0.05
each) but not Akt/PKB. Pressure decreased cytosolic PKC activity, and translocated
PKC

 

α

 

 to a membrane fraction. Blockade of p38, ERK, c-Src or PI-3-K or actin depo-
lymerization did not inhibit pressure-stimulated proliferation. However, global tyrosine
kinase blockade (genistein) and PKC blockade (calphostin C) negated pressure-induced
proliferation.

 

Conclusions. 

 

Extracellular pressure stimulates cell proliferation and activates several
signals. However, the mitogenic effect of pressure requires only tyrosine kinase and PKC

 

α

 

activation. Pressure may modulate colon cancer growth and implantation by two
distinct pathways, one stimulating proliferation and the other promoting adhesion.

INTRODUCTION

 

Physical forces, either within tissues, or applied externally, impact all tissues of the body and
have been studied in some detail (Duncan & Turner 1995; Osol 1995; Chien 

 

et al.

 

 1998; Sai

 

et al.

 

 1999). Mechanotransduction converts biophysical forces into cellular responses that influ-
ence gene expression, protein synthesis, proliferation and morphogenesis. The mechanisms
coupling mechanical signals with biochemical events remain poorly understood. Responses to
stretch, shear and deformation have been investigated in bone, vascular cells, cardiac fibroblasts
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and myocytes and mesangial cells, but less is known about the effects of pressure, and the dis-
tinction is important because different physical forces may have different effects (Han 

 

et al.

 

1998b; MacKenna 

 

et al.

 

 1998; Ingram 

 

et al.

 

 1999; Han 

 

et al.

 

 2001; Moalli 

 

et al.

 

 2001; Basson
& Coppola 2002; Hosokawa 

 

et al.

 

 2002; Zhang 

 

et al.

 

 2003).
The normal gut experiences complex patterns of contractility and motility and changes in

pressure during normal peristalsis. These internally generated pressures may help maintain
normal gut cytoarchitecture. However, pressures elevated by diet or illness may adversely impact
gut physiology (Brodribb 

 

et al.

 

 1979). Luminal jejunal pressure may reach 50 mmHg in irritable
bowel syndrome (Kellow & Phillips 1987). Abdominal pressures of 15 mmHg are common during
insufflation for laparoscopy and surgical manipulation yields pressures exceeding 1500 mmHg
(Dregelid & Svendsen 1988). Intra-abdominal pressure also increases after surgery as a result
of tissue oedema (Granger & Barrowman 1983). Such pressures may affect cancer dissemination
(Basson 

 

et al.

 

 2000; Thamilselvan & Basson 2004) and the function of intra-abdominal organs
(Walker & Criddle 2003).

Early concerns about cancer recurrence at surgical wounds after laparoscopic surgery
(Pahlman 1997) prompted studies of the role of pressure in cancer cell adhesion and prolifera-
tion (Jacobi 

 

et al.

 

 1998; Hewett 

 

et al.

 

 1999; Jacobi 

 

et al.

 

 2002; Dahn 

 

et al.

 

 2003). Animal studies
suggest that pressure increases may contribute to tumour growth after laparoscopic procedures
(Bouvy 

 

et al.

 

 1998). In mice, pneumoperitoneum enhanced growth of GW39 human colon
cancer cells (Wu 

 

et al.

 

 1997). Pressure (15 mmHg) applied to colon 26 cells increased liver meta-
stasis regardless of insufflation gas (Gutt 

 

et al.

 

 2000; Ishida 

 

et al.

 

 2001), suggesting that even this
modest pressure increase might influence malignant cell proliferation. The incidence of wound
metastasis after laparoscopic and open surgery today is similar (Silecchia 

 

et al.

 

 2002; Patankar

 

et al.

 

 2003), perhaps offset by immune depression after open surgery (Kawasaki 

 

et al.

 

 2001), or
application of substantial pressure to tumours during open surgical dissection (Dregelid &
Svendsen 1988).

We have shown that a 30-min exposure of non-adherent primary human colon cancer and
SW620 cells to 15 mmHg of extracellular pressure increases cell adhesion to both collagen I and
endothelial cells via a FAK/c-Src dependent mechanism that is also blocked by phalloidin treat-
ment (Basson 

 

et al.

 

 1992; Thamilselvan & Basson 2004). In the present study, we sought to
determine whether longer exposure to increases of this magnitude affects proliferation in adher-
ent cells. Previous 

 

in vitro

 

 studies of pressure-mediated proliferation in other cells have consid-
ered much higher pressures. In mesangial cells, hydrostatic pressure induces proliferation in an
intensity-dependent fashion (Mattana & Singhal 1995; Kawata 

 

et al.

 

 1998a). In the same cells,
40–80 mmHg pressures stimulated proliferation in a time- and pressure-dependent fashion
(Kato 

 

et al.

 

 1999). Pressures of 105 mmHg increase proliferation in vascular smooth muscle
(VSMC) and endothelial cells (Sumpio 

 

et al.

 

 1994; Watase 

 

et al.

 

 1997). In VSMC, pressure-
induced proliferation is inhibited by PKC, p38 and ERK inhibition as well as by the tyrosine
kinase inhibitor, genistein (Tsuda 

 

et al.

 

 2002). In fibroblasts, a mechanical load elicits both
MAPK and NF-

 

κ

 

B activation (Chiquet 

 

et al.

 

 2003). Li and Xu postulated that stretch of the
VSMC membrane alters tyrosine receptor or G-protein conformation, initiating signalling
pathways normally used by growth factors (Hu 

 

et al.

 

 1998; Li & Xu 2000) that stimulate PKC,
MAPK, c-fos and other gene expression (Li 

 

et al.

 

 1999). Similarly, in rodent mesenteric arteries,
increased pressure enhances c-fos expression, an effect inhibited by genistein (Miriel 

 

et al.

 

1999), and requiring both c-Src and ERK (Wesselman 

 

et al.

 

 2001; Rice 

 

et al.

 

 2002). Other inves-
tigators suggest that integrin aggregation per se may activate tyrosine kinase receptors in the
absence of ligand (Miyamoto 

 

et al.

 

 1996; Esposito 

 

et al.

 

 2003), another possible mechanism for
the transduction of external physical forces such as pressure.
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We hypothesized that longer exposures to a physiologically relevant increase of 15 mmHg
in pressure might stimulate colon cancer cell proliferation. We delineated the time course of this
effect in human SW620 colon cancer cells and examined whether it could be duplicated in
human HCT-116 colon cancer cells. We further investigated whether pressure activated several
intracellular signals known to be involved in proliferation in response to other forces or growth
factors, particularly c-Src, PI-3-K, MAPK, and PKC. We then assessed proliferation in the pres-
ence of specific signal inhibition, or the global tyrosine kinase inhibitor genistein or phalloidin,
to block actin re-organization.

 

MATERIALS AND METHODS

 

Cell culture

 

SW620 cells were cultured at 37 

 

°

 

C in 5% CO

 

2

 

 in an equal mixture of Dulbecco’s minimal
essential medium (DMEM) and RPMI 1540 containing 5% foetal bovine serum (FBS, Gibco
Life Technologies Inc., Rockville, MD, USA), 20 m

 

m

 

 glutamine, 1 

 

µ

 

m

 

 sodium pyruvate, 10 m

 

m

 

Hepes, 100 U/ml penicillin G, 100 

 

µ

 

g /ml streptomycin (Sigma, St Louis, MO, USA) and
0.525 

 

µ

 

g /ml transferrin (Roche Diagnostics, Indianapolis, IN, USA). The HCT-116 cells were
maintained in DMEM supplemented with 10% FBS. Both human colon cancer cell lines were
obtained from ATCC (American Tissue Culture, Collection, Rockville, MD, USA).

 

Matrix pre-coating

 

Six-well plates were pre-coated with collagen I or plasma fibronectin (12.5 

 

µ

 

g /ml, Sigma)
as previously described (Basson 

 

et al.

 

 1992) and the wells were rinsed with sterile phosphate-
buffered saline prior to cell seeding.

 

Pressure application

 

Pressure was applied by placing the six-well plates and cells within an airtight box equipped
with inlet and outlet valves and a pressure gauge as previously described (Basson 

 

et al.

 

 2000;
Vouyouka 

 

et al.

 

 2003; Thamilselvan & Basson 2004). The box was pre-warmed to 37 

 

°

 

C; the
temperature did not fluctuate more than 

 

±

 

2 

 

°

 

C for the duration of the experiment. The internal
pressure was set at 15 mmHg and maintained within 

 

±

 

1.5 mmHg.

 

Proliferation assays

 

Uniform cell aliquots were dispensed into the pre-coated wells and allowed to reach 70% con-
fluence before being subjected to increased pressure (15 mmHg) for 24 h. At that time, the cells
were detached with trypsin/EDTA, the trypsin was neutralized with medium containing 5% FBS
and cell aliquots were counted in a Coulter Counter (Coulter Electronics, Hialeah, FL, USA).
Control cells maintained in the same incubator but outside of the pressure box were treated sim-
ilarly. When used, the following inhibitors, PD98059 (20 

 

µ

 

m

 

), SB203580 (20 

 

µ

 

m

 

), PP2 (20 

 

µ

 

m

 

),
LY294002 (10 

 

µ

 

m

 

), genistein (10 

 

µ

 

m

 

), phalloidin (10 µm), or calphostin C (100 nm, light-
activated for 1 h) (all Calbiochem, La Jolla, CA, USA), were added to the cells 30 min before
the application of pressure. Appropriate volumes of the dimethylsulfoxide (DMSO) or ethanol
vehicle were added to the corresponding controls at the same time. Assays were normally per-
formed on cells in DMEM/RPMI supplemented with 5% FBS. Basic proliferation assays in
response to pressure were duplicated under serum-free conditions to corroborate results obtained
with flow cytometry.
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Flow cytometry
To document proliferation, cells exposed to pressure for 24 h were detached with trypsin/EDTA
and fixed in 70% ice-cold ethanol. The cells were then stained with propidium iodide (5 µg/ml
PBS, pH 7.4 containing 200 µg/ml DNase-free Rnase A and 0.1% Triton X-100). The cells were
then analysed for transition to S-phase by the Wayne State University School of Medicine Flow
Cytometry Core Facility. Assays were performed on cells maintained in 5% FBS and repeated
in cells rendered quiescent by serum starvation for 24 h prior to pressure exposure.

Signal activation assays
For signal activation studies, cells were exposed to 15 mmHg pressure for 30 min. The cells
were then lysed on ice for 30 min in buffer containing 150 mm NaCl, 10 mm Tris, 1% TritonX-
100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1 mm EDTA, 1 mm phenyl-
methylsulphonyl fluoride, 1 mm Na3VO4, 50 mm NaF, 10 mm sodium pyrophosphate, 2 µg/ml
aprotinin, 2 µg/ml leupeptin, pH 7.4. After centrifugation, supernatant protein concentrations
were measured by the BCA protein method (Pierce, Rockford, IL, USA). Proteins were sepa-
rated by SDS–polyacrylamide gel electrophoresis (PAGE) followed by transfer to Hybond ECL
nitrocellulose and incubation with antibodies specific for the active (phosphorylated) forms of
ERK (p44/42), p38, c-Src, and Akt/PKB (Cell Signalling, Beverly, MA, USA; Santa Cruz
Biotechnology, Santa Cruz, CA, USA; Transduction Laboratories, San Diego, CA, USA).
Membranes were then stripped and re-probed with antibodies to the total form of each molecule.
After exposure to the appropriate second antibody coupled to horseradish peroxidase, bands
were detected with enhanced chemiluminescence (ECL; Amersham Pharmacia Biotech,
Piscataway, NJ, USA) and analysed with a Kodak Image Station 440CF (Perkin Elmer, Boston,
MA, USA).

PKC activity and translocation
PKC activity was assayed in cytosolic fractions utilizing a synthetic PKC pseudosubstrate
following the manufacturer’s directions (Calbiochem). Briefly, control and test cells exposed to
15 mmHg for 30 min were lysed, sonicated on ice and centrifuged at 100 000 g for 60 min.
Supernatant protein concentrations were equalized prior to assay for PKC activity. Cells treated
with PMA (1 µm) served as a positive control. Calcium- and lipid-sensitive PKC activity was
quantified using a colourimetric ELISA based upon a monoclonal antibody to the phosphor-
ylated form of the pseudosubstrate. For the translocation studies, soluble and particulate cell
fractions were prepared according to the methods of Bissonnette (Bissonnette et al. 1994). After
solubilization in extraction buffer (20 mm HEPES, pH 7.6, supplemented with 5 mm EGTA,
5 mm Na pyrophosphate, 1 mm MgCl2, 1 mm PMSF and 10 µm leupeptin), the samples were
centrifuged at 100 000 g for 60 min and the soluble fraction was removed. The particulate frac-
tion was re-suspended in 20 mm HEPES, pH 7.6 containing 150 mm NaCl, 1 mm MgCl2, and
1% Triton X-100. Equal protein aliquots of soluble and particulate fractions were separated via
SDS–PAGE and transferred to nitrocellulose. Blots were probed with both a pan-PKC antibody
that recognizes all PKC isoforms and an antibody specific for PKCα (Calbiochem and Chemicon,
Temecula, CA, USA). Protein loading was controlled for with GAPDH (Biodesign International,
Saco, ME, USA, soluble fraction) and Na/K ATPase (Sigma, particulate fraction).

Statistical analysis
Results are expressed as mean ± SEM and differences between groups were evaluated using
both unpaired and paired Student’s t-tests as warranted with statistical significance being set a
priori at P < 0.05.
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RESULTS

15 mmHg pressure significantly increases cell proliferation
SW620 cell proliferation on collagen I is increased after 6 h of pressure. Using the pressure
apparatus described above, we first determined the effects of increasing pressure by 15 mmHg
over ambient pressure for 24 h on SW620 cells. As illustrated in Fig. 1(a), exposure to pressure
increased cell number by 51 ± 7% (n = 14, P = 0.0001). Data shown represent absolute cell
counts normalized to time = 0 (cell counts at the onset of the study) and are expressed as
mean ± SEM. A time course study was performed to further delineate the pressure effect on pro-
liferation. Cells were exposed to pressure for 0, 3, 4.5, 6, 12 and 24 h and then maintained under
ambient pressure for the balance of a 24-h period prior to trypsinization and cell counting. As
shown in Figs 1(b), 3 h of pressure did not result in a subsequent significant increase in cell
number (3.4 ± 3.0%). However, after 6 h of pressure, cell numbers at 24 h were significantly
enhanced compared with cells exposed to ambient pressure. Furthermore, the magnitude of this
increase was similar to that observed after either 12 or 24 h exposure to pressure. Figure 1(b)
represents absolute cell counts two-point normalized between t = 0 and t = 24 to adjust for
differences in proliferation between studies. Thus, pressure-mediated increases in cell number
appeared duration-dependent, requiring 6 h of exposure to reach maximal stimulation. Apopto-
sis, both early and late, accounted for only 1% of cells in either condition (data not shown). To
document that the result of exposure of SW620 cells to pressure of 15 mmHg over ambient
pressure cells for 24 h was proliferation, cells were assessed for S-phase transition via flow cyto-
metry following propidium iodide staining. When the cells were maintained in complete medium
with 5% FBS, conditions for the original proliferation experiments, the percentage of cells in
S-phase increased from 39.5 ± 1.2 in control cells to 42.9 ± 2.2 in cells under pressure (P = 0.03,
n = 6). When cells were rendered quiescent by serum-starvation for 24 h prior to pressure, the
difference was magnified. As shown in Fig. 1(c), 27.8 ± 1.0% of serum-starved cells at ambient
pressure were found to be in S-phase compared with 46.6 ± 0.8% of serum-starved cells subjected
to pressure (P = 0.0002, n = 6). Cell count studies repeated in cells rendered quiescent showed
proliferation of a similar magnitude to that observed in non-quiescent cells (data not shown).

Figure 1. Pressure stimulates time-dependent SW620 cell proliferation. (a) 15 mmHg pressure application for 24 h
results in a 51 ± 7% increase in cell number compared with the ambient pressure control at 24 h (n = 14, P = 0.0001).
(b) Time course of the pressure effect. Cells were exposed to pressure for 0, 3, 4.5, 6, 12 or 24 h and then maintained
at ambient pressure for the balance of the 24-h period. Cell numbers are significantly (P < 0.05) increased over control
values after 6 h of exposure (data shown are two-point normalized between t = 0 and 24 h of exposure to pressure) and
remain elevated for 24 h. (c) Flow cytometry in cells rendered quiescent by serum deprivation. The ratio of cells in S-
phase after 24 h of pressure was 46.6 ± 0.8% compared with 27.8 ± 0.1% in cells maintained at ambient pressure
(P = 0.0002, n = 6). All data, mean ± SEM; t = 0, initial cell count; control, ambient pressure; pressure, 15 mmHg.
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Pressure enhances proliferation on a different matrix and in a different cell line
We previously have reported that another physical force, cyclic strain, is mitogenic to cells on col-
lagen but not to those fibronectin and that fibronectin inhibits strain-stimulated signals (Zhang
et al. 2003). To determine whether the pressure effect on proliferation was similarly inhibited by
fibronectin, the experiments were repeated in SW620 cells plated on to plasma fibronectin. As
seen in Fig. 2(a), a 24-h exposure to 15 mmHg increased cell number by 29 ± 6% (P = 0.0013,
n = 6). Results are normalized to cell counts at time = 0. Similar results were obtained in HCT-
116 colon cancer cells plated on to collagen I, in which cell number was increased by 27 ± 8%
by pressure (P = 0.009, n = 6) (Fig. 2b). These results suggest that pressure-mediated colon cancer
cell proliferation is neither limited to a single cell line nor inhibited by fibronectin.

15 mmHg pressure activates intracellular signals after 30 min
ERK, p38 and c-Src are activated, but not Akt. We next examined several intracellular signals
that have been implicated in either cellular proliferation or physical force effects in colonocytes
or other cell systems. To determine whether activation of these signals preceded the observed
proliferation, SW620 cells plated on collagen I were exposed to 15 mmHg pressure for 30 min.
Cell lysates of control and experimental cells were analysed by western blot for their activated,
phosphorylated forms. Results in the bar graphs in Fig. 3a were calculated as the ratio of phos-
phorylated to total band intensity for each signal and expressed as per cent of ambient control.
Statistics were calculated on the initial raw data ratios before normalization to control values.
Representative western immunoblots for the phosphorylated and total molecule are shown above

Figure 2. Pressure-stimulated colon cancer cell proliferation is independent of matrix and cell line. (a) In SW620
cells on a fibronectin matrix, 24 h of exposure to 15 mmHg increased pressure increased cell number by 29 ± 6% over
ambient pressure controls at 24 h (P = 0.0013, n = 6). (b) Similarly, in HCT116 cells plated on collagen I, pressure
enhanced cell number by 27 ± 8% (P = 0.009, n = 6). All data, mean ± SEM normalized to cell counts at t = 0.

Figure 3. Pressure induces early (30 min) signal activation. (a) Western blot assays of ERK, p38, c-Src and Akt/PKB
phosphorylation presented as the ratio of phosphorylated to total forms. Bars depict the results of densitometric analysis
(mean ± SEM, n = 3–7, P < 0.05). Representative western blots are shown above the bars. ERK, p38, and c-Src but not
Akt/PKB, were activated by 30 min of pressure. (b) Cytosolic PKC activity, expressed as percentage of control, is sig-
nificantly decreased by pressure (P = 0.026, n = 3). Activation by 1 µg/ml PMA was used as a positive control. DMSO-
treated cells were assayed as a vehicle control for the PMA. (c) Western blot analysis of PKCα subcellular distribution
in response to pressure. Bars represent densitometric ratios of PKCα to GAPDH for the cytosolic fraction (Cyto) and
to Na/K ATPase for the membrane fraction (Memb) (*P = 0.05 membrane pressure vs. membrane control, n = 3). A
representative western blot is shown above the bars. Control, ambient; pressure, 15 mmHg.
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the bars. After 30 min of pressure, ERK (p44/42) activity was higher than that of control by
33 ± 10% (P = 0.0035, n = 7), p38 activation was increased by 51 ± 18% (P = 0.0005, n = 5),
and c-Src phosphorylation was enhanced by 23 ± 7% (P = 0.05, n = 3). Akt, however, was not
significantly activated by pressure (15 ± 5%, n = 6).

PKC activity is lower in the cytosolic fraction while PKCαααα is increased in the membrane 
fraction of cells exposed to pressure
Activation of the various forms of PKC usually involves translocation of the enzyme from the
cytosol to the membrane (Sylvester et al. 2001). We therefore measured calcium- and lipid-dependent
PKC activity in whole cell lysates and cytosolic fractions of control cells and cells subjected to
15 mmHg pressure for 30 min. Activity was compared with that obtained after exposure of the
cells to 1 µg/ml PMA for 30 min. Data presented in Fig. 3(b) show per cent of control cell activ-
ity for both the pressure and PMA experiments. Pressure induced a 21 ± 5% decrease in overall
PKC activity, smaller than the 70% decrease seen with PMA but nevertheless significant
(P = 0.026, n = 3). To further demonstrate PKC activation, both the soluble (cytosolic) and partic-
ulate (membrane) fractions of cells exposed to pressure and their controls were assayed for PKC
content. Western blotting with an anti-PKC antibody that cross reacts with all PKC isozymes
demonstrated significant pressure-induced PKC translocation to the membrane fraction (data not
shown). However, we chose to focus on PKCα because it is a calcium-and lipid-dependent iso-
form of the enzyme and previous work in our laboratory documented its activation in response
to another physical force, repetitive deformation, in the Caco-2 intestinal epithelial cell line
(Han et al. 1998b). GAPDH and Na/K ATPase were used as controls for protein loading in the
cytosolic and membrane fractions, respectively, because GAPDH is known to be a cytosolic
enzyme and Na/K ATPase is a traditional membrane marker. Cytosolic PKCα content was not
measurably changed by pressure, perhaps because it was much lower than that of the membrane
fraction even in unstimulated cells (Fig. 3c) and any change would have been difficult to discern.
However, membrane PKCα, calculated as the ratio of PKC to Na/K ATPase, was significantly
higher in the membrane fraction of cells exposed to pressure (2.39 ± 0.24 vs. 1.58 ± 0.30,
P = 0.05, n = 3), corroborating the PKC activity data and indicating that at least the α isoform
of the PKC enzyme is translocated by pressure.

Pressure-induced proliferation is inhibited by tyrosine kinase and PKC inhibition
We next sought to determine which of the signals shown to be activated by pressure might
play a role in pressure-stimulated SW620 cell proliferation. We used the following inhibitors:
SB203580 (20 µm) for p38, PD98059 (20 µm) for p44/42, PP2 (20 µm) for c-Src, LY294002
(10 µm) for PI-3 kinase, and light-activated calphostin C (100 nm) for PKC. We have previously
demonstrated signal inhibition in SW620 by the SB, PD, LY and PP2 compounds at these doses
(Walsh et al. 2003; Thamilselvan & Basson 2004; Thamilselvan et al. 2004) but inhibition of
the requisite signal was further documented by western blot analysis in the current study (data
not shown). As mechanical forces have been suggested to act directly on the cytoskeleton, we
also used phalloidin (10 µm) to stabilize the actin cytoskeleton. In addition, we examined the
effects of the less specific tyrosine kinase inhibitor, genistein (10 µm). Preliminary data indicated
that the DMSO and ethanol vehicles, at the volumes used, did not affect cell proliferation. (The
increase in pressure-induced proliferation in these experiments, expressed as a percentage of
respective control values was 44 ± 9% in untreated cells, 52 ± 11% in cells exposed to 0.1%
DMSO, and 40 ± 10% in cells in 0.1% ethanol.) Therefore, results were not normalized and are
presented as the number of cells exposed to the inhibitor both under ambient (control) pressure
and 15 mmHg for 24 h. Of the inhibitors used, those that did not affect pressure-induced cell
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proliferation are shown in Fig. 4(a). Pressure increased cell number by 44 ± 11% in LY-treated
cells (P = 0.003), 75 ± 17% in phalloidin-treated cells (P = 0.0003), 55 ± 22% in PP2-treated
cells (P = 0.04), 73 ± 19% in SB-treated cells (P = 0.015) and 32 ± 8% in PD-treated cells
(n = 4–7 for each). Thus, none of these agents blocked pressure-stimulated SW620 cell prolif-
eration. However, as shown in Fig. 4(b), exposure to either genistein or calphostin C prevented
pressure-induced cell proliferation. Whereas pressure enhanced cell number by 30 ± 9% in
control cells (P = 0.04), the increase was limited to 11 ± 9% by genistein and 5 ± 3.5% by
calphostin C (n = 5 each), not significantly different from control in either case, suggesting that
pressure stimulates proliferation in SW620 cells by both PKC- and tyrosine-kinase-dependent
mechanisms.

DISCUSSION

We have previously reported that a 15 mmHg increase over ambient pressure increases colon
cancer cell adhesion by a mechanism requiring FAK, c-Src, and an intact actin-cytoskeleton but
is independent of PKC or ERK (Basson et al. 2000; Thamilselvan & Basson 2004). We now
demonstrate that exposure to a 15 mmHg elevation in pressure stimulates colon cancer prolifer-
ation in a time-dependent but matrix-independent manner in adherent cells from two different
colon cancer cell lines. Changes in proliferation (assessed by S-phase fraction) is likely to explain
this increase in cell number. Proliferation was preceded by pressure activation of p38, ERK, c-
Src and PKCα. However, only PKC blockade or global tyrosine kinase inhibition negated the
pressure effect on proliferation.

Pressure enhancement of proliferation has been reported in mesangial (Mattana & Singhal
1995; Kawata et al. 1998a,b; Kato et al. 1999), vascular smooth muscle (Hishikawa et al. 1994;
Watase et al. 1997; Tsuda et al. 2002) and endothelial cells (Sumpio et al. 1994). Because interest
in these cells is related to hypertension, most of those studies were performed at the 40–120

Figure 4. Tyrosine kinase and PKC inhibition block pressure-induced proliferation. (a) Pharmacological blockade
of PI-3-kinase with 20 µm LY294002 (LY), actin depolymerization with 10 µm phalloidin (Ph), c-Src blockade with
20 µm PP2 (PP2), p38 inhibition with 20 µm SB203580 (SB) and MEK inhibition with 20 µm PD98059 (PD) all failed
to negate the pressure effect on proliferation. *P < 0.05 vs. respective control (ambient). Appropriate vehicle controls
yielded similar pressure mediated increases in cell number. (b) Genistein (10 µm) and calphostin C (100 nm) abrogate
pressure-stimulated cell proliferation, limiting increases in cell number to 11 ± 9% with genistein and 5 ± 3% with
calphostin C (n = 5, each).
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mmHg pressures found in the vascular system, The same high pressures enhanced proliferation
and DNA synthesis in a rat intestinal epithelial cell line (Hirokawa et al. 2001). In contrast, pub-
lished studies have focused on the effects of pressures within the 15 mmHg range on colon can-
cer cells in vivo. A pneumoperitoneum yielding 15 mmHg pressures promoted the occurrence
of liver metastasis in mice implanted with colon 26 cells (Ishida et al. 2001; Gutt et al. 2003).
The mechanisms of this result, however, are unclear, and certainly may include the effects of
pneumoperitoneal pressures on adhesion (Basson et al. 2000; Thamilselvan & Basson 2004), in
addition to the outcome on proliferation suggested by our current observations. Pressures
between 6 and 12 mmHg enhanced the proliferation of CX-2 colon adenocarcinoma in vitro
after 5 days but, unlike our results, proliferation was suppressed by pressure at earlier time
points (Gutt et al. 2000). The disparity between the prior results and ours may reflect the some-
what higher pressure used in our study, an idiosyncracy of the CX-2 cell line, or the effect of a
more physiologic matrix protein substrate. The CX-2 cells were cultured on tissue culture plastic,
without a matrix substrate, perhaps eliminating the contribution of integrin engagement to the
transduction of the pressure signals (Miyamoto et al. 1996; Esposito et al. 2003).

Of the signals studied, p38, ERK, c-Src, and PKC were activated after 30 min of exposure
to 15 mmHg pressure, but Akt/PKB was not. Many of these signals are activated in some, but not
all, cells in response to pressure or other mitogenic stimuli such as growth factors (Hishikawa
et al. 1994; Tsuda et al. 2002) (Kawata et al. 1998a,b; Kato et al. 1999). Tyrosine kinase recep-
tors activate PKC and PI-3-K in SW480 and Caco-2 human colon cancer cells (Graness et al.
1998; Jasleen et al. 2000). In HT-29 colon cancer cells, growth factors stimulate c-Src, PI-3-K,
Akt/PKB, ERK, and proliferation (Kim et al. 2002; Golubovskaya et al. 2003). Proliferative
activity in five human colon cancer cell lines has been linked to c-Src (Sekharam et al. 2003)
but our previous results (Thamilselvan & Basson 2004) and those of others (Haier et al. 2002;
Jones et al. 2002) suggest that c-Src may be more important for pressure stimulation of cell
adhesion than proliferation. In this study, c-Src inhibition did not prevent the mitogenic effects
of pressure. Similarly, although phalloidin blocks the stimulation of SW620 or primary human
colon cancer cell adhesion by pressure (Thamilselvan & Basson 2004), phalloidin did not inhibit
pressure-induced proliferation, suggesting that the mitogenic effects of pressure in adherent cells
may not require cytoskeletal input.

In non-adherent SW620 cells, pressure activates p38 but not ERK (Thamilselvan & Basson
2004). Pressure stimulates both ERK and p38 in adherent cells, but inhibition of these MAPK
components did not block proliferation. ERK activation has been associated with proliferation
(Shapiro et al. 1996). However, ERK activity may need to exceed a specific threshold to stimu-
late proliferation (Kuwada & Li 2000). In addition, and consistent with our results, MAPK
activation is not necessarily related to proliferation in other cells (Xu et al. 2000). Strain stimulates
endothelial ERK and PKC, but only PKC inhibition prevents proliferation (Ikeda et al. 1999).
Similarly, collagen expression in mesangial cells required both ERK and PKC. Interestingly, the
PKC-δ, -ε and -ζ effects were ERK-dependent but those mediated via PKC-α and -β were ERK-
independent (Hua et al. 2001). We found similar dissociation between ERK and PKC-α effects.

Although pressure activated MAPK, c-Src, and PKC, only genistein and calphostin C negated
the mitogenic effect of pressure. The genistein data suggest that some receptor or intracellular
tyrosine kinase is necessary. Genistein blocks pressure-stimulated smooth muscle and mesangial
cell proliferation and the mitogenic effects of GLP-2 and strain in Caco-2 cells (Han et al.
1998b; Kawata et al. 1998a,b; Tsuda et al. 2002). However, in VSMC both ERK and p38 are
required (Tsuda et al. 2002), whereas Caco-2 mitogenicity is sensitive to PI-3-K and MAPK
blockade (Han et al. 1998b; Jasleen et al. 2000). In contrast, the genistein-sensitive mitogenic
pressure effect in SW620 cells was independent of c-Src or the MAPK. Genistein may be inhibiting
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tyrosine kinase activation of a number of growth factor receptors, such as those of EGF or IGF-1,
intermediary or docking proteins such as Shc and Grb2, or the JAK/STAT pathway, among
others. Each of these has been implicated in cell proliferation but their role(s) in the mitogenic
effect of pressure awaits further study.

Here, exposure to 15 mmHg pressure for 30 min stimulated PKC-α translocation to the
membrane and PKC inhibition by calphostin C blocked the ensuing proliferation. Early
mitogenic signals are commonly associated with delayed effects, because either the signals
themselves or their downstream consequences persist. Proliferation and PKC activation have
been closely linked in colonocytes, and we have previously reported that a rapid biphasic PKC
activation over 1–5 min was associated with increased Caco-2 cell number 24 h later in response
to cyclic strain (Cadoret et al. 1998; Han et al. 1998a,b; Davidson et al. 2000; Cerda et al.
2001). The PKC family of serine/threonine kinases includes conventional lipid- and calcium-
sensitive PKCs (α, β and γ), novel lipid-sensitive calcium-independent PKCs (δ, ε, η and θ), and
atypical PKCs (Mellor & Parker 1998; Toker 1998). PKC isoform abundance varies with pro-
liferation, differentiation and apoptosis in normal colon (Cesaro et al. 2001). Human, mouse and
rat colonocytes, both normal and malignant, express the α, β, δ, ε and ζ isoforms, with lower
expression in tumour cells (Kahl-Rainer et al. 1994; Perletti et al. 1996; Han et al. 1998a,b;
Verstovsek et al. 1998). Each isoform may subserve a different role in colon cancer proliferation
(Perletti et al. 1998, 1999; Weller et al. 1999) although their exact function is controversial
(Scaglione-Sewell et al. 1998). PKC-α supports proliferation, a role also documented for PKC-
ε and -β in HT-29 and HD3 and Caco-2 cells (Cadoret et al. 1998; Weller et al. 1999; Davidson
et al. 2000; Cesaro et al. 2001). PKC-α was linked to ERK in bile-acid-treated AA/C1 adenoma
cells (McMillan et al. 2003), but not in HCT-116 cells (Qiao et al. 2000). PKC action appeared
independent of ERK in our cells.

In conclusion, our data demonstrate that adherent SW620 cells proliferate more rapidly in
response to a modest increase in pressure. In particular, the mitogenic effects of pressure require
PKC, are independent of Src and are not blocked by phalloidin, precisely the reverse of the
effects of pressure on adhesion. Thus, the effects of pressure on colon cancer cell proliferation
are mediated by pathways different from the mitogenic effects of strain or the adhesion-promoting
effects of pressure on colon cancer cells. However, both greater adhesion and enhanced prolif-
eration could facilitate colon cancer implantation and growth. Tumour progression in intact
organisms is a highly complex process, but these results suggest that forces such as pressure and
strain, acting through different pathways, may promote colon cancer progression.
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