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Abstract

Objectives: Mathematical models are useful for
studying vascular and avascular tumours, because
these allow for more logical experimental design
and provide valuable insights into the underlying
mechanisms of their growth and development. The
processes of avascular tumour growth and the devel-
opment of capillary networks through tumour-
induced angiogenesis have already been extensively
investigated, albeit separately. Despite the clinical
significance of vascular tumours, few studies have
combined these approaches to develop a single
comprehensive growth and development model.
Materials and methods: We develop a continuum-
based mathematical model of vascular tumour growth.
In the model, angiogenesis is initiated through the
release of angiogenic growth factors (AGFs) by cells
in the hypoxic regions of the tumour. The nutrient
concentration within the tumour reflects the influence
of capillary growth and invasion induced by AGF.
Results and conclusions: Parametric and sensitivity
studies were performed to evaluate the influence of
different model parameters on tumour growth and to
identify the parameters with the most influence,
which include the rates of proliferation, apoptosis
and necrosis, as well as the diffusion of sprout tips
and the size of the region affected by angiogenesis.
An optimization was performed for values of the
model parameters that resulted in the best agreement
with published experimental data. The resulting
model solution matched the experimental data with a
high degree of correlation (» = 0.85).
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Introduction

The number of deaths resulting from cancer every year is
second only to cardiovascular disease (1). Mathematical
models that describe the process of tumorigenesis can
both increase our understanding of tumour development,
as well as aid in the development and preliminary testing
of treatment options (2). These models can provide insight
into the vulnerability of different types of tumours to
different anti-angiogenic drugs, suggesting avenues for
the development of new treatment regimes (3-5). They
also provide a quantitative framework to determine
tumour prognosis (6). Avascular tumours are readily mod-
elled, because nutrients are only supplied by diffusion
from the outside of the tumour (7). However, they are of
lesser clinical significance, because in most cases the dif-
fusion-limited nutrient supply limits their size and also
because the tumour cells do not spread through the blood-
stream. Vascular tumours are of greater clinical concern
because they develop capillary beds through the process
of angiogenesis. These grow much larger in size than
avascular tumours because of the additional vascular
nutrient flux. They are associated with considerably higher
mortality rates, and also have a greater potential to metas-
tasize (8—10). The two principal approaches used for the
mathematical modelling of vascular tumours are the cellu-
lar automaton (CA) and continuum methods.

CA modeling of tumour growth is based on equations
that describe the behaviour of individual cells within a
tumour (11). It is particularly useful in determining the
behaviour of a particular component of a tumour system.
CA models have been developed to describe the behav-
iour of an individual vascular endothelial cell migrating in
angiogenesis (12—15), and to understand different aspects
of avascular and vascular tumour growth (16,17). How-
ever, it is difficult to realistically implement CA models to
obtain descriptions of entire tumours because of the large
number of cells involved. Thus, they are employed as
components of multiscale models or serve as starting
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points for the implementation of continuum models
(18,19).

Continuum models usually describe the tumour prop-
erties, such as capillary density, nutrient concentration, and
cell counts as field variables on a volumetric basis. They
describe the response of an entire tumour using ordinary
and partial differential equations. While these models are
less computationally expensive, they require additional
assumptions. One common approach is to characterize a
volume consisting of a single subpopulation by specifying
a threshold nutrient concentration (20-23). An alternative
approach is to treat each subpopulation as a separate spe-
cies, and solve for the concentration profile of each cell
type (22). These models have been used to predict tumour
behaviour by separating cells into proliferating, hypoxic
and necrotic subpopulations, and also to develop models
that examine the stem cell hypothesis (23-25), such as in
brain cancers. The effects of pH and tissue mechanics have
also been investigated through such a model (26).

Angiogenesis is the process by which new blood ves-
sels are formed within a tumour (13). Continuum models
of angiogenesis can predict the concentration of vascular
endothelial cells on the basis of equations governing their
diffusion, chemotaxis, and haptotaxis (12), or the concen-
tration of capillaries (27,28). The interaction between a
tumour and angiogenesis for a weakly vascular tumour
has been modelled by adjusting the nutrient diffusivity
(23), or by incorporating a vascular source term in the
equation governing the nutrient concentration. In the latter
case, the models are limited through the assumption of a
constant a priori angiogenesis source profile (29,30). We
have developed a continuum model of vascular tumour
growth that incorporates both the initial avascular tumori-
genesis and the later angiogenesis. This model is able
to quantitatively describe the experimentally observed
behaviour of such a tumour.

Mathematical model

Model overview

Our mathematical model consists of two coupled submod-
els, one that governs the tumour growth and the other that
describes the progression of angiogenesis. The tumorigen-
esis model assumes spherical symmetry and constant
tumour cell sizes as well as quasi-steady Fickian diffusion
of nutrients.

The angiogenesis model includes a continuum treat-
ment of tumour capillaries. Two different field variables
quantify the instantaneous angiogenic state of the vascular
network in a tumour (28). The sprout tip concentration s
tracks the location of actively growing capillary sprout
tips and is defined as the number of sprout tips located
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within a given volume. The capillary length concentration
o is similarly defined as the total capillary length per unit
volume. Essentially, the capillary length concentration
represents the total length of each capillary within a unit
volume. Similarly, the sprout tip concentration represents
the number of active capillary sprout tips at which capil-
laries are increasing in length.

The diffusion of angiogenic growth factor (AGF) is
assumed to be quasistatic, which is justified through the
large difference between the diffusivities of AGF and
endothelial cells. We neglect the influence of fibronectin,
as it primarily serves to connect growing capillaries, a pro-
cess which is beyond the current scope of our model.

Tumorigenesis model

The tumorigenesis model is based upon our previous
avascular glioma model (23). Its primary variables are the
numbers of live N, and dead N, cells in the tumour. The
Fickian diffusion of nutrients ¢ out of capillaries (pro-
duced by angiogenesis) within the tumour is represented
by continuous source terms throughout the region of the
tumour where capillaries are present, so that the governing
equation for the nutrient concentration is

dc/dt = DcVPe — S+ g(g,¢), (1)

where S represents the metabolic rate at which nutrients
are absorbed by the cells and g(¢,c) is the volumetric
nutrient transport from the capillaries, which represents
the diffusion across a capillary wall because of the differ-
ence in the nutrient concentration in the capillary and the
tumour. The nutrient concentration in the capillary is
assumed to decay linearly from a peak value at the capil-
lary wall to zero over a radial distance 0, which represents
the distance that a capillary can pass through the tumour
before the concentration of the blood within it reaches
equilibrium with the surrounding tissue. This linear decay
has the effect of creating an outer region that is influenced
by angiogenesis, whereas deeper regions remain unaf-
fected. This results in the relation

g(@,¢) = 2nDcReapp(cy — ¢)/3f (r), where (2a)
Sf(r) = (e —ev(Rr —r)/6)(1 — H(Rr —r — 0)). (2b)

Reap 1s the capillary radius, Ry the tumour radius, ¢,
the nutrient concentration in the capillaries, D¢ the nutri-
ent diffusivity, ¢ the capillary length concentration and
H represents the unit step function. f{r) represents the
decrease in nutrient concentration present in the blood
progressing deeper into the tumour. This is treated as a
piecewise linear function as shown in Fig. 1.

The boundary conditions for eqn (1) are constant
nutrient concentration ¢, at the tumour exterior and no flux
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Figure 1. Description of the piecewise linear function. Form of the
function f{r), which represents the decrease in the nutrient concentration
in the capillary blood as the capillary progresses deeper into the tumour.

at some location » = «. For a small tumour, « is located at
the tumour centre. However, depending on angiogenesis,
for larger tumours, the nutrient concentration may decay
to zero at a finite distance from the centre, resulting in an
innermost necrotic core that lacks sufficient nutrients to
survive. The tumour radius (required for the first bound-
ary condition) is calculated from the total cell count

Rr = Re(Ny + Ng)'P%. (3)

The concentration profile ¢(r) obtained from eqns (1)
and (2) separates the tumour into three discrete regions at
any instant. The proliferative region, where ¢ is greater
than a threshold value ¢, consists of cells that have suffi-
cient nutrient supply to support active proliferation. The
necrotic region consists of cells with ¢ < ¢,,, where ¢, rep-
resents the minimum concentration necessary to avoid cell
death. The hypoxic region consists of cells that have suffi-
cient concentration to avoid cell death, but insufficient
concentration to support proliferation. Hence, in this
region, ¢, < ¢ < ¢,. The proliferative volume V},, hypoxic
volume J}, and the necrotic volume ¥, can be determined
from the concentration profile.

As the total number of individual tumour cells is
known, the number of live cells in each of the three
tumour subvolumes can be determined by considering the
ratio of each compartment volume to the total tumour
volume based on the tumour radius, i.e.

Np = (V/ V1) (No + Na), (4a)
Ny = (Va/Vr)(Ny + Ng), and (4b)
N, = (Vn/VT)(Nb -+ Nd) — Ny (40)

The additional term in eqn (4c) arises through the
assumption that all the dead cells within the tumour are
located within the necrotic region. Thus, the number of
dying (necrotic) cells is equal to the total number of cells

in ¥, minus the number of dead cells. Once the number of
live cells of each type is known, the rate of change in the
number of all live cells within the tumour is determined as
follows,

dNb/dt = prp — WaNy — 0Ny, (5)

where @, represents the proliferation rate of cells within
the proliferative region, w, the apoptosis rate of live cells
(as cancer cells are inherently at risk of apoptosis regard-
less of nutrient concentration because of the various anti-
cancer regulatory mechanisms within the cells) and w, the
rate at which living cells in the necrotic region die. Simi-
larly, the rate of change in the number of dead cells within
the tumour is

de/df = 0Ny — wgNy, (6)

where w4 denotes the rate at which dead cells degrade and
are removed. Controlled cell death occurs during apopto-
sis in a manner that facilitates rapid degradation and
removal of the cell.

The nutrient concentration field described by eqns (1)
and (2) is dependent only on the variables N,, Ny and ¢.
The first two are determined from eqns (5) and (6), and ¢
is calculated using the angiogenesis model.

Angiogenesis model

The angiogenesis model was established by modifying an
existing approach (12) to allow the capillary length and
sprout tip concentrations to be determined. The sprout tip
concentration s in the tumour is influenced by Fickian
diffusion and chemotaxis, which is assumed to be linear
so that

Js/0t = DsV?s — V - (yosV{AGF}), (7)

where Dg denotes the diffusivity of endothelial cells
(which make up the sprout tip), yo the linear chemotaxic
constant and {AGF} the concentration of AGF. A zero
gradient boundary condition at the tumour centre is
implied by spherical symmetry, while on the outer bound-
ary, a sprout tip concentration, s is applied following the
development of a hypoxic region within the tumour. Prior
to the development of such a region, this outer concentra-
tion is 0, and there is no angiogenesis. This accommodates
the role of AGF release by hypoxic cells in triggering
sprout formation.

The capillary length concentration increases as sprout
tips pass through a volume, leaving capillaries in their
wake. Hence, the rate of change in capillary length concen-
tration is based on the flux of sprout tip concentration, i.e.

0@ /0t = DsVs — y,sV{AGF}. (8)
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The quasistatic AGF concentration is calculated based
on Fickian diffusion with a governing equation

V*{AGF} + g(c) = 0, where (9a)

)= { &

Here, g(c) represents a source term due to the presence
of hypoxic cells. AGF is not released by the proliferative
cells of the tumour, but by live cells distributed throughout
the tumour as a result of a lack of oxygen. The initial
conditions for both sprout tip and capillary length
concentrations are set to be everywhere zero. A schematic
representation of the entire model is shown in Fig. 2.

if ¢, <c <c¢yp
ifce<cyorec>c

(9b)
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Numerical methods

A finite difference scheme was used to solve this system
of ordinary and partial differential equations. The details
of the discretizations are included in the appendix. Dis-
cretization of the partial differential equations governing
the rate of change of sprout tip and capillary length con-
centrations, i.e. eqns (7) and (8), respectively, allows the
system to be represented as a system of ordinary differen-
tial equations. Two ordinary differential equations corre-
spond to each node (except the boundary nodes), one for
sprout tip concentration and the other for capillary length
concentration. The equations were solved on a 400-node
mesh over time using a second-order explicit Runge—
Kutta method for the tumorigenesis model, and a first-
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Figure 2. Schematic representing the model. The model consists of two submodels, one representing tumorigenesis and the other representing angio-
genesis. The tumorigenesis model depends on the live and dead cell counts, as well as the capillary length concentration, and provides the rate of change
in the live and dead cell counts. The angiogenesis model depends on the sprout tip concentration, and provides the rates of change in both sprout tip and
capillary length concentrations. The large orange arrow on the left represents the dependence on the initial state of the Runge—Kutta scheme. The previ-

ous solutions, along with the derivatives, are used to obtain the new solution.
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order implicit Runge—Kutta method for the angiogenesis
model. Instability is a common problem in the finite dif-
ference solution of partial differential equations, and the
use of a completely implicit method proved more efficient
than other stiff methods, such as the numerical differentia-
tion formula method. The model was solved for a time
period of 120 days, using a time step of 0.04 days, which
was stable over the entire range of considered parameter
values.

Results and discussion

Parametric and sensitivity studies

A parametric study of the model was performed to exam-
ine the effects of large-scale changes in model parameters
on the model solution. The parameters were varied by one
order of magnitude about their nominal values that were
obtained from the tumorigenesis (23) and angiogenesis
(12) literature. Large-scale changes in model parameters
lead to relatively straightforward changes in the model
solution, but with several important exceptions. For
increases in the proliferation rate, as expected, the instan-
taneous size of the tumour increases, as shown in Fig. 3.
Figure 3 also shows that if the proliferation rate is reduced
sufficiently below a critical value, the tumour is unable to
grow and shrinks to a zero radius. This behaviour is due
to the form of eqn (5), which predicts the rate of change
in the number of live cells present in the tumour. If the
proliferation rate is smaller than the apoptosis rate, the
tumour is unable to grow and eventually ceases to exist
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» 0 / 0, =275
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9 Ill’/ /—__ — (Dp = 055
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Figure 3. Response of the tumour growth predictions to variations
in the proliferation rate w,. Larger values of the proliferation rate result
in larger tumour steady states, with a steady state being reached more
rapidly. An extra parameter value of w, =1 is added for additional
insight. Values for the proliferation rate are given in units of 1/day.

even if the tumour becomes sufficiently small so as to con-
sist of only proliferating cells. Increasing the degradation
rate results in the tumour being unable to grow to sizes
requiring a large necrotic core, because any dead cells
decay rapidly. On the other hand, decreases in the degra-
dation rate result in increased tumour size, as more dead
cells remain in the tumour body. As the degradation rate
approaches zero, all dead cells are retained forever, and
the tumour grows linearly without restriction. These
results are presented in Fig. 4.

Smaller, but still significant changes in the solution
occur through changes in the value of the apoptosis rate
and the nutrient diffusivity. For a sufficiently large apopto-
sis rate (that is greater than the proliferation rate), the
tumour is unable to grow. This is a major physiological
barrier to tumour development. For the opposite limiting
case when the apoptosis rate is negligible in comparison
with the necrosis rate, the tumour grows rapidly but to a
constant size because of cell necrosis and degradation.
These results are observed in Fig. 5. Increases in the nutri-
ent diffusivity on the other hand steadily increase the
tumour radius without bound. Nutrient diffusivities
approaching zero result in very small tumours, as shown
in Fig. 6.

We now focus on the interaction of angiogenesis and
tumorigenesis in vascular tumours by examining the
effects of large changes in the angiogenesis parameters
(i.e. in the sprout tip diffusivity and the size of the affected
region). As seen in Fig. 7, an increase in the sprout tip dif-
fusivity results in a corresponding increase in the tumour
radius at any instant with the effect being relatively uni-
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Figure 4. Response of the tumour growth predictions to variations
in the degradation rate wg4. For high degradation rates, the tumour rap-
idly reaches a small steady-state radius and does not grow further. As the
degradation rate becomes negligibly small, the tumour growth becomes
approximately linear and keeps increasing without bound. Values for the
degradation rate are given in units of 1/day.
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Figure 5. Response of the tumour growth predictions to variations
in the apoptosis rate @,. For small values of the apoptosis rate, the
tumour growth is governed by the interaction between the proliferation
and degradation rates. Sufficiently large apoptosis rates can prevent
tumour growth from being initiated. This demonstrates a physiological
mechanism to prevent tumour growth and development. Values for the
apoptosis rate are given in units of 1/day.
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Figure 6. Response of the tumour growth predictions to variations
in the nutrient diffusivity D. Changes in the nutrient diffusivity produce
similar plots, with increased diffusivity resulting in larger tumours.
Values for the nutrient diffusivity are given in units of mm?>/day.

form over varying D,. A 2-fold increase in the diffusivity,
for instance, results in a 12% increase in the tumour radius
at the end of the simulation, while a similar 2-fold
decrease results in an 8% decrease in tumour size.
Changes in the length of the affected region have a
nonlinear influence on tumour size. For small values of 9,
the predictions are similar to those for an avascular solu-
tion. However, as 6 increases, the tumour size increases
significantly. Indeed, unphysiological behaviour can be
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Figure 7. Response of the tumour growth predictions to variations
in the sprout tip diffusivity D. Sprout tip diffusivity has no affect until
the onset of angiogenesis when the solutions for different values of the
parameter diverge. Larger diffusivities result in larger tumour sizes.
Values for the sprout tip diffusivity are given in units of mm?/day.

obtained by increasing this parameter by an order of mag-
nitude. This is explained through eqn (2). The size of the
affected region has no effect on the avascular nutrient
concentration, because it only influences the nutrient
concentration due to the capillaries feeding the tumour.
Hence, a sufficiently small affected region influences the
nutrient concentration only in a small outer region of the
tumour, which is already well supplied with nutrients
through the usual surface diffusion. As a result, the small
local increase in nutrient concentration has little effect on
tumour growth when ¢ is small. Thus, the solutions for
the two smallest values of § in Fig. 8 are virtually identi-
cal, and relatively close to the growth of an avascular
tumour. The consideration of an angiogenesis-influenced
region in our model involves an a priori assumption about
the nutrient concentration in the capillaries. A future
approach could model the capillaries as flow tubes with
nutrients diffusing out along their length in proportion to
the external concentration, although this would increase
the model complexity.

In addition to the parametric study, a sensitivity study
was performed to reveal which of these parameters have
the most significant local influence on tumour growth.
This was conducted by perturbing each of the seven
model parameters considered, which are presented in
Table 1, by a small amount (0.1%) and observing the
resulting change in the solution. This allowed the estima-
tion of the derivative dR,/dg;, where Rt represents the
tumour radius and g; represents a given model parameter.
By examining the value of this derivative, we can observe
the effects of local changes in the model parameter on the
solution. The sensitivity of the tumour radius over time is
presented in Fig. 9a, and that of the number of live and
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Figure 8. Response of the tumour growth predictions to variations in the various capillary nutrient concentration decay distances o. Like the
sprout tip diffusivity, the length of the affected region has no influence prior to the onset of angiogenesis. After angiogenesis occurs, large values of o
result in very large tumour sizes, while small values have little to negligible influence on tumour growth, as oxygenation of the affected region is diffu-
sion limited. Values for the length of the affected region are given in units of mm.

Table 1. Nomenclature and parameter values

Nomenclature Symbols Units
Nutrient concentration c M/mm?
Radial distance from tumour centre r mm
Radius of tumour Ry mm
Radius of hypoxic shell Ry mm
Radius of necrotic core Ry mm
Time t days
Parameter Symbols Nominal values Calibrated values Units

Nutrient concentration outside tumour Co 1 nmol/mm’
Nutrient concentration needed for proliferation cy 0.75*%Cq nmol/mm?
Nutrient concentration needed to avoid necrosis N 0.5*C,y nmol/mm?®
Cell radius R, 0.005 0.000503 mm

Nutrient diffusivity D 12.96 11.94 mm?/day
Metabolic rate S 1786 4553 nmol/mm>*day
Proliferation rate p 2.75 3.13 1/day
Apoptosis rate W, 0.32 0.556 1/day

Necrosis rate Wy 5 7.41 1/day
Degradation rate [on 0.05 0.0575 1/day

Sprout tip diffusivity Dy 0.00086 0.000115 mm?/day
Chemotactic constant %0 22 400 000 22 400 000 mm?/nmol*day
AGF diffusivity D, 25 25 mm?/day
Length of the affected region d 0.02 0.0675 mm

dead cells in Fig. 9b,c respectively. This analysis revealed
that the model is more sensitive to local changes in the
tumorigenesis parameters (which are different from the
angiogenesis parameters). The most locally sensitive
tumorigenesis parameters are the proliferation and degra-
dation rates, while the length of the region influenced by
angiogenesis and the sprout tip diffusivity are among the
least sensitive parameters. Here, we note that although
small-scale changes in the length of the affected region
have little effect, large-scale changes can have a signifi-
cant effect, as demonstrated by the parametric study.

Based on the results from the parametric and sensitivity
studies, the following parameters were varied to calibrate
the model against experimental data: proliferation rate,
w,, the apoptosis rate, w,, the degradation rate, g, the
sprout tip diffusivity, Ds and the length of the region
affected by angiogenesis, 0.

Model calibration

The model was calibrated to fit it to experimental data
available in the literature for human pancreatic tumour cell
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Table 2. Calibration ratios

Parameter Wi/ Win
Cell radius 0.1007
Nutrient diffusivity 0.921
Metabolic rate 2.55
Proliferation rate 1.138
Apoptosis rate 1.738
Necrosis rate 1.482
Degradation rate 1.145
Sprout tip diffusivity 0.134
Chemotactic constant 1

AGEF diffusivity 1
Length of the affected region 3.377

lines BxPC-3 and MiaPaCa-2 (31). In that study, real-time
quantitative measurements of the tumour volumes were
obtained by imaging the tumours from different angles
during their growth. This provided tumour volume data
for 18 implanted tumours from about 40 days to about
140 days. We are thus able to compare the tumour radii
predicted by our model with the experimentally obtained
tumour volumes. Although we determined optimal param-
eters for human pancreatic tumours, the framework of our
model should be valid for many different tumour types
because of its fundamentally mechanistic nature.

The model was calibrated using nonlinear least-
squared regression, implemented with the MATLAB ‘Isq-
nonlin.m’ function. Each model parameter that was varied
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during the optimization was represented by the nominal
value of the parameter multiplied by a coefficient, w:

q4i = Wiq1n- (10)

The coefficients were allowed to vary over the range
1 <w < 10, corresponding to the range considered in the
parametric study. The use of these coefficients allowed
uniform treatment of the parameters, with the weights
serving as the design variables in the optimization.
Although the full set of 11 parameters that are presented
in Table 2 was used in the optimization, it seems likely
that, based on the parametric and sensitivity studies, simi-
lar results could be obtained keeping only the most sensi-
tive parameters. The best-fit solution is shown in Fig. 10
with experimental measurements averaged over multiple
sets. There is good agreement between the model predic-
tions and the experiments (+* = 0.85). A key feature of the
model is its ability to extrapolate early-stage behaviour
that is not measurable through experiments.

Model results

The calibrated model for human pancreatic tumours was
used to predict tumour growth for both vascular and avas-
cular tumours (shown in Fig. 11). Although human pan-
creatic tumours are highly vascular, this approach allows
us to understand the effect that vascularization has on
tumour growth, thus providing insight into the underlying
mechanisms. The model showed that the early behaviour
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Figure 10. Comparison of experimental measurements from (31) and
the ‘best fit” model prediction resulting from the parametric study. The
experimental data are available from ~40 days but most of the complex-
ity in the predicted behaviour occurs prior to this.

(prior to the development of a hypoxic region) of both
vascular and avascular tumours is identical. Beyond this
early stage, avascular tumour growth begins to plateau

because of limitations in the nutrient availability, ulti-
mately reaching a steady state when the increase in the
number of live cells is precisely matched by the destruc-
tion rate of dead cells in the necrotic core.

A vascular tumour overcomes the nutrient limitation
through transport from the capillaries so that its growth is
not arrested, as shown in Fig. 11a,b, which present tumour
radius and live and dead cell counts for both the vascular
and avascular models. At the end of the simulation period,
the radius of the avascular tumour reaches a steady state
radius of about 1 mm, while the vascular tumour is still
steadily growing because of the increase in ¢ within the
vascular tumour. The results for s and ¢ are shown in
Fig. 12a,b respectively. The invasion of microvessels into
the tumour body is initiated on the tumour surface and
intrudes inwards into the tumour mass over time. This
intrusion is initiated at approximately the same time as
the development of a hypoxic region within the tumour,
because the process is triggered through AGF release by
hypoxic cells. Ultimately, a uniform steady-state sprout
tip concentration profile is reached throughout the tumour
volume. Meanwhile, the capillary length concentration
has a maximum value on the outer edge of tumour and
decreases linearly within the tumour until it reaches zero
at the centre.
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Conclusions

A mathematical model of highly vascular tumours based
on continuum theory is presented. It is able to predict the
behaviour of a highly vascular tumour through all stages
of development, from a single neoplastic cell to an aggres-
sive rapidly expanding vascular tumour. A sensitivity
study showed that the model is most sensitive to local
changes in the proliferation and degradation rates,
although a parametric study showed that larger changes in
the length of the angiogenesis-affected region can gener-
ate large changes in the model solution. Using calibrated
parameters for a human pancreatic tumour, the model was
shown to accurately predict experimentally measured
tumour growth. It also provides insight into the penetra-
tion of capillaries, although this was not measured in the
experimental data. Although we only compared our pre-
dictions with human pancreatic tumour data, because of
the mechanistic nature of the model, it should be able to
describe other tumour types as well with appropriate
choices of model parameters.
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Appendix: Discretization scheme for the differential equations

Nutrient concentration

Consider the ordinary differential equation for the nutrient concentration in the body of the tumour (eqn 1). Introducing
spherical coordinates and the quasi-steady state condition dc/dt = 0, at any time this concentration follow the relation,

D, /d dc Cp —
e (dr <r = )) S + 21D, Rcapq)( . )f(r) = 0. (A1)
Discretizing the outer and inner derivatives, respectively, results in a linear system of algebraic equations
2nD.R 1 (r Sr2Ar? 2mR ¢ i
ri2+]/2ci+1 — (rizﬂ/z +ri2—1/2 + c caép‘/’/f( 1)>ci +ri2—1/zci*1 — lD _ Cap(gll bf( ) (AZ)
C

Sprout tip concentration

Discretization of eqn (7) governing the sprout tip concentration leads to a system of ordinary differential equations,

ds ! DS(”iz+1/2si+' - (ri2+1/2 + 71271/2)si + rizfl/ZSi—l)
i

& PAR —y Si+1/2r12+1/2{AGF}i+1 (A3)
1 0 —(Si+1/27i2+1/2 +si,1/2r1271/2){AGF}i +si,1/2ri271/2{AGF}i71

These equations can then be further using a first-order implicit finite difference scheme as discussed in the numerical
methods portion of the paper. This results in a series of algebraic equations, whose solution yields the value of the sprout
tip concentration at the next time step:

g A st +7i\? o Fig1 +7i r e e it
STn zAr2D8<< 2 ) SJ'+1_<( ) ( 2 ) éJi +( 2 ) S )
SﬁlﬂJ (1+1+r|) {AGF}1+1 Ylﬂ (rHrr. 1) {AGF}i—I (A4)

X =0
0 <6J,11+5J (r,+12+”) Jrsi ;LSJV (nﬂ1 1) >{AGF}

Capillary length concentration

The discretization of the capillary length concentration relation eqn (8) is similar to that for s. Discretizing the derivatives
yields ordinary differential equations at each node, namely,

d(pi _ DSSHl — Si—1 oS {AGF}i+1 - {AGF}i—l ’

dr 2Ar 0% 2Ar (A3)

Applying an implicit first-order Runge—Kutta scheme to discretize these differential equations yields algebraic
expressions:

: , s =t 1 {AGF},, | — {AGF},
S NV i+l i-1 j+1 i+1 i-1] _
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