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Recent experiments have provided new quantitative measure-
ments of the rippling phenomenon in fields of developing myx-
obacteria cells. These measurements have enabled us to develop a
mathematical model for the ripple phenomenon on the basis of the
biochemistry of the C-signaling system, whereby individuals signal
by direct cell contact. The model quantitatively reproduces all of
the experimental observations and illustrates how intracellular
dynamics, contact-mediated intercellular communication, and cell
motility can coordinate to produce collective behavior. This pattern
of waves is qualitatively different from that observed in other
social organisms, especially Dictyostelium discoideum, which de-
pend on diffusible morphogens.

Myxobacteria are common components of soil, but their life
cycle is far from common. Although they are prokaryotes,

their life, in some respects, is similar to that of multicellular
organisms (1, 2). Under starvation conditions, a population of
myxobacterial cells aggregates by streaming into a number of
central foci, eventually forming at the focus a multicellular
fruiting body. During this aggregation phase, the cells may pass
through a period where the surface is swept by a complex pattern
of waves, called the ‘‘ripple phase.’’ These waves are composed
of bacteria moving in concert in such a way that colliding waves
appear to pass through one another (3). This is quite unlike the
seemingly similar phenomenon observed in Dictyostelium dis-
coideum and in chemical waves where colliding wave fronts
annihilate one another (4, 5). Here we present a quantitative
model for the ripple phase in Myxococcus xanthus that repro-
duces most of the observed phenomena. A distinguishing feature
of this model is that it depends only on intercellular communi-
cation by direct cell contact, without any diffusible morphogen
signaling.

We shall base our model on the following consequences of
experimental observations on Myxobacteria.

(i) Contact Signaling. Myxobacteria signal via the C-signaling
system, which operates only when two cells contact one another
nearly end to end (3, 6, 7). The ripple patterns can be altered
significantly, or even abolished, by manipulation of external
C-signal protein concentration or dilution of wild-type cells by
mutants that can receive, but not send, C-signal (3). Therefore,
we shall base the model on signaling that depends entirely on
direct cell contacts, with no diffusible signaling molecule.

(ii) Reversal Cycle. Experiments on individual prerippling bacteria
under various conditions show that they glide back and forth,
reversing their direction spontaneously about every 5–10 min
with a variance much smaller than the mean (see table 1 of ref.
8 and table 2 of ref. 9). Thus the times between reversals are not
exponentially distributed, i.e., not Markovian. We interpret this
to mean that the internal biochemical circuit controlling rever-
sals contains a delay or cycle time for completion.

(iii) Density Dependence. Measurements show that reversal fre-
quencies depend on the amount of C-signal protein (10–12).
Thus cells in a population where C-signaling is transmitted by cell

collisions will alter their reversal frequencies in a density-
dependent fashion. We will show that this density dependence is
nonlinear, indicating a cooperative aspect of C-signaling.

(iv) Refractory Period. The D. discoideum signaling system passes
through a ‘‘refractory period’’ after a response to an external
signal during which it is insensitive to subsequent signals. This
property is essential to its ability to propagate waves. However,
there is currently no direct evidence that, after reversal of
direction, the C-signaling system passes through a similar re-
fractory period, although there are indications in the reversal
histogram for prerippling cells measured by Welch and Kaiser
that show very few reversals at short times (see figure 4 of ref.
10). We shall demonstrate that a refractory period is necessary
for the production of ripple waves and discuss possible experi-
ments required to estimate its length.

We incorporate these properties into a mathematical model as
follows.

A Model for the Ripple Phase in Myxobacteria
The motion of a single bacterium in the (x, y) plane can be
described by the stochastic equation of motion:

dx
dt

� �v � r�t�, [1]

where �v � (�vx, �vy) are the instantaneous velocities in the
x and y directions, (�) indicates that individual bacteria glide
along their long axes and change their direction by simple
reversals rather than turning. r(t) � (rx(t), ry(t)) are random
terms modeling the variance in individual speeds.

To describe the cyclic internal biochemical state, we define a
periodic ‘‘phase’’ variable, 0 � � � 2�, which locates the state
of the C-signal-controlled reversal system in its cycle. We can
picture this cycle as shown in Fig. 1, where we have plotted the
phase on a circle: 0 � � � � corresponds to right-moving cells,
and � � � � 2� corresponds to left-moving cells. A cell’s state
can be pictured as a point moving counterclockwise around the
circle at a mean speed � (see Fig. 1a). Each cell instantly reverses
its direction as it crosses � � 0, �. For an individual cell, �(t)
advances at a rate given by

d�

dt
� �C � r��t�� [2]

Here �C is the phase velocity, which is affected by C-signaling
because of collisions with other bacteria. As we discuss below,
the C-signaling intensity, and thus the phase velocity, depends on
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�A model representing the biochemical cycle by a delay, or functional, kinetic equation
yields similar results to the model presented here. However, the explicit representation of
the C-signal biochemistry by a phase variable is simpler and makes contact with a substan-
tial literature on phase-coupled systems (14).
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the local cell density. The phase velocity, d��dt, is stochastic, so
that the period is distributed about a mean � � 2���; we model
this by adding a random term, r�(t), to the phase velocity in Eq. 2.

After a reversal, a cell does not respond to C-signal, although
it can still deliver C-signal, which is denoted by the sectors
denoted ��R in Fig. 1a. A cell leaving a refractory sector enters
a sensitive sector, ��S, where it is sensitive to C-signal until � �
�, whereupon it reverses and enters a refractory sector.

When bacteria aggregate in the preripple phase of their life
cycle, their behavior changes in response to cell density. Cell
populations that are in the early stages of fruiting body devel-
opment increase their probability of reversing their direction in
response to C-signaling. Therefore, the average velocity at which
an individual traverses its reversal cycle will depend on the local

density of its neighbors (3, 6).** We describe the motion of a
population of bacteria by using the density function n(t, x, y, �,
�), giving the number of bacteria at time t, position (x, y),
moving in the direction � � tan�1 (vy�vx), with phase �. The
density function n(t, x, y, �, �) obeys the general conservation
law (i.e. the Fokker–Planck equation for Eqs. 1 and 2 of the form

	n
	t

� ���J,

where J comprises the spatial, angular, and phase flux of
individuals in (x, y, �, �) space.

We can simplify considerably this description by taking ad-
vantage of the observation that individual cells participating in
ripple-phase waves are aligned in the direction of the wave
propagation (3, 10). Therefore, we can assume that the cells are
aligned parallel to the x axis and so glide only in �x direction,
although they may drift randomly in both x and y directions. This
eliminates the angular variable, �, so that the density equation
for n(x, y, �) is:
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	t
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, [3]

where �� refers to right- (	) or left- (�) moving cells [i.e., �1
� sign(� � �)]. Dx is the effective diffusion coefficient caused
by the variance in the gliding speed, Dy is the diffusive flux of
cells in the y direction, and D� is the effective diffusion coeffi-
cient in the biochemical phase space. C-signaling takes place only
between cells that meet head-on moving in the opposite direc-
tion, so we will need to compute the local spatial density of right-
and left-moving cells by integrating the density, n(t, x, �), over
�:

n � �t , x� � �
0

�

n�t , x, ��d�, n��t , x� � �
�

2�

n�t , x, ��d�.

[4]

To complete the model, we must specify the dependence of
cell reversals on the C-signaling intensity via the local population
density; that is, an expression for �C in Eq. 2. For cells in their
sensitive phase, the frequency of reversals increases monotoni-
cally with the density of opposite moving cells, so that �
 must
be a function of n� computed from Eq. 4: �
(n�). This density
dependence must ultimately saturate; thus, a convenient math-
ematical representation is given by the Hill function shown in
Fig. 1b:††

� 
 �x, �, n, q� � �0 � �n� n �
q

n �
q � nw

q��F���,
Ç

�C

where F��� � �0 for � � ��R

1 for � � ��S
. [5]

**In this model, the C-signaling system behaves in some respects analogous to an ‘‘inte-
grate and fire’’ neuron (13).

††Eq. 5 is a simple and convenient representation for the density dependence of the phase
velocity. We will use it, because little is known about how the biochemistry of the reversal
cycle is affected by C-signaling protein. In the supporting information on the PNAS web
site (www.pnas.org), we discuss modifications of Eq. 5 to address the mutant dilution
experiments of Sager and Kaiser (3). However, we show that the results of our simulations
are not sensitive to this modification.

Fig. 1. (a) The internal phase is plotted as motion on a circle with mean
velocity �. Cells move to the right ( � v) when 0 � �  � and to the left ( � v)
when � � �  2�. On switching directions, a cell is refractory to signaling for
a period, ��R, after it enters the sensitive phase, ��S. (b) The density depen-
dence of the phase velocity �(n).
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Here �0 is the phase velocity of a single cell in the absence of
other cells, and �n is the increase in the phase velocity for a cell
in its sensitive period, ��S, when the local cell density is n. Thus
the second term in Eq. 5 gives gliding cells a bigger probability
of reversing in regions where there are many opposite-moving
cells. At small densities, � increases as the qth power of density;
therefore, this exponent characterizes the cooperativity of the
signal processing or transduction; q � 1 corresponds to the case
where reversals of a nonrefractory cells increase in proportion to
collisions. It turns out that only values of q � 3 can produce
rippling, so that the ripple phase is a collective phenomenon.
Note that Eq. 5 says that the phase velocity depends only on the
local cell density, i.e., we have not introduced any diffusible
morphogen analogous to ‘‘quorum sensing’’ in bacteria with
diffusible signals (15, 16).

Results
The mean field models described by Eqs. 3 and 5 are solved
numerically to produce the characteristic waves observed in the
ripple phase. Using the density n to calculate the phase velocity,
we can then solve the stochastic models Eqs. 1 and 2 to illustrate
the path of individual cells. With parameters estimated directly
from the experiments of Welch and Kaiser (10), we performed
parameter scans to determine the range that supported rippling.
These are explained in the supporting information on the PNAS
web site, www.pnas.org. The analysis presented supports the
numerical parameter ranges. Thus rippling is not a robust
property of bacterial aggregation and so may provide insight into
the properties of the C-signaling system. The numerical simu-
lation procedure based on refs. 17–19 is also described in the
supporting information. Movies illustrating the various phenom-
ena can be downloaded from the PNAS web site with the
supporting information.

Unidirectional Wave Propagation. The principles underlying the
ripple phase can best be illustrated by examining one-
dimensional unidirectional wave propagation obtained by setting

in Eq. 3 all properties constant in the y direction and fixed
concentration boundary conditions in the x direction. The waves
are best appreciated via the movies; however, a static represen-
tation can be illustrated in the space–time plots shown in Fig. 2
(See Movie 1, which is published as supporting information on
the PNAS web site). Fig. 2a shows that the solution to Eq. 3
generates a unidirectional wave train. The wave amplitude is
such that the density of bacteria in a ripple crest is up to 10 times
that in the trough, depending on the ratio of convective and
diffusive fluxes in Eq. 3. In the supporting information, we show
that the wavelength, �, is approximately

� � 2v�, [6]

where v is the mean gliding speed and � the mean period between
reversals in a trough (where C-signaling intensity is weakest).
The reversal time in the trough �4.2 min, as estimated from the
right peak of the histogram in Welch and Kaiser (10) The wave
speed is �11 �m�min, about the same as individual velocity. The
resulting wavelength is �90 �m, in agreement with table 1 in
ref. 10.

The necessary condition for wave propagation is given by a
parameter inequality:

�q
4

v��S�n

��0 � �n�2�
Ç

Focusing

� ���x�2

2v�
�

Ç
Dispersion

(see Eq. 14, which is published as supporting information on the
PNAS web site www.pnas.org). This ensures that the focusing
effect of density-dependent reversals that speed the cell to its
refractory period can compensate for the drift to maintain the
wave train. Here (�x)2 is the variance in position caused by the
drift in velocity and phase.

Individual Cell Behavior in Unidirectional Waves. Welch and Kaiser
also tracked the paths of individuals participating in the ripple
phase (see Fig. 4 and accompanying movies in ref. 10). We can

Fig. 2. (a) A space–time plot showing a train of right-moving waves (crests are black, troughs white). See Movies 1–3, which are published as supporting
information on the PNAS web site. (b) Using Eqs. 1 and 2, one can follow a material point equivalent to a single bacterium as it participates in a wave train moving
to the right. The trajectory of a bacterium moves to the right with the wave crest 132, then reverses and travels to the left through the trough to the top of
the next wave crest, 233, then reverses again and travels rightward with the crest 334. The dashed portion indicates the refractory period. Because a cell
encounters fewer collisions (C-signals) in troughs, the time between reversals is longer when the cell is moving in the troughs against the direction of the wave
train. Therefore, there is a slow drift to the left, against the direction of wave propagation. (c) Distributions of right-moving (solid) and left-moving cells (dashed)
in a unidirectional wave train moving to the right with velocity v (computed from Eq. 4). Cells alternate between crests with a slow drift to the left: vdrift 	 v(� � �

� � )�(� � � � � ), where � 
 is the reversal period in the right- (	) and left- (�) moving wave trains. The wavy line traces the orbit of a single material point
(bacterium). Note that the left-going density, n � , is nearly constant at its mean value, whereas the amplitude of n � is periodic and large.
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imitate their single-cell tracking experiments by superimposing
the trajectories of single bacteria, computed by using the sto-
chastic Eqs. 1 and 2, onto the solution of the density Eq. 3. First,
consider individuals from a train of right-moving waves; Movie
1 illustrates the motions dynamically. A static picture is shown in
Fig. 2b, where the motion of a single cell is traced on a
space–time plot superimposed on a unidirectional wave train.
Refractory and sensitive periods are shown dashed and solid,
respectively. The waves are generated by cells that oscillate back
and forth, corresponding to right angle turns in Fig. 2b. In the
crests, more cells are moving in the same direction as the crests
(132), while in the troughs more cells are moving against the
waves (233).

When a cell reverses in a crest, it is refractory to signals from
oncoming cells and can therefore penetrate the wave and glide
against the wave velocity without turning. By the time the cell
emerges from its refractory period, it is in the trough, where it

encounters few reversal signals, and so it reaches the previous
crest in the wave train about the time that its phase is close to its
reversal point. Entering the wave, the cell encounters increasing
interactions, which advances its phase, so it quickly reverses
again, completing the cycle. Thus, wave crests constantly lose
cells to reversals but gain new ones from the crest ahead.

Cells entering the wave crest and reversing go into their
refractory period, where their phase velocity is at its minimum,
which tends to populate the refractory sector, thus synchronizing
the cells’ phases. This synchronization maintains the ripple’s
stability (a quantitative version of this argument is presented in
the supporting information on the PNAS web site). The slow
drift of cells in the direction opposite the direction of the wave
train (see Fig. 2b) can be understood from Fig. 2c, which plots
the density of right- and left-going cells. In a unidirectional wave
train, the concentration of left-going cells in the right-going
crests is much larger than the concentration of right-going cells
in the trough. Therefore, less C-signaling events are received
while moving in the trough, so the average time a cell spends
there is longer, resulting in a bimodal reversal frequency distri-
bution, as shown in Fig. 4.

Interpenetrating Waves. A feature of the ripples that distinguishes
them from other developmental waves is that colliding waves do
not annihilate but appear to pass through one another (Movie 2a
which is published as supporting information on the PNAS web
site). When two wave fronts collide, cells in their sensitive phase
increase their reversal frequency because of increased collisions,
whereas cells in their refractory phase continue unaffected.
Consequently, the outgoing waves consist of a combination of
individuals from both incoming waves, as shown in Fig. 3b. This
give the appearance of waves passing through one another,
analogous to soliton water waves (ref. 20; see also ref. 21). Movie
2b shows the computed behavior of individual bacteria super-
imposed on the wave pattern.

Tracing individuals in two counterpropagating wave trains
produces a different picture from unidirectional waves (see
Movie 2c). Here most of the cells are caught in crests, moving
with the right-going crest to the right and with the left-going crest
to the left. Cells switch their allegiance from one crest to another
when two crests collide, confirming the interpretation of Sager
and Kaiser and of Welch and Kaiser that, although wave crests
appear to pass through one another, most of the individual cells
reverse (3, 10). There is an obvious symmetry between right- and
left-going cells, and therefore no drift (net transport of bacteria)

Fig. 3. (a) Space–time plot of two colliding wave trains. See Movie 3, which is published as supporting information on the PNAS web site. (b) Two colliding waves
appear to pass through one another. Those cells in the incoming wave that are in their refractory period continue to pass through, whereas those in their sensitive
period may reverse on collision with counter-moving cells. Therefore, the outgoing waves after a collision consist of individuals from both incoming waves. (c)
Plot of the directional densities, n � (solid) and n � (dashed), in counterpropagating wave trains moving at velocities v and � v, respectively.

Fig. 4. The distribution of reversal frequencies (compare with figure 7 of ref.
10). The lower peak corresponds to cells that reverse in the crests (e.g., 132 in
Fig. 2b); the larger peak corresponds to cells that traverse the troughs (e.g.,
233 in Fig. 2b). There is also a third, somewhat longer, period when there are
counterpropagating waves because of cells that alternate between the two
wave trains, seen in the broader and higher second peak in the experimental
histogram (see figure 7 of ref. 10).
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occurs in this situation. Fig. 3c plots the density of right- and
left-going cells in a colliding wave train. Most of the time,
collisions between oppositely moving cells in the troughs are
spatially separated so that C-signaling levels are low. Therefore,
even though most of the cells move in crests all the time, their
reversal time distribution in Fig. 4 is centered near the ‘‘trough’’
peak of the unidirectional wave. A quantitative analysis dem-
onstrating the stability of the two-dimensional waves is given in
the supporting information on the PNAS web site. We will see
below when we treat the two-dimensional case that the bimodal
reversal frequency distribution measured in figure 7 of Welch
and Kaiser (10) can be interpreted as an average of the reversal
histograms in Fig. 4.

The Pattern of Cell Reversals. Bi- and unidirectional waves show
two distinct types of individual behaviors. Cells in bidirectional
waves (‘‘wave alternators’’) tend to move within the crest all the
time, switching wave trains when they collide. The cells in
unidirectional waves tend either to move with the wave in the
direction of wave propagation (‘‘crest riders’’) or to travel in a
trough while going the opposite way (‘‘trough travelers’’).
Trough travelers (Fig. 2c) are not greatly influenced by C-
signaling, because they move in regions with few counterpropa-
gating cells. Similarly, crest alternators (Fig. 3c) are not influ-
enced much by C-signaling, because they spend most of their
time ‘‘moving with the crowd,’’ and by the time they encounter
a wave collision, they are nearly ready to reverse on their own.
Therefore, for both trough travelers and wave alternators, the
reversal time is close to �����0, the time that determines the
wavelength (� � 2v�) for both uni- and bidirectional wave trains.
The situation is different for crest riders (Fig. 2c), which are
constantly advanced in phase as they collide with counterpropa-
gating cells, so their reversal time is much smaller. In the reversal
distributions and individual trajectories of Welch and Kaiser, all
cell types are represented. Each cell can move for some time with
one or the other wave and then commence alternating between
two wave crests (10). The bimodal reversal distribution arises as
follows. Even though both alternators and crest riders travel in
the crests, the alternators arrive at the point of wave collision
being ready to reverse, so they are not much affected by C-signaling,
i.e., they reverse spontaneously and glide with the oppositely
moving crest. However, the ‘‘crest riders’’ are probably not ready to
reverse at the collision point, but the C-signaling dose they get
during the collision significantly advances them in their cycle,
resulting in shorter reversal times for crest riders.

Finally, it is worth noting that the phases of cells participating
in a unidirectional wave train are not spatially synchronized: in any
volume element, phases of the cells traveling in the same direction
are uncorrelated. In contrast, cells participating in two colliding
wave trains do have their phases spatially synchronized, so that a
cohort traveling together in a crest will also have nearby phases.

Initiation of Waves. When cell density exceeds a critical value, a
uniform field becomes unstable: if the cells are aligned, small
perturbations initiate an outward-propagating wave. Fig. 7,
which is published as supporting information on the PNAS web
site, shows how the initial outgoing wave pair triggers ‘‘echo’’
waves that maintain the source until eventually the field is filled
with counterpropagating and colliding waves (Movies 3 a and b).
In a two-dimensional field, this corresponds to a bulls-eye
patterns (see figure 4 of ref. 3).

In the experiments of Welch and Kaiser, the waves appeared
simultaneously around the entire periphery of the colony. Start-
ing with a field of a small randomly distributed perturbations,
several collision times are required to reach a steady-state wave
train. Therefore, our numerical solution of the model equations
predicts the existence of some transition period that probably
took place before the waves became optically visible.

Fig. 5. (a) During the early ripple phase, bacteria form a large disc-like
population. Counter-rotating waves propagate along the rim of the colony as
streams form to feed aggregation centers—precursors of fruiting bodies—
distributed along the colony rim about a wavelength apart. The Inset shows
the fruiting bodies being fed by the radial component of flow (frame from ref.
10). (b and c) Counterpropagating wave train computed from the model Eqs.
3 and 5 in contour and perspective plots. The tilt in the waves is caused by the
density gradient between the proximal (Top) and peripheral (Bottom) regions
of the colony, which causes a slow drift of individuals outward, bringing with
it cells with retarded phases. This phase-coupling causes the waves to tilt:
right-moving waves tilt right, and left-moving waves tilt left. Where the waves
intersect, the population density is doubled. The intersection regions move
downward to the colony periphery, where they seed the incipient fruiting
body aggregates with a spacing about equal to the wavelength of the two
wave trains.
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Two-Dimensional Waves. The ripples observed by Welch and
Kaiser at the edge of their submerged agar culture consisted of
a pair of obliquely oriented oppositely propagating wave trains
(see Fig. 5a and figure 2 of ref. 10). Around the periphery of the
population, incipient fruiting bodies are forming, spaced roughly
one wavelength apart. The radial f lux of cells out of colony into
the developing fruiting bodies creates a cell density gradient in an
annular ring around the colony periphery. If this density gradient
is introduced into the two-dimensional model (Eqs. 3–5), it repro-
duces closely the observed wave pattern. This is shown in Fig. 5 b
and c as cell density and perspective wave plots. Movies 2 a–c show
the pattern of counterpropagating waves that appear to pass
through one another as well as the tracks of individual cells.

Spacing of Fruiting Bodies. The wave pattern generated by the
model also shows how the spacing of fruiting bodies around the
periphery evolves. Where the oblique wave trains intersect, the
local bacterial population is almost twice that in the individual
waves (see Fig. 5b and Movie 2a). As the waves counterpropa-
gate, these intersection regions move radially outwards (down-
wards in Fig. 5b). Thus the colony edge is ‘‘pulsed’’ with extra
bacteria each time an intersection hits the boundary. Because the
intersections are spaced about a wavelength apart, the wave-
length of the counterpropagating waves will be echoed by the
spacing of the peripheral aggregations that form the incipient
fruiting bodies. Fig. 5c shows a perspective view of how the wave
intersections determine the fruiting body locations.

Discussion
There are many examples of pattern formation in microorgan-
isms and a large literature on mathematical models describing
them. A few notable examples, among many, include periodic
patterns in colonies of Proteus mirabilis (22, 23), Salmonella
typhimurium (24), Escherichia coli (25), Bacillus subtilis (26), and
D. discoideum (27–29). The signature feature of these patterns is
that they depend on diffusion-mediated chemotaxis and�or growth
and death of the cells. This is quite different from the rippling
pattern in myxobacteria, which depend on contact-mediated sig-
naling and advective motion rather than diffusion. Although some
aspects of swarming behavior of myxobacteria colonies were con-
sidered in (30–33), to the best of our knowledge, rippling behavior
has not been successfully modeled before.

The mathematical model presented here has four critical
ingredients: (i) each bacterium possesses an internal biochemical
cycle whose progression controls the time between gliding
direction reversals. (ii) Contact-mediated C-signaling alters the
probability of reversal by modulating the rate of the biochemical

cycle. (iii) Immediately after reversal, the C-signaling system
enters a refractory phase, where it does not respond to collisions
with countermoving cells. (iv) The response to C-signal depends
nonlinearly on local cell density.

The model successfully reproduces the principal features of
the ripple phase, both qualitatively and quantitatively. For
example, the spacing of the waves obeys the predicted relation-
ship (Eq. 6), the location of the nascent fruiting bodies, and the
behavior of individual cells as they move with and against the
wave directions. Most importantly, the model demonstrates that
no diffusible signals are necessary: the ripple patterns can be
generated by density dependent intercellular signals relayed by
cell contact alone.

Indeed, the success of the model leads us to view the four
assumptions on which the model is based as predictions that can
be addressed experimentally: the existence of a refractory
period, nonlinear density dependence, and wave tilt being de-
termined by the transverse density gradient. A crucial prediction
of the model—confirmed by the experiments of Welch and
Kaiser (10)—is the correlation between the behavior of individ-
ual cells with the macroscopic properties of the waves.

The importance of rippling behavior for myxobacterial cell
development is unknown. Although rippling precedes fruiting
body formation, fruiting body formation can proceed without
the ripple phase preamble. However, when rippling is present,
the cells are able to distribute themselves with a nearly constant
time-averaged spatial density that fosters the formation of
equidistant fruiting bodies. The model shows how an even
distribution arises in the experimental system of Welch and
Kaiser (10). The cells also align in ripples, enhancing the
formation of streams into nascent fruiting bodies. Changes in the
quantitative characteristics of the C-signaling and gliding sys-
tems can trigger the transition from rippling to aggregation (11).
Thus, rippling patterns are not robust in the same sense that the
swarming and aggregation patterns are. Their importance to
biologists may lie in their value as a sensitive spatiotemporal
assay for cell signaling and motility. That is, rippling is a transient
pattern that reveals important information (e.g., refractory
period and cooperativity) about intercellular signaling.
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