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ABSTRACT In June 2017, the National Institute of Allergy and Infectious Diseases, part
of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-
Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Patho-
gens.” The aims were to discuss details of various PK/PD models and identify sound
practices for deriving and utilizing PK/PD relationships to design optimal dosage
regimens for patients. Workshop participants encompassed individuals from aca-
demia, industry, and government, including the United States Food and Drug Ad-
ministration. This and the accompanying review on clinical PK/PD summarize the
workshop discussions and recommendations. Nonclinical PK/PD models play a criti-
cal role in designing human dosage regimens and are essential tools for drug devel-
opment. These include in vitro and in vivo efficacy models that provide valuable and
complementary information for dose selection and translation from the laboratory to
human. It is crucial that studies be designed, conducted, and interpreted appropri-
ately. For antibacterial PK/PD, extensive published data and expertise are available.
These have been leveraged to develop recommendations, identify common pitfalls,
and describe the applications, strengths, and limitations of various nonclinical infec-
tion models and translational approaches. Despite these robust tools and published
guidance, characterizing nonclinical PK/PD relationships may not be straightforward,
especially for a new drug or new class. Antimicrobial PK/PD is an evolving discipline
that needs to adapt to future research and development needs. Open communica-
tion between academia, pharmaceutical industry, government, and regulatory bodies
is essential to share perspectives and collectively solve future challenges.

KEYWORDS best practices, drug development, hollow fiber system, in vitro infection
models, mouse infection models, optimal design, pharmacokinetics/pharmacodynamics,
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Nonclinical infection models are commonly used to characterize pharmacokinetic/
pharmacodynamic (PK/PD) relationships for antibacterials and provide critical

information for designing human dosage regimens (1). The discipline of PK/PD has
been developing for several decades, and there is extensive evidence demonstrating
that nonclinical infection models can predict clinical outcomes (1, 2). Since typical
antibacterial drugs target the pathogen and not the host, the basic antimicrobial
pharmacology and microbiology of the drug-pathogen interaction can be studied
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outside the clinical setting. These insights can be assumed to hold true, in general, for
drug-pathogen interactions that occur during infection of a human host (3). While there
are many elements that cannot easily be studied outside the setting of a human
infection, the insights gained from nonclinical infection models strongly support the
rational design of optimal antibacterial dosage regimens for evaluation in future clinical
trials.

The goal of conducting nonclinical PK/PD infection models is, first and foremost, to
elucidate exposure-response relationships and to subsequently design and optimize
dosage regimens. It is crucial to understand how drug concentration profiles at the
primary infection site can maximize bacterial killing and minimize the emergence of
bacterial resistance. Armed with this knowledge, dosage regimens can be designed to
balance these goals while maintaining an acceptable level of safety in humans. Estab-
lishing exposure-toxicity relationships and identifying optimal regimens which account
for between-patient variability can greatly support achieving this balance (4, 5).

The existing armamentarium of PK/PD models is commonly employed to support
these goals throughout the phases of drug development. Data from nonclinical PK/PD
models are indispensable for selecting the doses and regimens for patients, establish-
ing susceptibility breakpoints, and ultimately refining clinical dosage regimens. The
latter should reliably achieve PK/PD targets to maximize the probability that all patients
will achieve efficacious drug exposures while limiting resistance development.

In the current environment, it can be challenging or virtually impossible to find and
recruit a sufficient number of patients (e.g., those with infections caused by multidrug-
resistant pathogens) for multiple, large-scale clinical trials designed for inferential
testing. Consequently, there may be a heavy reliance on nonclinical PK/PD data to
support and enhance the insights gained from human studies. These data also com-
prise an important element of regulatory submissions, as evidenced by guidelines
published by the European Medicines Agency (EMA) (6, 7). For submissions to the
Center for Drug Evaluation and Research that rely on limited clinical data, the impor-
tance of nonclinical PK/PD information is magnified, and nonclinical data packages
need to be thorough to strongly support safety and efficacy in patients (8).

Generating robust nonclinical PK/PD data was a key topic in the workshop spon-
sored by the National Institute of Allergy and Infectious Diseases (NIAID) in June 2017
entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeu-
tics against Bacterial Pathogens.” This review aims to summarize the information
presented and discussed regarding nonclinical PK/PD models. Workshop participants
came from across academia, industry, and government, including the United States
Food and Drug Administration (FDA), to provide a wide range of perspectives. Char-
acterizing PK/PD for new drugs can be complex, and there is no single road map that
can be applied for all drugs. In this review, we sought to provide guidance and
considerations for designing, performing, and interpreting studies to develop a robust
and informative nonclinical PK/PD package. Moreover, we aimed to put the roles of
these models into perspective to design safe and effective dosage regimens for future
clinical studies.

IN VITRO PK/PD MODELS

Static concentration time-kill (SCTK) assays are suitable screening tools for assessing
drug structure activity and exposure-response relationships and for choosing informa-
tive drug exposures for subsequent dynamic infection model studies over longer
treatment durations. SCTK studies are used to assess antibacterial activity and are
typically performed over 24 (to 48) h. They use constant antibiotic concentrations and
assume no or limited drug degradation; however, this should be experimentally
confirmed, especially in studies with resistant strains. This experimental model can
efficiently assess exposure-response relationships against the predominant bacterial
population for antibiotic monotherapy and evaluate PD drug interactions for combi-
nations. Further, SCTK studies can identify the rate of bacterial killing, help to define
whether microbial killing is concentration or time dependent, and identify antibiotic
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exposures that maximize bacterial killing and minimize regrowth, as well as evaluate
the effect of the initial bacterial inoculum on antibiotic activity (9–11). Depending on
the study objectives, viable counts on agar plates with and without the antibiotic can
be utilized to determine the impact of drug exposure on both total and less-susceptible
bacterial populations and identify whether regrowth is caused by less-susceptible
bacteria (12–14). Results from 24-h or 48-h SCTK studies may predict outcomes in the
dynamic one-compartment model (chemostat) or hollow fiber infection model (HFIM)
for the first 24 to 48 h but not at later time points.

The SCTK can efficiently assess a large number of treatment and control arms. Other
advantages include its low cost and minimal equipment requirements; limitations
include the use of constant drug concentrations and typically short treatment duration
(24 to 48 h). The study duration can be extended to over 1 week, if needed, by replacing
the medium with fresh (antibiotic-containing) broth every 24 h. For less-stable drugs,
small antibiotic doses can additionally be supplemented to offset degradation (15).
Dynamic in vitro PK/PD models offer the additional capability of evaluating the effect
of drug concentrations that change over time and can thereby mimic drug concentra-
tion profiles in humans. Dynamic systems include the one-compartment model (also
called chemostat) and the two-compartment HFIM (16–20). To more precisely achieve
PK/PD targets in these more labor-intensive dynamic infection models, it is often
beneficial to perform arithmetic MIC determinations using finer-than-2-fold dilutions,
particularly for higher MIC values (e.g., �0.5 mg/liter) where the large incremental
increases in test concentrations reduce the precision of the measurement (e.g., lower
test concentrations have 2 to 3 significant figures, while higher test concentrations are
reported with only 1 significant figure).

Dynamic one-compartment models. Chemostats are one-compartment, bacterial
culture bioreactors with a typical culture volume of 100 to 250 ml. Fresh medium is
added continuously while culture contents are removed at the same rate to maintain
a constant volume (16). Drugs are either administered directly as a bolus or infused (via
a pump) into the bioreactor or provided as a continuous infusion with the inflowing
medium (Fig. 1). The chemostat can simulate drug concentrations changing over time
following a single half-life to evaluate efficacy. This model can also assess dose
fractionation by splitting the same daily dose into various dosing intervals. Moreover,
chemostats can simulate different durations of infusion and front-loaded regimens, for
example (Table 1) (21–24). With the continuous replenishment of growth medium and
nutrients, the one-compartment system supports testing longer treatment durations
for dose-range and dose fractionation studies. This system can simulate the time course
of antibiotic concentrations for monotherapies and combinations to study bacterial
killing and regrowth.

Limitations of the chemostat include the potential for washout of bacteria and
contamination of the medium, particularly for studies with longer treatment duration.
Most published studies have been conducted over 96-h or shorter durations (and often
over only 24 h). Simulating concentration-time profiles for drugs with a short half-life in
the chemostat results in washout of a considerable number of bacteria. The latter
causes the drug exposure needed for bacterial killing and resistance prevention to be
underestimated, especially for slowly replicating bacteria or subpopulations. Filters can
be used to help mitigate this issue but are not ideal due to clogging by bacteria (20,
25). Both washout of bacteria and incomplete oxygenation can lead to substantially
lower maximum bacterial densities in the chemostat than in SCTK and HFIM. Depend-
ing on the simulated half-life, bacterial waste products may accumulate over time in the
chemostat. These features limit the ability of the chemostat to evaluate bacterial killing
and resistance prevention at high bacterial densities and over long study durations.

Dynamic two-compartment models. In our opinion, the HFIM is the preferred and
most capable in vitro model for evaluating PK/PD indices (26) and concentrations that
best predict bacterial killing and resistance prevention (Table 1). The HFIM is a two-
compartment system where bacteria are entrapped in the extracapillary space of a
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hollow fiber cartridge that serves as a peripheral infection site (Fig. 2). This system can
simulate virtually any time course of drug concentrations for one or multiple drugs with
the same or different half-lives (27–30). Multiexponential profiles can be simulated by
switching the pump rates at appropriate times (31). Bacteria are contained within the
peripheral compartment of the hollow fiber cartridge, which completely prevents
washout of bacteria. The cartridge has a large surface-to-volume ratio (32), providing
optimized growth conditions for aerobic bacteria since bacteria are constantly exposed
to fresh broth and oxygen, and waste products are continually removed (Fig. 2). Thus,
the maximum achievable bacterial density is usually over 1 order of magnitude higher
in the HFIM than in the SCTK assay. Due to these differences in growth conditions, the
SCTK model tends to show extensively attenuated bacterial killing at a high compared
to low initial inocula for some drug classes (9, 10, 33). This attenuation (i.e., an inoculum
effect) tends to be less pronounced in the HFIM (34, 35), since bacterial replication is
faster in the HFIM than in the SCTK model at the same bacterial density (e.g., 108

FIG 1 Dynamic one-compartment in vitro infection model (“chemostat”). Fresh medium is added continuously while culture contents are
removed at the same rate to maintain a constant volume. (A) Chemostat model for simulating a monoexponential decline of drug
concentrations after intravenous dosing; the antibiotic(s) is/are dosed into the central reservoir as bolus doses or zero-order infusions. (B)
Chemostat for oral dosing, which can simulate drug concentration-time profiles with first-order absorption and elimination; typically, the
antibiotic(s) is/are dosed into the antibiotic reservoir as bolus doses.

Minireview Antimicrobial Agents and Chemotherapy

May 2019 Volume 63 Issue 5 e02307-18 aac.asm.org 4

https://aac.asm.org


CFU/ml). The clinical relevance of experimental inoculum effects is not fully understood;
however, it has been shown in a mouse model that higher drug exposures are required
to achieve stasis or 1-log10 killing against a higher (107 CFU/ml) than a lower (105

CFU/ml) inoculum of multiple Staphylococcus aureus strains for four classes of antibi-
otics (36).

The HFIM offers the advantage that it can assess resistance prevention over typical
antibiotic treatment durations for serious bacterial infections in patients (i.e., approxi-
mately 5 to 14 days). For slowly replicating bacteria such as Mycobacterium tuberculosis,
studies can be extended to 28 days (37, 38) and longer, if needed. Moreover, the HFIM
is the most capable and informative in vitro model for evaluating the efficacy of drug
combination regimens and front-loaded dosage regimens and of antibiotics with a
short half-life, since there is no washout of the microbe (39, 40). The HFIM is further
suitable for studies with highly communicable or virulent biosafety level 3 (BSL3)
pathogens (such as Mycobacterium tuberculosis, Bacillus anthracis, Burkholderia mallei,
Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis), since the bacteria
are contained in the HFIM cartridge (27, 41).

Limitations of the HFIM include its relatively high cost, which is compounded by the
single use of cartridges, and the more extensive effort required to plan, set up, and
execute studies. Some (lipophilic) drugs bind to HFIM components, which hinders their
testing. Different hollow fiber materials (including cellulosic, polysulfone, and poly-
vinylidene difluoride [PVDF]) are available to minimize binding, if needed (32).
Given the molecular weight cutoff of HFIM cartridges, �-lactamase enzymes are
entrapped in the extracellular space. For subtherapeutic regimens which provide
limited or no bacterial killing, �-lactamase enzymes may accumulate over time in
the cartridge and degrade �-lactams (35). This is likely moderated by bacterial
proteases that break down �-lactamase enzymes and can be mitigated by washing
of the bacterial suspension before it is inoculated into the HFIM cartridge. There-
fore, quantifying �-lactam concentrations in the extracapillary space of the HFIM
cartridge (Fig. 2) is warranted for �-lactamase (over)-producing strains. This is also
essential for high-inoculum studies of resistant strains for highly permeable patho-
gens such as Escherichia coli. These �-lactamase-producing strains can cause a rapid
decline of the extracellular �-lactam concentration due to �-lactamase activity in
the periplasmic space of bacteria, an issue which also applies to SCTK and chemo-
stat studies.

TABLE 1 Types of experiments that can be performed with widely used nonclinical PD infection modelsa

Study objective

Static
time-kill
model

One-compartment
system (“chemostat”)

Two-compartment
hollow fiber system

Mouse
infection
model

1. Dose-range study: killing of predominant population Yesb Yesb Yesb Yesb

2. Dose-range study: suppression of resistance �c �c Yesc �c

3. Dose-fractionation study: killing of predominant population No Yes Yes Yes
4. Dose-fractionation study: suppression of resistance No � Yes �
5. Combination therapy: killing of predominant population Yes Yes (short term) Yes Yes
6. Combination therapy: suppression of resistance � � Yes �
7. Toxin suppression by drugs Yes � Yes Yes
8. Dissecting the interaction of the parent drug and

metabolites on antimicrobial effect
�d �d Yesd No

9. Effect of physiological state of bacteria on drug activity � � Yes �
10. PD index for drug toxicity No No (unless toxicity is acute) Yes �e

aPD, pharmacodynamic; �, study objective can potentially be addressed in this system.
bBacterial strains which display the lowest mutation frequency of resistance should be avoided in dose-range studies; instead, strains which best represent the most
commonly observed mutation frequencies are preferred.

cStrains with a relevant resistance mechanism(s) should be chosen for in vitro studies. The MIC50 and MIC90 for the pathogen of interest may be used to guide strain
selection.

dA biologically active metabolite(s) needs to be available, since it is most likely not formed in the in vitro system.
eSome dosage regimens (e.g., those used to assess time over a toxicity threshold) may also lead to high peak concentrations, especially for short-half-life drugs, which
complicates the interpretation of these studies.
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CONSIDERATIONS FOR DESIGN AND CONDUCT OF IN VITRO PK/PD MODELS
Strain selection. Robust PK/PD analyses require examination of multiple strains that

should include one reference strain (e.g., a widely available ATCC strain) and one
susceptible and two less-susceptible clinical isolates; the latter may include one strain
from an intensive care unit (ICU) patient and one strain from a non-ICU patient. Strains
should be relevant for the clinical indication and study purpose; they should include
different resistance mechanisms and a relevant (i.e., wide) range of susceptibility to the
studied drug(s). Studies evaluating isogenic sets of strains can provide valuable infor-
mation about the impact of a specific resistance mechanism.

FIG 2 Dynamic two-compartment hollow fiber in vitro infection model. (A) Cross section of a hollow fiber cartridge. Many
hollow fibers provide a large surface area (typically 0.2 to 0.3 m2, depending on the cartridge). According to the molecular
weight cutoff of the hollow fiber membrane, medium, drugs, oxygen, nutrients, bacterial metabolites (“waste products”),
and other small molecules can exchange between the central circulation (which includes the interior of the hollow fibers)
and the extracapillary space of the cartridge. In contrast, bacteria, other cells (if present), and large molecules are
entrapped in the extracapillary space of the hollow fiber cartridge. (B) Flow of broth medium from the fresh broth to the
central reservoir. From the latter, broth is circulated to the peripheral compartment (i.e., the extracapillary space of the
hollow fiber cartridge) or is eliminated. Elimination occurs from the central reservoir into the waste broth reservoir. A
high-precision dosing pump is used to dose drugs into the central circulation.
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Furthermore, the chosen strains should represent the most common mutation
frequency (MF), and strains with the lowest MF (i.e., strains with a small number of
preexisting resistant mutants) should be avoided. This necessitates determining the MF
for a range of strains; it is recommended to test at least three strains of a given bacterial
species for this purpose. For strains with multiple bacterial populations of different
levels of susceptibility to an antibiotic, the impact of these less susceptible populations
on PK/PD relationships and targets may need to be evaluated (34, 42). Appropriate
reference strains (such as ATCC strains) should be used throughout the research
program to demonstrate reproducibility. Finally, if possible, the chosen strains should
be virulent in animal models to support efficient translation to animal studies, and
virulence should be confirmed before conducting HFIM studies.

Inoculum and mutation frequency. The initial bacterial inoculum needs to be
relevant for the clinical indication and study purpose. A high inoculum with a total
bacterial burden of approximately 108.5 CFU or greater (equivalent to 15 ml of a
bacterial suspension at 107.3 CFU/ml in the HFIM) is typically used in studies that target
ventilator-associated and hospital-acquired bacterial pneumonia (VABP/HABP) and in
resistance prevention studies (43). Experiments with a total bacterial inoculum lower
than approximately 106 CFU (equivalent to 15 ml of a bacterial suspension at 104.8

CFU/ml or lower) are usually not relevant for clinical indications. However, such low
inoculum studies may be highly suitable to address mechanistic research questions on
the rate of de novo formation of resistant mutants or on phenotypic tolerance of the
predominant population (in the absence of preexisting mutants at initiation of therapy),
for example. Knowing the MF for the tested antibiotic(s) is essential (14). By considering
the expected number of resistant mutants in the initial inoculum, one can increase or
decrease the probability of a resistant mutant being present or absent, depending on
the study objectives. To assess suppression of amplification of preexisting less-
susceptible mutants, the number of bacteria in the total system volume should be at
least 1 log10 CFU higher than the inverse of the MF. This ensures that all treatment and
control arms contain at least one preexisting less susceptible mutant (with a probability
of 99.9% for a 16-arm study, see useful formulas in the supplemental material).

Duration of therapy and resistance prevention. The study duration depends on
the study objectives. To determine the PK/PD index (e.g., AUC/MIC [the area under the
concentration-time curve over 24 h at steady state divided by the MIC], peak/MIC, or
T�MIC [cumulative time {in hours} of a 24-h period that the drug concentration
exceeds the MIC under steady-state pharmacokinetic conditions]) that best predicts
bacterial killing, short-term studies over approximately 1 to 3 days may be sufficient;
longer studies are required for slowly replicating bacteria and should consider the cell
division time. These data can be used to determine the drug exposure required to
achieve a 1-log10 or 2-log10 reduction in bacterial burden or bacteriostasis at 24 h and
end of study. To assess the drug exposure and dosage regimens that suppress
resistance amplification, the treatment duration should mimic the therapy duration for
the intended clinical indication (usually at least 5 to 8 days). Some antibiotic classes
show emergence of resistance more rapidly (21, 34), but absence of resistance emer-
gence over the first 2 days often does not correlate with resistance prevention over
10 days. Therefore, HFIM studies to evaluate resistance prevention often use 7, 10, or
14 days of treatment (28, 44).

Drug stability. It is critical to evaluate drug solubility and stability under relevant
conditions (e.g., solvents, media, storage, and experiment temperatures, as well as
durations consistent with those of the planned experiments) (45, 46). Many antibiotics
are hydrophilic and soluble in water (47), but some have limited solubility and their
concentrations may decrease over time due to (slow) precipitation. In addition, drugs
may bind nonspecifically to flasks, tubing, filters, and fibers; thus, it is important to
assess whether these issues exist for the drug(s) to be studied.

Drug concentration profiles. When available, protein binding and pharmacokinetic
data from patients with an infection should be used to simulate the non-protein-bound
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(or “free” [f]) concentration-time course of drugs in plasma or, ideally, tissue exposures
at the primary infection site for the intended clinical indication (e.g., lung epithelial
lining fluid [ELF] for pneumonia). This is important because exposure profiles in patients
may differ from those in healthy volunteers, and between-patient variability in PK can
be substantial in the critically ill. Of note, infection and the associated inflammation can
alter drug exposure in ELF or cerebrospinal fluid (CSF) (48, 49) and some antibiotics
have heterogeneous distribution across major tissues and organs. For example, poly-
myxin B accumulates in kidney (50) but less in lung (51). It is further important to
understand and simulate non-protein-bound (i.e., free) drug exposures that are relevant
to the infection site.

If an active metabolite contributes to the overall bacterial killing, the parent and
metabolite should be evaluated separately and the concentration-time profiles of both
compounds should be generated in vitro at the values found at the intended infection
site in patients. This provides the most accurate characterization of bacterial killing and
resistance prevention for antibiotics with an active metabolite. For prodrugs that are
inactive and/or rapidly converted to the parent, such as tedizolid, ceftaroline, or colistin
methanesulfonate, the drug exposure and PK profile of the biologically active com-
pound should be dosed in in vitro PD systems (52, 53) due to different formation rates
in vitro and in vivo.

Quantifying drug concentrations. Determining the time course of achieved drug
concentrations in dynamic PK/PD models is a best practice, both to validate the
simulated PK profiles and to provide observed data for analysis. This is an essential step,
rather than relying solely on mathematically predicting the expected drug exposures.
This is particularly important for intermittent dosing and complex dosage regimens
(e.g., front loading [40, 54]). Collecting these data allows correlation of actual drug
exposures with the extent of bacterial killing and resistance suppression and may
explain unexpected results.

Drug concentrations should be quantified using multiple times per dosing interval,
e.g., at approximately 30 min after the end of infusion (to allow for proper equilibration
of the system), one to three intermediate samples, and a sample toward the end of the
dosing interval. This sampling scheme should be adjusted for more-complex regimens
and repeated during multiple dosing intervals to confirm reliability of the dosing
(including the syringe pump) and performance of the peristaltic pump and to charac-
terize attainment of steady state (35).

Quantifying bacterial populations. The impact of drug exposure on the total and
less-susceptible bacterial populations should be assessed (12, 13, 27–31, 34) when the
study objectives include assessing resistance prevention. The importance of conducting
these types of studies is described in the supplemental material. Killing of the predom-
inant bacterial population is usually determined by quantitative viable counts on
antibiotic-free agar. In contrast, killing and amplification of the less-susceptible bacte-
rial population(s) are assessed by viable counting onto antibiotic-containing agar.
Subculturing should be done on agar containing the same antibiotic(s) used in a
respective treatment arm and on agar containing all antibiotics for the growth control.
Agar containing 3� and 5� the MIC is commonly used; however, this choice depends
on the initial (i.e., pretreatment) MIC and the step size of the MIC change (e.g., due to
loss of an outer membrane porin [OprD] or upregulation of an efflux pump) associated
with a relevant resistance mechanism(s). The MF can also guide selection of an
appropriate antibiotic concentration(s) in agar that should be between the MIC of the
parent strain and that of the first-step mutant. To identify potential second- and
third-step mutants with further decreased susceptibility, higher multiples of the MIC in
agar can be used. For drugs with a large MIC increase in first-step mutants, higher
multiples of the MIC or a fixed concentration in agar (e.g., 300 mg/liter rifampin for
Pseudomonas aeruginosa) can be employed (55). Strains with high baseline MICs and
combination therapy studies require special attention for selecting the most suitable
antibiotic concentrations in agar to quantify the less susceptible population(s) (56).
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For most antibiotics, enumerating colonies of subcultured bacteria after 24 h of
incubation on antibiotic-containing agar is not sufficient and may greatly underesti-
mate the less-susceptible population. Additional colonies may become visible after 48
to 72 h of incubation. Loss of moisture in agar can be minimized via the use of a
humidified incubator or of an increased agar volume per plate or by incubating a tray
of agar plates in a partially opened plastic bag. Drug stability in the agar during
incubation should be experimentally tested, especially for “bacteriostatic” antibiotics
that inhibit growth but cause only slow bacterial killing. Moreover, the MICs should be
determined for a subset of colonies growing on antibiotic-containing agar to validate
their decreased susceptibility to the antibiotic.

Data analysis approaches. Empirical and mechanism-based (MB) mathematical

models both have their roles for analyzing in vitro PK/PD data. Empirical models (23,
57–72) are efficient and typically analyze viable counts at the end of therapy or the area
under the viable count curve (on linear or log scale) during different time intervals (e.g.,
from 0 to 5 h, 0 to 24 h, and 0 h to end of study). Time-independent exposure-response
relationships can identify exposure targets for efficacy and empirically describe
the observed synergy of drug combinations; however, time-independent exposure-
response analyses are not suitable to rationally optimize combinations or monotherapy
regimens with changing dose intensity over time (e.g., front loading) and do not
describe the time course of drug concentrations. Empirical time course models can
describe drug concentration and viable count profiles but lack mechanistic insights
(e.g., receptors) and do not account for multiple resistance mechanisms. Particularly for
combination therapy, empirical models cannot rationally optimize the effects elicited
by antibiotics with multiple target sites or multiple mechanisms of action (10, 73, 74) or
for combinations with several synergy mechanisms (14, 35, 75).

Mechanism-based (MB) as well as quantitative and systems pharmacology (QSP)
models have been developed to overcome many of these limitations. While MB and
QSP models both implement the mechanism(s) of drug action or mechanism(s) of
resistance or both, QSP models usually describe multiple different types of experimen-
tal observations to characterize these mechanisms in more depth. Both of these models
can simultaneously describe and predict the time course of bacterial killing and
resistance emergence, and both have been developed for antibiotic monotherapy and
combinations (9, 10, 14, 15, 30, 31, 33, 34, 40, 41, 55, 56, 58, 71, 72, 76–84). These models
incorporate genotypic resistance development by multiple bacterial populations with
different susceptibilities and phenotypic tolerance of slowly replicating bacteria. They
offer the advantage of integrating molecular experimental data and allow rational
optimization of innovative monotherapy and combination dosage regimens (including
front loading) for more than two drugs, if needed. Further, translational MB and QSP
models can incorporate toxicodynamics (4, 5, 39, 85, 86) and account for the impact of
the immune system (87–90). Independently of the approach employed, prospective
experimental validation is essential (31, 72).

Interpretation of results. In interpreting in vitro PK/PD results, it is important to

consider the mode of drug action, i.e., whether the antibiotic is rapidly or slowly killing
and which endpoint (e.g., stasis or 1-log10 or 2-log10 killing) is most clinically relevant.
A stasis endpoint may be sufficient for some less acute clinical indications such as
uncomplicated skin and skin structure infections and complicated urinary tract infec-
tions (cUTI). However, 1- or 2-log10 killing may be more desirable for severe infections
(such as VABP). In addition, while the primary PK/PD index is often consistent between
different pathogens and strains, the drug exposures required to achieve a target
endpoint may vary greatly (91). This may have implications for translation to broad
coverage and clinical utility of antibiotics (53, 92–94). Moreover, this reinforces the need
to include a sufficiently diverse spectrum of bacterial strains in nonclinical PK/PD
models and to consider the potentially substantial between-patient variability in PK,
especially in unstable patients with sepsis or septic shock (see companion review [95]).
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Potential extreme observations that fall outside a predetermined threshold for an
“outlier” (e.g., �2 standard deviations [SD] from the mean) should not be automatically
discarded. Such a data point(s) may represent an unexpected but important behavior
(e.g., a mutation, with low frequency, leading to emergence of resistance or to
development of tolerance to the drug). While mathematical approaches are available to
handle potential “outliers,” experimental replicates and further laboratory investigation
(such as characterization of resistant mutants and/or evaluation of potential drug
tolerance) are strongly preferred.

CHALLENGES OF INTERPRETING IN VITRO RESULTS

The data generated using in vitro systems provide valuable insights into the direct
interaction between the pathogen and the drug, and it is recommended that drug
developers incorporate these types of models into their development programs. How-
ever, in some cases, the results may not directly translate to the clinic because in vitro
systems do not fully mimic the in vivo environment. The PK/PD targets required in
patients may be lower or higher than those in vitro if host factors affect bacterial killing
or if the fitness of resistant mutants is reduced in vivo (96). An in vivo PK/PD target may
be lower if the immune response contributes significantly to bacterial killing (3, 88);
conversely, the in vivo target may be higher if host factors reduce the susceptibility of
the bacteria (e.g., due to binding to lung surfactant or to persistence in deep-seated or
sequestered infection sites). Moreover, drug binding in plasma needs to be considered,
since generally only free (i.e., unbound) drug is available to interact with bacterial
receptors. Therefore, translation of PK/PD targets should be based on free drug
concentrations unless another rationale (e.g., for very highly bound drugs) is provided.
It should be noted that in vitro studies generally do not incorporate plasma proteins (by
design). Binding of many antibiotics to the in vitro pharmacodynamic systems is
negligible (91), and the experiments inherently characterize free drug. This is in contrast
to in vivo studies, in which results should be adjusted for protein binding in the test
species.

For emergence of resistance studies, it may be prudent to interpret results as an
assessment of risk in the absence of host factors (e.g., the immune system) rather than
as a direct prediction of clinical outcome. For example, while in vitro models are
excellent for studying aminoglycosides as part of combination regimens (15, 31, 35, 55,
56, 81, 97), they are not suitable for testing aminoglycoside monotherapy because this
drug class readily generates small-colony variants that are less common in vivo (10, 12,
96, 98). For the bacterial populations that cause failure of therapy in vitro, assessing the
resistance mechanism(s), the ability of high drug concentrations to kill these mutants,
and the MIC shifts toward potential partner antibiotics may be valuable. Further,
evaluating synergistic drug combinations, as well as in vivo fitness and virulence (99),
may guide translation to animal models and ultimately to patients.

IN VIVO PK/PD MODELS

Laboratory animal models have been used for decades to identify effective dosing
regimens for clinical trials. Although dosages, drug clearance (including metabolism),
and other factors often differ considerably between animals and humans, in vivo
models play a critical role in characterizing the PK/PD for antibacterial agents (Fig. 3).
Animal models provide an in vivo infection environment and anatomical barriers that
are difficult to reproduce in vitro. Animal infection models can forecast drug efficacy in
patients, and the probability of regulatory approval increases with the probability of
PK/PD target attainment (1, 2, 72, 100).

The most widely used in vivo models for antibacterial PK/PD are the murine thigh
and lung infection models (100). The thigh model is performed by injecting a bacterial
suspension directly into the musculature of one or both thighs. The most commonly
used lung infection model is performed by pipetting droplets of a bacterial suspension
onto the nares and allowing the mice to inhale the inoculum. Both models often use
cyclophosphamide-induced neutropenic mice to allow growth of a range of bacterial
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pathogens. Some bacterial strains can also produce robust infections in “normal” (i.e.,
nonneutropenic) mice, which provide information about the contribution of the im-
mune response to the drug efficacy and may be better suited for studying resistance,
the latter of which necessitates use of higher inocula. The primary endpoint is reduction
of the bacterial burden in the infected tissue, which is typically assessed at 24 or 48 h
after initiation of antibiotic therapy. Bacteriostasis, 1- or 2-log10 bacterial killing at 24 h
(compared to the burden at the time therapy is initiated), is often used as an endpoint
and has been shown to correlate with clinical outcome, including in patients with
infections such as hospital-acquired pneumonia, community-acquired respiratory tract
infections, bacteremia, and complicated skin and skin structure infections (1, 2, 100). Of
note, 2-log10 bacterial killing in mice at 24 h may not be achievable by slowly killing
(bacteriostatic) antibiotics. Considerable amounts of published data are available for
many antibacterial agents in mice that can be used as positive controls; this presents
a particular advantage of the murine neutropenic thigh and lung models compared to
larger-animal models.

CONSIDERATIONS FOR DESIGN AND CONDUCT OF IN VIVO PK/PD MODELS
Pharmacodynamic studies. Although the basic approach to conducting in vivo

PK/PD studies is fairly standard, there is considerable variation among laboratories in
the details of study design and conduct. These details can have a large impact on the
results and should be carefully considered (101). Recommendations (Table 2) have been
developed based on experiments that predicted clinical success (1, 2, 100), and this
topic has been reviewed previously (101). Some recommendations may need to be
adapted for specific drug-pathogen combinations or for other animal models. Bench-
marking studies and the inclusion of comparator active control therapies to establish

FIG 3 Overview of important variables which contribute to the outcome of animal infection models.
These factors may need to be considered for study design and execution as well as for the data analysis
and ultimate translation of rationally optimized regimens to patients. Tox, toxicity.
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appropriate experimental conditions can enhance the utility of animal infection models
and the robustness of predictions for translation to patients.

Consideration of the number of mice per group is an important design choice for PD
studies. It is difficult to provide explicit guidance on the number of animals required to
appropriately power a study since it depends on a variety of factors (such as variability
associated with a model, strain, or drug; the number of groups within an experiment;
and the type of analysis to be conducted). Sample sizes can be calculated for statistical
comparisons of viable counts at the end of therapy via t test or analysis of variance
(ANOVA) statistics (see the supplemental material). As these analyses consider only a
single time point, the resulting samples sizes are conservative (i.e., higher) compared to
the sample size required for time course analyses via population PK/PD modeling. The
latter approach estimates treatment differences based on the time course of viable
counts at multiple sampling times.

In practice, there are typically four observations collected for each group using the
standard neutropenic thigh or lung infection models, and consideration should be
given to studying both sexes. Of interest, when using the thigh model, many investi-
gators utilize the two thighs as independent samples (thus including only 2 mice per
group). Although this reduces the overall number of animals required, it may not be a

TABLE 2 Recommendations for murine neutropenic thigh and lung infection models to determine nonclinical in vivo PK/PD targetsa

Study component Recommendationb Comments

Mouse strain Outbred (e.g., CD-1, ICR or Swiss Webster) Historically female; studies in both sexes have
been strongly encouraged recently and, if
feasible, should be considered

Induction of neutropenia Cyclophosphamide i.p. or s.c. at 150 mg/kg
of body weight at 4 days prior to
infection and 100 mg/kg at 1 day prior
to infection

Results in �100 neutrophils/mm3 for at least
2 days

Inoculum preparation Culture should be in log-growth phase Subculture aliquot from an overnight broth
culture in fresh medium for several hours
prior to study start

Mouse inoculation Infect thigh via i.m. injection of 100 �l and
lung via intranasal inhalation of 50 �l
(i.e., 25 �l per naris)c

Culture for inoculation should be 106 to 107

CFU/ml

Baseline bacterial burden 106 to 107 CFU/tissue (may differ by
pathogen and strain)

Note that this represents the burden at the time
therapy begins

Start of therapy 2 h postinfection Delay may be necessary for baseline tissue
burden to reach 106 to 107

Study duration 24 h (sometimes 48 h) After start of antibacterial dosing
Bacterial growth over study period Tissue burden should increase by 2–3

log10 CFU in untreated mice compared
to baseline at initiation of therapy

Note that this assumes that the initial inoculum
is sufficiently below the plateau for a given
strain; the use of less-virulent strains may
result in underestimation of the PK/PD target

No. of strains At least 4 strains of each target pathogen
(including a reference strain), if possible,
with relevant resistance profiles and
mechanisms

Include enough strains to assess strain-to-strain
variability; mean and median PK/PD target
values should converge

Bacterial phenotypes Cover MIC range of compound, include
clinically relevant resistant phenotypes

Consider in vivo virulence when choosing strains

Control therapies Inclusion of active comparator control
(e.g., standard of care) may be
beneficial; dosage regimen
(with/without humanizing) should be
considered

Especially important for evaluation of
combination therapies against multidrug-
resistant strains; dosing algorithm should be
supported by PK/PD considerations

aData are from Andes and Lepak (101). CD-1, outbred strain of albino mice; ICR, outbred strain of albino mice; i.p., intraperitoneal; s.c., subcutaneous; i.m.,
intramuscular.

bThese specific recommendations are for “routine” establishment of PK/PD targets. Study design elements may need to be modified to achieve different experimental
goals. Examples include the use of other bacterial phenotypes (including growth stages), use of immunocompetent mice (which can inform how targets may differ in
the presence of white blood cells and/or support longer treatment durations), and use of a different bacterial burden (such as using a higher burden to study
resistance).

cThe maximum volume of the bacterial suspension which can be given per naris will depend on the mouse weight. This volume may affect the regional deposition of
bacteria in the lung.
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best practice since the two samples from the same animal are not independent. We
recommend that the design and conduct of studies be supported by prospective
statistical or modeling analyses to ensure that an adequate number of truly indepen-
dent observations are obtained to appropriately power the experiment for the in-
tended purpose.

Plasma protein binding. In order to interact with its molecular target, a drug must
be freely available (e.g., not bound to host proteins), and only unbound drug molecules
can penetrate through the outer membrane of Gram-negative pathogens. Therefore,
results from in vivo studies should be adjusted for protein binding and expressed in
terms of free (f), i.e., non-protein-bound drug. It is recommended to conduct protein
binding studies across a relevant concentration range with an appropriate in vitro assay.
Whenever possible, at least 3 concentrations covering the anticipated in vivo plasma
and tissue concentrations should be studied. A number of different in vitro assays are
available. Currently, equilibrium dialysis is considered the reference method and is
preferred over ultracentrifugation (102). The most accurate measurements can be made
using radiolabeled drug; however, this may not be possible in the early stages of
development. Typically, a single protein binding value is determined (for example, an
average across the concentrations tested) and all in vivo PK measurements are adjusted
by multiplying the measured concentration by the assumed free percentage. If signif-
icant concentration-dependent binding exists, this nonlinear binding should be incor-
porated into the data analysis using mathematical modeling.

Pharmacokinetic studies. Generating high-quality PK data is critical for PK/PD
analyses. The goal of PK experiments is to define the time course of drug concentra-
tions in plasma, serum, or blood and potentially at the primary infection site. Several
factors need to be considered for study design. As a best practice, exposure data should
be collected from animals under the same conditions as the PD studies since infection
may alter the PK (e.g., clearance and volume of distribution). If different matrices are
collected across species (e.g., if drug concentrations are measured in whole blood for
animal studies but in plasma for human studies), then red blood cell (RBC) partitioning
needs to be determined and used to adjust for blood/plasma differences. Character-
izing the PK at the infection site becomes comparatively more important for deep
infection sites that equilibrate slowly or poorly with plasma and may be sequestered
due to the infection (24, 48, 49, 103, 104).

If a drug is being developed for treatment of bacterial pneumonia, it is recom-
mended to utilize lung infection models for both PK and PD and to determine lung
epithelial lining fluid (ELF) concentration data. The latter is critical since the drug
exposure profile at the infection site may substantially differ from that in plasma. The
“gold standard” approach in both clinical and nonclinical studies is to characterize drug
concentrations in ELF, which is believed to represent the key compartment for infec-
tions by extracellular pathogens. Briefly, bronchoalveolar lavage (BAL) is performed,
and the BAL fluid is gently centrifuged to remove alveolar macrophages and other cells;
this prevents bias in the ELF concentration, since some drugs accumulate extensively in
these cells. Drug concentrations in the supernatant (i.e., diluted ELF) are measured and
adjusted for the lavage dilution factor using the urea correction method (48, 105–108).
This yields the drug concentration in the ELF. The cell pellet may also be utilized to
determine concentrations within alveolar macrophages (105); these intracellular drug
concentrations can be particularly important for some drugs (such as macrolides) and
infections.

For logistical reasons, systemic and/or tissue PK data are usually obtained separately
in satellite PK experiments. A sufficient number of dose levels (usually 3 to 4) are
needed to identify and characterize nonlinear PK, if present, and these should include
the smallest and largest doses used in the PD studies to minimize extrapolation outside
that range. The PK samples are typically collected via terminal procedures; thus, each
animal usually contributes one concentration measurement at a single time point
(especially in mice). Collecting serial blood samples from the same animal (e.g., multiple
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retro-orbital, facial vein, or tail vein bleeds) at different time points better informs the
PK parameters and allows one to separate animal variability from residual error noise
(e.g., bioanalytical noise). Serial blood sampling may not be possible in all infection
models; however, methods have been developed and employed by some investigators
(109–116). Destructive sampling with one PK sample per mouse remains the most
common approach.

Measuring drug concentrations in blood, plasma, and BAL fluid (for ELF) can usually
be accomplished via sensitive and specific liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) assays. These are preferred over older bioanalytical methods (such
as bioassays) because of their superior specificity, sensitivity, and precision. Bioactive
metabolites should also be measured and accounted for, if they are present at relevant
concentrations.

PK sampling times. Due to technical limitations and animal welfare considerations,
there is a practical limit of approximately 6 to 8 sampling time points during any given
experiment. Sampling times should be carefully chosen (and informed by any available
PK data) to provide robust information within these experimental constraints. Studies
should be designed and repeated, if necessary, to adequately capture information
related to the absorption phase, peak concentration, drug distribution, and elimination.
Ideally, the chosen sampling times should reasonably characterize the overall drug
exposure (i.e., the area under the curve [AUC]), the terminal half-life, and the time when
drug concentrations decline below the lowest MIC of interest.

Mathematical modeling and simulation approaches (including optimal design meth-
ods) can be prospectively applied to select the most informative sampling time points
prior to conducting the PK experiment (117–121). If the design is suboptimal, the study
may not provide adequate data to fully characterize the drug exposure profile. This is
important because even the most sophisticated retrospective PK modeling and simu-
lation approach will not compensate for poorly informative data; accuracy of PK
predictions will suffer and, ultimately, the calculated PK/PD targets may be biased. If no
or insufficient prior PK data are available to aid in study design, a small pilot experiment
may be warranted. Collection of high-quality PK data may require multiple, sequential
experiments. This iterative process is considered best practice if a single experiment
does not adequately capture the PK profile. Although this approach may be compli-
cated by factors such as limited time, resources, and drug supply, it is imperative to
collect suitably informative PK data.

Studying drug combinations is more complex than evaluating monotherapies and
requires additional consideration, such as potential drug-drug or drug-vehicle (e.g., for
dimethyl sulfoxide [DMSO]) interactions. Furthermore, it is important to ensure that
both drugs combined are present at the primary infection site at the same time. The
design and interpretation of combination PK (and PD) studies benefit greatly from
prospective application of mathematical modeling and optimal design approaches that
are beyond the scope of this review (117–125).

Testing human-like exposures. The PK/PD index (e.g., fpeak/MIC, fAUC/MIC, or
fT�MIC) and its magnitude required for a chosen efficacy endpoint are typically
determined using murine infection models. However, drug half-lives are usually much
shorter in mice than in humans (126), which results in concentration-time profiles with
different shapes, even if the two profiles are matched in the AUC. The importance of
this aspect for bridging from animals to humans has been shown by Deziel et al. (127),
where different dosage regimens were designed to achieve human-like levofloxacin
concentration-time profiles but did not result in equivalent efficacy. Evaluating human-
ized PK profiles in animals can provide complementary information to traditional PK/PD
indices and should be considered during drug development. Additional guidance on
humanization (87) is provided in the supplemental material.

Analysis of PD data. To analyze viable bacteria count data (e.g., CFU at 24 h) at
a single time point, a Hill model is commonly employed. Characterizing exposure-
response relationships (e.g., fAUC/MIC versus effect) is strongly preferred over dose-
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response relationships (72), since the former account for PK and are thus much more
informative. This basic PD approach is often useful for optimizing antibacterial mono-
therapy based on single-time-point data. If multiple time points are evaluated (from
different mice), population PK/PD modeling can characterize the time course of bac-
terial killing and regrowth. Empirical, MB, and QSP mathematical PK/PD models can be
used to describe and predict the drug effect over time to rationally optimize dosage
regimens as described above for in vitro models.

PK modeling approaches. Drug concentration profiles can be modeled by various
approaches (128, 129), depending on the type of experimental data collected, the
complexity of the system (e.g., linear versus nonlinear PK), and the skill set of the
modeler. For a typical data set that contains one measurement per animal (e.g.,
terminal sampling at a single time point), naive pooling is often used. For this approach,
all observations at a given dose are assumed to come from one animal. Alternatively,
naive averaging can be employed by calculating the average concentration at each
time point. Both naive approaches ignore between-subject variability and estimate only
one pooled value for clearance and one for volume of distribution. Estimates tend to
be biased unless variability is low (e.g., coefficients of variation [CV] are less than
approximately 15%) (128–130). To obtain standard errors for these data sets, the Bailer
method (131, 132) and bootstrap resampling techniques have been developed (133–
135). The Bailer method uses linear combinations of mean concentrations at different
time points to statistically compare drug exposures between treatment groups. The
bootstrap resampling approach randomly creates a number of pseudoprofiles to allow
for statistical comparisons and to estimate the between-animal variability; this method
is very flexible and uses noncompartmental techniques for analysis of the pseudopro-
files.

If serial samples are obtained from the same animal, the standard two-stage method
can be used where the data from each animal are fit separately. If each profile
characterizes all PK phases (i.e., absorption, distribution, and elimination), this method
provides reasonable estimates of the mean PK parameters, but it may substantially
overestimate the variability between subjects (128, 129). Fitting the average plasma
concentration profile via naive pooling or the standard two-stage approach may be
adequate to predict the mean concentration profile for data sets with low between-
subject variability. This allows a broader range of scientists to perform PK modeling and
to progress a drug development program efficiently. However, for data sets with high
between-subject variability, nonlinear PK, or multiple different types of observations
(e.g., plasma, ELF, urine, or efficacy data), population modeling offers substantial
benefits.

Population PK modeling. Population modeling borrows information across all
subjects by fitting one subject in the context of all other subjects. This approach can
simultaneously describe and predict drug exposures in multiple compartments, such as
plasma and ELF (108, 136–139), and enables Monte Carlo simulations to predict the
range of expected exposure profiles in patients (1, 14, 140). Population estimation
algorithms have proven robust to estimate PK parameters for both frequently sampled
and sparse data sets (130, 137) and are the method of choice for drugs with nonlinear
PK and for data sets with sparse sampling. These include data sets with one plasma and
ELF concentration per mouse. Population modeling is particularly powerful if advanced
estimation algorithms based on the exact log-likelihood are employed. This approach
provides unbiased and precise estimates and predictions in a reasonable time frame
considering the time for performing the experiments (Table 3) (130, 137, 141). While full
Bayesian approaches are appealing and powerful, they require more time (e.g., for
sensitivity analyses) and advanced modeling skills (130, 142, 143).

CHALLENGES OF IN VIVO STUDY CONDUCT AND INTERPRETATION

The success of characterizing PK/PD in animal models depends largely on sound
experimental design, suitable data analysis, and the ability to control variance. This
involves learning and refining in an iterative fashion to understand the sources of
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variability and then to minimize variance until the results converge around a final
PK/PD target. This process benefits greatly from being executed by a close-knit, highly
functional team that regularly discusses experimental designs, results, and interpreta-
tion. Several scenarios warrant special attention.

Pharmacokinetic considerations:

● Drugs with short half-lives in rodents can complicate study design (e.g., when the
goal is to achieve a wide range of exposures in dose fractionation studies).

● Species specific toxicities or PK profiles may hinder the ability to understand the
full exposure-response (e.g., when sufficiently high doses to observe near-
maximal effect cannot be tested).

● Incorporating tissue concentration data may be complicated, and yet it should
not be assumed that the extents and rates of penetration are the same across
animal species and humans. For pneumonia, approaches have been established
and applied to design optimal dosage regimens based on ELF penetration data
(48, 87, 105, 144, 145).

● The time courses of penetration at the target site may not mirror circulating drug
concentrations and may differ across species (e.g., for oritavancin [104]). This may
be particularly critical when maximizing synergy of drug combinations.

● Plasma protein binding of drugs may differ between animals and humans and
between “normal” and critically ill patients (146, 147).

Pharmacodynamic considerations:

● PD models are acute. Severe (often rapidly lethal) infections are usually required
for model stability and minimizing variability but may not mimic the course of
infections in humans.

● Different PK/PD target values can be obtained from different models, studies, and
bacterial strains, as well as from various infection sites and/or test conditions.

TABLE 3 Comparison of PK modeling and simulation approaches in increasing order of complexity from top to bottom

Approach Between-subject variability Accuracy of predictions Comments

Naïve pooling Ignored (i.e., assumed to be
zero or very low)

Only mean profiles can be
predicted

Can be adequate to simulate mean
concentration profiles, if
variability is low; yields biased
predictions if variability is
moderate or large; cannot
simulate between-subject
variability

Standard two-stage Often overestimated Predicted concn range may
be too broad

Can be adequate to simulate mean
concentration profiles, if
variability is low; requires serial
sampling, which may be
problematic for mouse PK
studies

Population modeling
(approximate
log-likelihood)

Bias can be large for sparse
data

Can simulate variability, but
may be considerably biased

Can simulate mean concentration
profiles and between-subject
variability but may yield biased
results for sparse data

Population modeling (exact
log-likelihood)

Often most suitable choice Often most reasonable choice Can simulate mean concentration
profiles and between-subject
variability with no (or less) bias;
can handle complex PK models
with multiple dependent
variables (e.g., PK, PD, and
resistance)

Population modeling
(advanced three-stage
methods)

Very powerful, can leverage
prior information via a
Bayesian approach

Can account for uncertainty
as well as for between-
subject variability

Powerful, but more complex;
requires more expertise and
modeling time (e.g., for
sensitivity analyses)
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● Some studies and bacterial strains may not perform the same as others, even in
well-characterized animal models; between-strain variability is expected and can
complicate the establishment of PK/PD targets and, subsequently, human dose
predictions.

● Opinions vary on which endpoints should be used to establish PD targets (i.e.,
stasis versus 1- or 2-log10 reduction in CFU or, alternatively, using the doses
associated with 50% of maximal effect [ED50] or 90% of maximal effect [ED90]).

● Different endpoints may be required for various types of infections and patient
groups (e.g., for immunocompromised patients or those with more-serious infec-
tions such as VABP/HABP).

● A more stringent endpoint such as 2-log10 reduction in CFU at 24 h in a mouse
infection model may not be achievable for slowly killing antibiotics. Studies with
longer treatment durations may be warranted to explore this situation.

Variability within and between studies. Variability associated with the conduct of
animal infection models can be largely minimized via careful planning and execution.
However, uncontrollable sources of variability associated with the PK, PD, infection site,
and immune response will remain and are difficult to control (Fig. 4). This variability
may lead to one or more extreme observations, and it can be tempting to remove such
a presumed outlier(s). However, with the exception of a priori documented experimen-
tal reasons (such as those due to a missed dose), removal of outliers is not appropriate
and will likely yield biased conclusions. Performing and presenting the data analysis
with and without a “suspected” outlier represents good practice, as is the use of a
suitable number of experimental replicates. If a whole experimental group (or entire
study) appears to be an “outlier,” then a repeat evaluation is warranted. It is important
to understand if such results are reproducible and to investigate why the results differ
between replicated groups.

It is common for results from studies conducted in different models or by different
laboratories to differ to some degree and sometimes widely. In extreme cases, one set
of results may support termination of a new drug candidate while another data set for
the same compound supports progression. It is likely that differences in the design,
conduct, and analysis of studies, even for the “workhorse” murine PK/PD models,
contribute to this situation. Careful experiment conduct is critical, and it may be helpful
when using the workhorse models to standardize certain components such as inocu-
lum size and preparation, strain fitness, timing of infection, infection site, inoculation
method, and immune status. These variables can have a large impact on the results and

FIG 4 Different sources of variability that may affect the results of animal infection models. The
between-system variability can be handled by appropriate choices for and the selection of experiments
to be performed. The within-system variability can be split into a controllable portion and a random (i.e.,
usually noncontrollable) part. Experimental design choices and careful execution of animal infection
model studies can minimize the controllable variability. The random, unexplained variability will neces-
sarily include components such as between-subject variability (BSV) in pharmacokinetics, pharmacody-
namics, the infection site, and the immune system.
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conclusions (101). It is further helpful to benchmark PK/PD models and methods using
relevant positive controls (i.e., effective reference treatments) (Table 2; see also Fig. 5)
for which both animal and human PK/PD data are available for the target indication. By
use of such active controls, a collection of data under a standardized test methodology
can be developed to support drug development and regulatory review. This will allow
the performance of a new drug to be assessed in the context of benchmarked controls
and endpoints.

Clinical dose selection. Guidelines have been published (e.g., by EMA) that rec-
ommend calculating PK/PD targets based on specific efficacy endpoints in the work-
horse models for different clinical indications (6–8). In general, more antibacterial effect
is required for more serious infections. Thus, targets based on no change in viable
counts (stasis) or on a 1-log10 reduction in CFU compared to pretreatment baseline
have been recommended for less-severe infections such as skin and soft tissue as well
as for complicated urinary tract infections (cUTI); in contrast, 2-log10 reductions in CFU
have been suggested for more-severe infections such as pneumonia (43). Importantly,
these endpoints are calculated relative to the bacterial density at initiation of antibiotic
treatment and not relative to the viable counts of the growth control group at end of
therapy. The rationale for a higher 2-log10 hurdle is to rapidly reduce the bacterial
burden to a density that can be controlled by the immune system; in the latter case, the
surviving bacterial population is so small that the risk for emergence of resistance
during therapy due to de novo formation of resistant mutants is low (1, 14). Although
these are laudable goals, focusing on specified endpoints requires standardized model
systems with benchmarking based on positive controls. Such highly controlled animal
infection models currently do not exist.

Aiming for a stringent target endpoint (e.g., � 2-log10 reduction in CFU) or the
maximum tolerated dose is common in the early stages of clinical drug development.
High doses may help mitigate potential PK concerns, such as low drug exposure at the
primary infection site, altered PK in special populations, and substantial variability in
patients. However, almost invariably, the amount of drug that can be dosed in patients
is limited by nonclinical safety coverage, clinical adverse events, lack of therapeutic
index, cost of goods, and other factors. This typically leaves two options. First, drug
developers can keep the same target endpoint and risk not covering the encountered
MIC range; second, a less stringent endpoint (e.g., stasis or 1-log10 reduction instead of
2-log10) could be used to set the target. The latter choice is the more common path, as
not being able to cover the full MIC range is a poor starting point for a new drug and
creates problems for establishing susceptibility breakpoints. However, use of less-

FIG 5 Considerations and perspectives to enhance the robustness of animal infection models and
ultimately better translate efficacious and reliable dosage regimens to patients.
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stringent endpoints may reduce the probability of achieving an adequate therapeutic
response for more-severe infections, can accelerate the development of resistance, and
may result in breakpoints that are higher than appropriate. In this scenario, character-
izing the impact of the immune system and, if mutants with reduced susceptibility are
found, assessing their fitness in animals as well as evaluating combination therapies for
severe infections may be a path forward.

Despite these complexities, the guiding principle should always be the scientific
method, and there are steps that can provide additional confidence in the chosen
nonclinical PK/PD targets and endpoints. It is best practice to generate data in more
than one model system (i.e., another animal model and/or dynamic in vitro models). To
enhance the information gained from the primary endpoint (e.g., reduction in CFU),
secondary endpoints such as analyses of viable counts of resistant bacteria, biomarkers,
survival, histopathology, inflammatory markers, radiology, bioluminescence, and others
can provide valuable insights. Concerns may arise if discordant results are obtained
from different model systems and bacterial strains. However, this should not dissuade
drug developers from conducting different types of experiments. Discordant results can
be actively managed and explanations for the differences sought, and the insights
gained can be highly valuable.

Future perspectives on in vivo models. The field of antibacterial pharmacology is
fortunate to have a considerable armamentarium of PK/PD tools and expertise. Com-
monly used models (such as murine neutropenic thigh and lung models) have provided
a sound basis to date. However, PK/PD is an evolving discipline, and challenges as well
as open questions remain. The practice of optimizing, standardizing, and benchmarking
the workhorse models likely ensures better reproducibility from study to study and
from laboratory to laboratory and enhances our ability to interpret the results for
different types of infections and various antibacterial classes (Fig. 5). Leveraging
suitable modeling, simulation, and optimal design approaches and engaging team
members across disciplines to discuss feasible study designs, results, and clinical goals
are undoubtedly highly mutually fruitful.

Establishing additional animal models for PK/PD characterization would expand the
translational tools available to the community. The murine thigh infection model
reasonably mimics soft tissue infections, and the mouse lung infection model mirrors
pneumonia. However, neither may be ideal for characterization of PK/PD profiles at
other infection sites. For lower urinary tract infections (e.g., cystitis), urine and/or
bladder wall concentrations are likely important for efficacy. However, the mouse thigh
model may not be adequate to determine reliable PK/PD targets for these infections,
and other validated models do not (yet) exist. Similarly, there is a need for better
models to characterize PK/PD for complicated intra-abdominal infections (cIAI) and
cUTI, especially since these are common target indications for phase II studies. A rat
model for cIAI is available (148, 149); however, some laboratories may not be able to
conduct this model due to the increased complexity and animal species. As a surrogate,
the neutropenic murine thigh infection model can be a reasonable alternative for
infections involving a rapidly equilibrating PK compartment such as pyelonephritis,
where intrakidney concentrations are important; however, more data are required to
fully assess nonclinical-to-clinical translation in these instances. Consideration should
also be given to the development of models that better mimic human disease (e.g.,
more-natural disease progression), although such models are likely to be low through-
put and less practical for routine PK/PD characterization. As one example, rabbit
infection models have been developed and can provide serial blood samples for
assessing PK and biomarkers of efficacy and safety over time (150–152). In combination
with results from murine infection models, these more complex models could provide
supporting information for new drugs and play an increasingly important role during
drug development.

A final point for consideration is publication of PK/PD data. It is important to provide
sufficiently detailed information to allow readers to assess the validity of the work and
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resulting PK/PD targets and to reproduce the methods employed. All pertinent details
of the experiments (including detailed experimental protocols) and associated data
analyses (including units, modeling choices, and the enabling equations of the final
model) should be published, at least in the supplemental material. For common models
and analyses, workshops with hands-on example data sets and (video) tutorials can
provide effective training tools. Variability in PD response should be reported and
details on the performance of individual bacterial strains (e.g., growth in untreated
control animals and variability of drug effect) and their individual PD targets provided.
The PK data should be adequately described and a thorough assessment of the quality
of the modeling and simulation methods provided (including an evaluation of bias and
precision). It is suggested that editors consider the ARRIVE guidelines (153) to ensure
adequate reporting of in vivo data and an extended set of criteria specifically for PK/PD
studies to improve the quality of publications. Collections of resistant bacterial
strains (e.g., from CDC and ATCC) are available, and future research and joint discus-
sions are needed to select suitable reference strains.

CONCLUSIONS

Both in vitro and in vivo infection models provide powerful PK/PD information and
have been shown to predict clinical outcomes. This review provides perspectives on
current models, applications, challenges, potential issues, and paths forward. This is a
healthy and required evolutionary process to define and critique available methods.
The goal is to improve approaches, models, study designs, study performance, analyses,
interpretation, and communication. Optimizing the available translational PK/PD tools
has become increasingly important as we rely more and more on nonclinical data to
predict successful clinical treatment regimens, often to combat serious infections by
multidrug-resistant bacterial “superbugs.”

Guidelines for conducting and interpreting nonclinical models are meant to improve
the process, not to stifle innovation or eliminate the need for rational thought. Regular
discussions among multidisciplinary project teams are essential to optimally leverage
these translational tools, and early/frequent discussions with regulatory agencies are
critical to maximize utility of the data. Future studies will likely identify scenarios where
the recommendations in this review will need to be modified for special infection
models, bacterial strains, innovative combination regimens, and novel-acting therapies.
Some therapies may require special considerations, and PK/PD approaches should be
tailored to the specific needs of the individual compound or drug class and ultimately
to the target patient population.
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