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ABSTRACT Acyclovir (ACV) resistance-associated mutations in two recombinant her-
pes simplex virus 1 (HSV-1) clones were compared. Recombinant HSV-1 lacking its
thymidine kinase (TK) and expressing varicella-zoster virus (VZV) TK ectopically had
no mutations in the VZV TK gene. In contrast, recombinant HSV-1 expressing HSV-1
TK ectopically harbored mutations in the HSV-1 TK gene. These results suggest that
the relatively low frequency of ACV-resistant VZV is a consequence of the character-
istics of the TK gene.
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Herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) establish latency in
ganglion cells and reactivate under certain conditions to cause recurrent vesicular

lesions (1). Typically, reactivation of HSV-1 results in herpes labialis, periorbital herpes,
herpes keratitis, or recurrent genital herpes, whereas reactivation of VZV causes zoster
(1). These recurrent diseases occur more frequently, and are more severe, in immuno-
compromised patients than in immunocompetent patients (2). Acyclovir (ACV), a
guanosine analog, is a drug used to treat patients with HSV-1 and VZV diseases. The
mechanism of action of ACV is as follows: ACV is phosphorylated by the viral thymidine
kinase (TK) to yield ACV monophosphate and further phosphorylated by host cellular
kinases to yield ACV triphosphate, which then competes with dGTP for the viral
DNA polymerase (DNApol) (3–5). Occasionally, ACV-resistant (ACVr) HSV-1 and VZV are
induced in immunocompromised patients (2, 6, 7). It is suggested that the occurrence
of viral TK-associating ACVr mutations in VZV is much less frequent than in HSV-1. ACVr
VZV is reported rarely in immunocompromised patients (8–23). In contrast, ACVr HSV-1
occurs in 3.5% to 10% of immunocompromised patients (2, 24–28). It is thought that
the emergence of ACVr VZV is less likely than that of HSV-1, because VZV is approxi-
mately 100 times less sensitive to ACV than HSV-1 (29). The ACV sensitivity of a chimeric
HSV-1 lacking the original HSV-1 TK gene, but harboring the VZV TK gene, is the same
as that of VZV (29). However, the precise mechanism underlying the difference in the
likelihood of emergence of ACVr viruses is unclear.

One possible mechanism may be based on the particular characteristics of VZV TK
and HSV-1 TK; i.e., viral TK determines the sensitivity to ACV (29). To clarify the
hypothesis, we generated two recombinant HSV-1 viruses: HSV-1_VZV-TK expressing
the TK gene of VZV strain vOka (GenBank accession AB097932.1) under the control of
the cytomegalovirus (CMV) promoter and from which the HSV-1 TK gene was deleted,
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and HSV-1_HSV1-TK, in which the VZV TK gene of HSV-1_VZV-TK was replaced with that
for HSV-1 TK. We then compared the ACV resistance-associated mutations in recom-
binant HSV-1 clones.

HSV-1_VZV-TK was generated using a two-step Red recombination system, as
described previously (30–32). A DNA fragment containing nucleotides (nt) 1 to 44 of the
VZV TK gene, the I-SceI restriction site and the kanamycin resistance gene from
pEP-KanS (32), the CMV promoter, and the VZV TK gene and its poly(A) region were
amplified using primers 5=-GCGGTACCATGTCAACGGATAAAACCGATGTAAAAATGGGCG
TTTTGCGTATGATGACGACGATAAGTAGGG-3= and 5=-GCGGTACCGCCAGTGTTACAACCA
ATTAACC-3=. The DNA fragment was then inserted between the UL50 and UL51 genes
using primers 5=-ATCTCATCTTTCCTGTGTGTAGTTGTTTCTGTTGGAGGCCTGTGGGTCTAAC
ATTGATTATTGACTAGTTATTAA-3= and 5=-TTCATCCAACCCGTGTGTTCTGTGTTTGTGGGAT
GGAGGGGCGGGTGTGAATCTTTTTACTGGTACATACGTAAA-3=, as described previously
(30–32). Next, the HSV-1 TK gene was replaced with the kanamycin resistance gene
using primers 5=-TTATTGCCGTCATAGCGCGGGTTCCTTCCGGTATTGTCTCCTTCCGTGT
TAGGATGACGACGATAAGTAGGG-3= and 5=-TCCGCCTGGAGCAGAAAATGCCCACGCTAC
TGCGGGTTTATATAGACGGTAACACGGAAGGAGACAATACCAACCAATTAACCAATTCTGAT
TAG-3= (30–32). HSV-1_HSV1-TK was constructed by replacing the VZV TK gene of
HSV-1_VZV-TK with the TK gene of HSV-1 strain F (GenBank accession GU734771.1). The
DNA fragment containing nt 1 to 44 of the HSV-1 TK gene, the I-SceI restriction site and
the Zeocin resistance gene from pUC-Zeo (33), the CMV promoter, and the HSV-1 TK
gene and its poly(A) region were amplified using primers 5=-GCGGTACCATGGCTTCGT
ACCCCTGCCATCAACACGCGTCTGCGTTCGACCACGGGGATCTAGGGATAACAG-3= and 5=-
GCGGTACCATTACGCCAAGCTTGCATGC-3= and then inserted between the UL50 and
UL51 genes using primers 5=-ATCTCATCTTTCCTGTGTGTAGTTGTTTCTGTTGGAGGCCTGT
GGGTCTAACATTGATTATTGACTAGTTATTAA-3= and 5=-TTCATCCAACCCGTGTGTTCTGTG
TTTGTGGGATGGAGGGGCGGGTGTGATTTATTCTGTCTTTTTATTGCCGTC-3=. The half max-
imal inhibitory concentration (IC50) of ACV to HSV-1_VZV-TK was higher than those to
HSV-1 F and HSV-1_HSV1-TK in both Vero cells and MRC-5 cells; also, the sensitivity of
HSV-1_VZV-TK in MRC-5 cells to ACV was similar to that of VZV vOka (Table 1). In
contrast, the sensitivities of HSV-1_HSV1-TK to ACV were similar to those of HSV-1 F in
both cells (Table 1). These results suggest that the ACV sensitivity of HSV-1 and VZV
depends on the characteristics of viral TK.

ACVr HSV-1_VZV-TK and ACVr HSV-1_HSV1-TK clones were generated by serial
passage of HSV-1_VZV-TK and HSV-1_HSV1-TK, respectively, in the presence of increas-
ing concentrations of ACV, as described previously (34, 35). Thirty-two ACVr HSV-
1_VZV-TK clones were obtained, and the sequences of the viral TK and DNApol genes
were determined. Compared with the original HSV-1_VZV-TK clones, none of the ACVr
HSV-1_VZV-TK clones harbored mutations in the TK gene. However, 31 ACVr clones
harbored mutations in the DNApol gene; all were single or double nucleotide muta-
tions that resulted in the substitution of one or two amino acids, respectively (Fig. 1A).
Twenty-five ACVr clones harbored amino acid substitutions in the conserved regions of
DNApol, whereas the other six harbored amino acid substitutions in nonconserved
regions (Fig. 1). Twelve ACVr clones harbored substitutions at amino acid 719 of
DNApol (Fig. 1B). L356R, F733S, E798G, C830G, and I952T in DNApol were identified as

TABLE 1 Inhibitory effect of ACV on parental and recombinant viruses, as determined in a
plaque reduction assay in Vero and MRC-5 cells

Virus

IC50 (�g/ml) ina:

Vero cells MRC-5 cells

HSV-1 F 0.3 � 0.5 0.1 � 0.04
HSV-1_VZV-TK 2.1 � 0.5 3.4 � 1.4
HSV-1_HSV1-TK 0.3 � 0.03 0.1 � 0.03
VZV vOka NDb 1.0 � 0.5
aValues include standard deviations from three independent tests.
bND, not determined.
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novel amino acid substitutions that conferred ACV resistance (Fig. 1B). Of 31 nucleotide
substitutions, 12 (approximately 40%) were an A/T to G/C switch in the HSV-1 DNApol
gene. Although VZV TK has affinity not only for thymidine but also for deoxycytidine
(36), there was no significant preference with respect to nucleotide substitutions in the
HSV-1 DNApol gene. One ACVr clone harbored no mutations in either the TK or DNApol
genes compared to those of the original HSV-1_VZV-TK (Fig. 1A), suggesting that not
only viral TK and DNApol but also other factors affect the functional mechanism of
action of ACV in this recombinant virus. Further studies are needed to clarify the
mechanism underlying the generation of clones that are resistant to ACV.

Forty-seven ACVr HSV-1_HSV1-TK clones were obtained as described above, and all
harbored mutations in the HSV-1 TK gene but not in the DNApol gene. These results
suggest that ACV resistance-associated mutations are less likely to occur in VZV TK than

FIG 1 ACV resistance-associated mutations detected in ACVr HSV-1_VZV-TK clones. (A) The pie chart shows the regions in which ACV
resistance-associated mutations were detected. The numbers in parentheses denote the number of ACVr HSV-1_VZV-TK mutations. (B)
Mutations detected, and their frequencies, in HSV-1 DNApol. The y axis indicates the number of clones harboring the mutations detected
at a given amino acid position. Amino acid changes are shown on the x axis, and the color of the letters corresponds to the color of the
bars. The gray boxes indicate the conserved regions in DNApol of HSV-1 strain F (GenBank accession GU734771.1): Exo I to III (amino acids
363 to 373, 437 to 469, and 531 to 627), II (amino acids 694 to 736), VI (amino acids 772 to 791), III (amino acids 805 to 845), I (amino acids
881 to 896), VII (amino acids 938 to 946), and V (amino acids 953 to 963). Novel mutations are shown in boldface font. Two amino acid
substitutions were detected in one ACVr HSV-1_VZV-TK clone; these are indicated by asterisks.
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FIG 2 ACV resistance-associated mutations detected in ACVr HSV-1_HSV1-TK clones. (A) The pie chart shows the patterns of mutations
in the HSV-1 TK gene. Nt, nucleotide. The numbers in parentheses denote the number of ACVr HSV-1_HSV1-TK clones. (B) Frequency of
each mutation detected in HSV-1 TK. The y axis indicates the number of mutations detected at a given amino acid position. The mutations
detected are shown on the x axis, and the color of the letters corresponds to the color of the bars. The gray boxes indicate the conserved
regions within HSV-1 TK. NBS, nucleoside binding site. Novel mutations are shown in boldface font. (C) Schematic representation of the
long sequence deletions detected in five ACVr HSV-1_HSV1-TK clones. Line 1, the whole-genome structure of wild-type HSV-1 F; line 2,
the related domains of HSV-1 F; line 3, the related domains of HSV-1_HSV1-TK; lines 4 to 7, nucleic acid deletions detected in ACVr
HSV-1_HSV1-TK clones. The same deletion (line 6) was detected in two clones. Other deletions (lines 4, 5, and 7) were each detected in
a single clone. Numbers indicate the location of nucleic acids in the HSV-1 F genome (GenBank GU734771.1). The numbers in parentheses
indicate the location of nucleic acids within the region inserted.
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in HSV-1 TK. This is supported, at least partially, by the fact that the HSV-1 TK gene
contains homopolymer regions in which nucleotide insertions or deletions are common
(37–40). Thirty-eight clones harbored insertion or deletion mutations in the homopo-
lymer stretch regions, and 23 of the 38 clones harbored a single insertion of guanine
at nt 430 to 436 in the 7-G homopolymer stretch within the HSV-1 TK gene (Fig. 2A).
Four clones harbored single point nucleotide substitutions at different locations,
resulting in a single amino acid substitution or a nonsense mutation (Fig. 2A). A single
insertion of adenine at nt 133 to 136 and W259stop and G206E substitutions in HSV-1
TK were novel mutations (Fig. 2B). Five clones lost a long sequence of nucleotide
residues, including part of the inserted HSV-1 TK gene (Fig. 2C). One clone lost a long
nucleotide sequence stretching from the UL49 gene to the HSV-1 TK gene (Fig. 2C, line
4). Another clone lost a long sequence stretching from the UL50 gene to the HSV-1 TK
gene (Fig. 2C, line 5). The other three clones lost a long sequence within the transfer
region (Fig. 2C, lines 6 and 7); two of these deletions showed the same pattern (Fig. 2C,
line 6). Such long deletions may be due to homologous recombination, although no
homologous regions were found in and around the deleted regions. It is possible that
the phenomenon was specific to recombinant HSV-1_HSV1-TK, as it has not been
reported in any other ACVr HSV-1 isolates examined in in vitro or clinical studies.

In conclusion, the data presented herein suggest that the mechanism underlying
differences in the likelihood of emergence of ACVr HSV-1 and ACVr VZV is due to the
characteristics of HSV-1 TK and VZV TK. In addition, as HSV-1_VZV-TK induced ACV
resistance-associated mutations only in the HSV-1 DNApol gene, this system could be
used to enrich the database of HSV-1 DNApol gene-associated ACVr mutations.
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