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ABSTRACT Candida albicans is known for its ability to form biofilms, which are
communities of microorganisms embedded in an extracellular matrix developing on
different surfaces. Biofilms are highly tolerant to antifungal therapy. This phenome-
non has been partially explained by the appearance of so-called persister cells, phe-
notypic variants of wild-type cells, capable of surviving very high concentrations of
antimicrobial agents. Persister cells in C. albicans were found exceptionally in bio-
films, while none were detected in planktonic cultures of this fungus. Yet, this topic
remains controversial, as others could not observe persister cells in biofilms formed
by the C. albicans SC5314 laboratory strain. Due to ambiguous data in the literature,
this work aimed to reevaluate the presence of persister cells in C. albicans biofilms.
We demonstrated that the isolation of C. albicans “persister cells” as described previ-
ously was likely to be the result of the survival of biofilm cells that were not reached
by the antifungal. We tested biofilms of SC5314 and its derivatives, as well as 95
clinical isolates, using an improved protocol, demonstrating that persister cells are
not a characteristic trait of C. albicans biofilms. Although some clinical isolates are
able to yield survivors upon the antifungal treatment of biofilms, this phenomenon
is rather stochastic and inconsistent.
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The yeast Candida albicans is a commensal of humans but also one of the most
prevalent fungal pathogens, responsible for superficial infections as well as life-

threatening systemic infections (1). C. albicans is recognized for its ability to form
biofilms that are most frequently associated with nosocomial infections, particularly in
immunocompromised patients.

C. albicans biofilms are communities of microorganisms with a complex structure
composed of different cell types embedded in an extracellular matrix (2–4). They
develop on different types of surfaces, either living or inert, and are characterized by
their high tolerance to antifungals. Their high antifungal tolerance can result from the
properties of the extracellular matrix that can serve as a trap for drug molecules (5–7).
An additional source of antifungal tolerance has been proposed to result from the
occurrence in biofilms of so-called persister cells, a subpopulation of phenotypic
variants of wild-type cells capable of surviving concentrations of antimicrobial agents
well above the MIC (8). Persister cells were first described in bacterial cultures as a
drug-tolerant subpopulation that upon removal of the antimicrobial agent gave rise to
a new population of susceptible cells (9). Persisters are known to be genetically
identical to the rest of the population; thus, persistence is a noninherited trait (10–12).

In the clinical setting, persisters are usually associated with relapse of infections and
with the development of chronic infections. For bacterial persisters, several mecha-
nisms and pathways involved in their development have been described (13).

In 2006, LaFleur et al. presented the first report of persister cells in biofilms of C.

Citation Denega I, d’Enfert C, Bachellier-Bassi S.
2019. Candida albicans biofilms are generally
devoid of persister cells. Antimicrob Agents
Chemother 63:e01979-18. https://doi.org/10
.1128/AAC.01979-18.

Copyright © 2019 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Sophie Bachellier-
Bassi, sophie.bachellier-bassi@pasteur.fr.

Received 17 September 2018
Returned for modification 27 October 2018
Accepted 10 February 2019

Accepted manuscript posted online 19
February 2019
Published

MECHANISMS OF RESISTANCE

crossm

May 2019 Volume 63 Issue 5 e01979-18 aac.asm.org 1Antimicrobial Agents and Chemotherapy

25 April 2019

https://orcid.org/0000-0003-3970-4825
https://doi.org/10.1128/AAC.01979-18
https://doi.org/10.1128/AAC.01979-18
https://doi.org/10.1128/ASMCopyrightv2
mailto:sophie.bachellier-bassi@pasteur.fr
https://crossmark.crossref.org/dialog/?doi=10.1128/AAC.01979-18&domain=pdf&date_stamp=2019-2-19
https://aac.asm.org


albicans, which could contribute to biofilm tolerance to antifungals (8). In their paper,
the authors reported that C. albicans exhibits a biphasic killing curve when exposed to
antifungals such as amphotericin B (AMB), chlorhexidine, or a combination of both. This
phenomenon is explained by the presence of a multidrug-tolerant subpopulation of
persister cells within a biofilm, while planktonic cultures of C. albicans were found to be
devoid of persisters. Notably, the experiments for this study were performed using an
in vitro biofilm model of C. albicans developed in polystyrene 96-well plates. Following
this work and relying on the protocol for persister cells isolation described therein (8),
persister cells in C. albicans biofilms were described by a few other groups (14–16).
However, later work by Al-Dhaheri and Douglas showed that not all Candida species
and strains were able to form persister cells in laboratory-grown biofilms (17). This was
in particular the case for C. albicans strain SC5314 (18), the parental strain of almost all
C. albicans strains used for functional genomics and molecular genetics studies. Unlike
in the previously mentioned papers (8, 14–16), the protocol Al-Dhaheri and Douglas
(17) used for persister isolation involved growing biofilms on silicone discs, followed by
their immersion into an antifungal solution. As the topic of C. albicans persister cells
remains controversial, the main objective of this work was to reevaluate their occur-
rence in in vitro-grown C. albicans biofilms.

RESULTS AND DISCUSSION

In this work, we aimed to study the occurrence of persister cells in C. albicans
biofilms. We applied the protocol published by LaFleur and colleagues, growing the
biofilms in RPMI medium and in a 96-well plate format (8). We set up the protocol with
3 C. albicans prototroph strains, namely SC5314, CEC369, and CEC4664; CEC369 and
CEC4664 are prototroph derivatives of BWP17 (19) and SN76 (20), respectively. BWP17
and SN76 are independent auxotroph derivatives of SC5314.

We encountered a technical problem at the biofilm recovery step, usually performed
by scraping the cells in 1� phosphate-buffered saline (PBS) and vortexing prior to
plating (8, 14, 16, 21). In our hands, the cells could not be properly resuspended and
plated, as clumps of the biofilms would usually remain stranded inside the tips.
Consequently, the CFU numbers obtained were highly varied for all samples, making
any further analysis and comparison impossible (data not shown).

We decided to test alternative approaches to circumvent the stickiness of biofilms.
Resuspending cells in 20% glycerol-1� PBS for plating helped reduce stickiness but did
not improve consistency (data not shown). We hypothesized that EDTA might reduce
the adherence of biofilms by binding bivalent cations that are required for the activity
of cell surface adhesins (22). Thus, we attempted applying 20% glycerol with a range of
EDTA concentrations (0, 50, and 100 mM) for plating. One hundred microliters of EDTA
solutions of different concentrations was added to biofilms and left for 10 min at room
temperature prior to biofilm disruption by scraping and vortexing. None of the applied
EDTA solutions allowed abolishment of stickiness. Additionally, colonies growing on
yeast-peptone-dextrose (YPD) agar exhibited a wrinkled morphology, most probably
linked to the toxicity of EDTA (23). Finally, we tried adding Tween 20 (0.05%) to PBS.
Tween 20 eradicated the problems of stickiness and poor disruption and improved the
recovery of cells from the biofilms (Fig. 1). The effect on cell viability was tested using
a planktonic culture of SC5314 that was washed and plated on YPD agar using PBS and
PBS-Tween 20 solutions. No impact on viability was observed (data not shown). Thus,
in the experiments described below, biofilms were resuspended in a 0.05% Tween
20-1� PBS solution.

However, even after this modification, the ratios of cells that survived AMB treat-
ment were still inconsistent between repeats. According to LaFleur and colleagues, the
ratios of C. albicans persister cells in biofilms vary from 0.1% to 2% for different strains,
notably from 0.05 to 0.1% for strain CAI4, a derivative of C. albicans SC5314 (8). Our
values hardly ever exceeded 0.01% persisters per biofilm, even after improving the
recovery protocol, thus bordering with statistical error. We reasoned that increasing the
surface of a biofilm and changing the growth medium could improve persister yields,
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and we decided to test the protocol described in reference 14, applying the modifica-
tions that were mentioned previously. However, the problems of inconsistency and low
ratios of persisters remained (Fig. 2).

In all protocols described previously, the volumes of the medium and solutions used
for biofilm growth, washing, and AMB treatment were identical. Upon careful obser-
vation, we noticed that C. albicans cells form a dense rim at the border of the air and
liquid phases as a result of agitation during growth. Treating a biofilm with the exact

FIG 1 Effect of Tween 20 on the recovery of CFU from C. albicans SC5314 biofilms. C. albicans SC5314 was
allowed to form biofilms in 100 �l RPMI medium in a 96-well plate according to the protocol adapted
from LaFleur et al. (8). Error bars indicate the standard deviation (SD) of the results from 6 biological
replicates generated from 2 independent experiments. #, nonsignificant difference; ***, significant
difference (P � 0.0007; unpaired t test was applied to compare data sets).

FIG 2 Schemes of the protocols (A) and levels of persisters (B) obtained from biofilms grown using modified protocol from Li et al. (14). Biofilms were grown
in 1 ml of GHAUM medium in 24-well plates before application of either 1 ml of AMB solution (left) or 3 ml of AMB solution (right). Ratios of surviving cells are
as follows: SC5314, 5.6 � 10�4%; CEC369, 2.6 � 10�5%; and CEC4664, 9.4 � 10�5%. Error bars indicate the SD of the results from 6 biological replicates
generated from 2 independent experiments.
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same volume of antifungal and growth medium under static conditions thus could
result in cells from the rim escaping treatment. We decided to increase the volume of
the applied antifungal solution (filling wells to the top), and, to our surprise, this change
in the protocol led to a complete eradication of persisters for the laboratory strain
SC5314 and its derivatives. Reproducibly, we did not obtain any persisters after
applying this change for all strains for biofilms grown in both RPMI and GHAUM
(Sabouraud dextrose [SD] supplemented with 2% glucose and 1 mg/ml histidine,
1 mg/ml arginine, 0.02 mg/ml uridine, and 2 mg/ml methionine) media. Thus, the
volume of the antifungal applied in the original protocols for persister isolation was
skewing the results. Increasing the volume of antifungal eliminated this bias, resulting
in a complete eradication of any survivors after the antifungal treatment.

In our work, we used a modified protocol for persister cell isolation with a starting
cell suspension of an optical density at 600 nm (OD600) of 0.3 used for biofilm growth
instead of 0.1 as described in the original protocols (8, 14). To assess the impact of the
initial cell number used for seeding biofilms on persister cells’ appearance, we tested
our protocol for SC5314 using cell suspensions at an OD600 of 0.1, 0.3, and 0.5 for
seeding. Regardless of the initial biomass, persister cells did not form in SC5314 biofilms
grown either in RPMI or GHAUM medium (data not shown).

These results made us question the very existence of persister cells in C. albicans
biofilms. Previously, Al-Dhaheri and Douglas showed that not all strains of C. albicans
can form persister cells (17). Particularly, in their hands, SC5314 biofilms lost all viability
after exposure to 30 �g/ml AMB. However, biofilms of another clinical isolate,
GDH2346, appeared to contain a small proportion (0.01%) of cells that survived
100 �g/ml AMB treatment. These authors used a different in vitro model for assessing
persistence, as they grew biofilms on silicone discs that were transferred to a new well
filled with an antifungal solution. This prevented the escape of any cells from the
antifungal treatment. Thus, our modified protocol for the treatment of biofilms formed
in 96-well or 24-well plates corroborated the results obtained by the Douglas group for
C. albicans strain SC5314 (17).

Since the clinical isolate GDH2346 could give rise to survivors (17), we could not
exclude that persisters could emerge in biofilms of different C. albicans isolates.
Additionally, in 2010, LaFleur and colleagues isolated and described C. albicans strains
from patients with long-term oral infection that gave yield to increased levels of
persisters (up to 8.9%) (21). These were called hip mutants, by analogy with the
high-persister strains previously described for bacteria (24, 25). Although hip mutants
were identified using a protocol that showed limitations in our hands, we hypothesized
that some C. albicans clinical isolates could generally be more prone to form persisters
than others (namely SC5314). To test this assumption, we tested 95 clinical isolates (see
Table S1 in the supplemental material) for their ability to form biofilms and for the
occurrence of persister cells following AMB treatment. In a first round of experiments,
biofilms were treated with a 64 �g/ml AMB solution. Only 38 isolates (39.6%) displayed
survivors (notably, never exceeding a rate of 0.02%). According to the generally
accepted concept of persistence (10), the frequency of persisters’ appearance is inde-
pendent of the increase in antibiotic concentration. Thus, in a second round of
experiments, biofilms were developed for these 38 isolates and treated with a
100 �g/ml AMB solution. Notably, only 7 isolates out of these 38 displayed survivors
when grown with 100 �g/ml AMB (CEC3622, CEC3668, CEC3669, CEC4514, CEC4521,
CEC5317, CEC5318). These 7 strains, together with 4 other isolates randomly picked in
the remaining 31 strains (CEC712, CEC3708, CEC3711, and CEC5316), were tested seven
more times with 100 �g/ml AMB. In most cases, these strains did not yield persister cells
(Fig. 3); however, 7 strains (CEC3622, CEC3669, CEC4514, CEC4521, CEC5316, CEC5317,
and CEC5318) gave rise to small numbers of survivors in 1 to 4 of the experiments (Fig.
3), with the survival rate never exceeding 9.1 � 10�4% per biofilm (for CEC3622). This
could be explained either by the stochastic nature of persistence as a phenomenon or
by technical errors during the experiment.

We tested up to 30 randomly picked colonies for three isolates (CEC3622, CEC4514,
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and CEC5316) on yeast-nitrogen-glucose (YNG) medium containing 10 �g/ml AMB.
None of the tested colonies were able to grow in the presence of amphotericin B (data
not shown), proving that their survival was not a result of AMB resistance development.

With an improved protocol in our hands, we decided to test other Candida species
for their ability to form persister cells in biofilms. Previously, Al-Dhaheri and Douglas
(17) reported that clinical isolates of Candida krusei (Glasgow strain) and Candida
parapsilosis (AAHB 4479) developed persister cells in biofilms (approximately 0.001%
and 0.07%, respectively) upon treatment with 100 �g/ml AMB. We selected 3 clinical
isolates of Candida tropicalis (CEC5296, CEC5297, and CEC5298) and 3 of C. parapsilosis
(CEC5299, CEC5300, and CEC5301) from our lab collection to test with our protocol.
One of the C. tropicalis strains (CEC5298) and the 3 selected C. parapsilosis strains were
unable to grow as biofilms and were excluded from the study. C. tropicalis CEC5296 and
CEC5297 formed proper biofilms, with a small fraction of persisters ranging from 2 �

10�5 to 6.4 � 10�3% and 2.3 � 10�7 to 2.6 � 10�4%, respectively (data not shown).
Such low values are comparable to the survival rates we observed for some of the C.
albicans clinical isolates tested in this study. As before, we cannot exclude that these
survivors are persister cells arising within C. tropicalis biofilms or that they are the
consequence of a technical error during the experiment.

Since 1944, when Bigger first described persister cells in Staphylococcus spp. (9),
many advances have been made in exploring this phenomenon, especially in bacteria.
It is known that microbial cultures growing in vivo can sometimes be very difficult to
eradicate completely by an antibiotic treatment, causing relapses or development of
chronic infections in patients. From an evolutionary point of view, a small pool of cells
with the same genotype as the rest of the population but differing in their ability to
tolerate stress, including drug treatment, provides a form of insurance to the popula-
tion.

The phenomenon of persistence has not only been described for bacteria, but also
in other types of pathogens, and it has been proposed that persister cells significantly
contributed to the recalcitrance of C. albicans biofilms to antifungal treatments (26–28).

C. albicans persister cells were first described in 2006 (8), and since then, only a few
reports, sometimes contradictory, have been presented. In our study, we explored
standard protocols to obtain persisters and showed that their proportion in biofilms
formed by different C. albicans strains has been overestimated. Only Al-Dhaheri and
Douglas did not detect persisters in SC5314 biofilms (17). In their study, biofilms were
grown on silicon discs that were transferred in antifungal solutions for treatment. In
contrast, the other published experiments were performed using 96-well plates and
RPMI medium or 24-well plates and SD-based medium, while keeping the incubation
volumes constant throughout the experiment (8, 14–16). In this study, we modified the

FIG 3 Analysis of persister cell formation in 11 clinical isolates. Biofilms were grown in 1 ml of GHAUM
medium in 24-well plates and treated with 3 ml of AMB solution (modified protocol from Li et al. [14]).
The values obtained from 7 biofilms were used to draw the graph.
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protocols growing biofilms at the bottom of 96- or 24-well plates (8, 14–16) by
increasing the volume of antifungal. This change led to the eradication of biofilms,
indicating that previously detected “persisters” were likely the result of survival of cells
that were not reached by the antifungal. Our results corroborate the findings of
Al-Dhaheri and Douglas (17).

Notably, these authors were able to detect some persisters in biofilms of a clinical
isolate (17), but the ratio obtained was much lower (0.01%) than the numbers pub-
lished by others (8, 14). Although some of the clinical isolates of C. albicans and C.
tropicalis tested in our study were occasionally able to yield survivors after the treat-
ment of biofilms with AMB, this phenomenon was rather inconsistent, pointing either
to the stochastic nature of persistence itself or to another skew in the protocol while
carrying out particular experiments.

At this time, we cannot completely exclude the possibility of persistence in all C.
albicans strains, though with the described protocol, we managed to disprove their
presence for 92 C. albicans strains out of 98. It is important to stress that our results
reflect only the behavior of C. albicans biofilms grown in vitro; we cannot rule out that
in the context of the host, persister cells could appear and contribute to the general
resistance and dissemination of C. albicans.

MATERIALS AND METHODS
Strains and growth conditions. In this study, we used 3 reference strains (listed in Table 1) and a

set of 95 C. albicans (Table 2), 3 C. tropicalis, and 3 C. parapsilosis clinical isolates.
Yeast precultures were grown overnight in YPD (1% yeast extract, 2% peptone, 2% glucose) agar with

shaking at 30°C.
Biofilms were grown either in RPMI 1640 medium with L-glutamine (buffered with 50 mM HEPES), as

described previously (8, 29), or in GHAUM medium (SD supplemented with 2% glucose and 1 mg/ml
histidine, 1 mg/ml arginine, 0.02 mg/ml uridine, and 2 mg/ml methionine [30]).

Resistance was checked on solid YNG (6,7 g/liter yeast nitrogen base without amino acids and with
ammonium sulfate, 2% glucose, and 2% agar) medium supplemented with 10 �g/ml AMB.

Biofilm growth and persister cell isolation. To assess persister cell appearance in biofilms, we used
two protocols adapted either from LaFleur et al. (8) or Li et al. (14). The first protocol uses 96-well plates,
and the biofilms are grown in RPMI medium. In the second protocol, the biofilms are grown in 24-well
plates but using GHAUM medium instead of yeast nitrogen base (YNB) agar.

Biofilm growth. Overnight cultures were washed in sterile 1� PBS and diluted in the corresponding
medium to an OD600 of 0.3. Either 100 �l or 1 ml of cells in the 96-well plate or the 24-well plate,
respectively, was allowed to adhere for 1.5 h without agitation. The nonadhered cells were then washed
with 1� PBS, the same volume of fresh medium was added, plates were covered with a breathable seal,
and biofilms were allowed to form for 48 h at 37°C with agitation (110 rpm), with a medium change after
24 h.

Antifungal treatment. Media were carefully aspirated from the 48-h-old biofilms without disrupting
the biofilm structure. Biofilms were washed once with either 100 �l or 1 ml of 1� PBS, respectively, and
treated with a 100 �g/ml AMB solution in either RPMI or GHAUM medium for 24 h at 37°C, statically. AMB
solutions were prepared from an 8 mg/ml stock in dimethyl sulfoxide (DMSO) so that the final concen-
tration of DMSO in a working solution did not exceed 1.25%. For control biofilms, a corresponding
amount of DMSO was added to the medium instead of the antifungal solution.

This step was either performed using the same volumes of antifungal solution as for biofilm growth
as described by LaFleur et al. (8) or Li et al. (14) or the volume of antifungal was increased to fill the well
to the top (350 �l and 3 ml for 96- and 24-well plates, respectively).

Clinical isolates were first treated with a 64 �g/ml AMB solution. Strains giving rise to colonies were
then tested 5 times with 100 �g/ml AMB.

Plating. Upon 24 h of antifungal treatment, AMB solution was aspirated, and biofilms were washed
twice with 1� PBS prior to plating on YPD agar plates. Biofilms were resuspended in 1� PBS– 0.05%
Tween 20. For the AMB-treated samples, the whole biofilms were plated. For control biofilms, serial
dilutions were performed to allow CFU counting. CFU were counted after incubating the plates at 30°C
for 48 h.

TABLE 1 C. albicans reference strains used in this study

C. albicans strain Genotype Reference or source

SC5314 18
CEC369 ura3::�imm434/ura3::�imm434 ARG4/arg4::hisG HIS1/his1�::hisG RPS1/RPS1::CIp10 31
CEC4664 ura3�::�imm434/ura3�::�imm434 iro1�::�imm434/iro1�::�imm434 ADH1/adh1::PTDH3-

carTA::SAT1 arg4Δ/ARG4 his1�::hisG/HIS1 RPS1/RPS1::CIp10
Lab collection
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TABLE 2 Clinical isolates used in this study

Name Reference or source

CEC704 32
CEC712 32
CEC718 32
CEC723 32
CEC1289 33
CEC1424 34
CEC2018 35
CEC2019 34
CEC2020 36
CEC2021 35
CEC2022 37
CEC2871 38
CEC2876 38
CEC3494 39
CEC3533 37
CEC3534 36
CEC3535 36
CEC3536 36
CEC3540 32
CEC3541 33
CEC3544 39
CEC3547 39
CEC3548 39
CEC3549 39
CEC3550 40
CEC3553 39
CEC3555 33
CEC3556 36
CEC3560 34
CEC3561 39
CEC3596 33
CEC3611 36
CEC3614 36
CEC3615 36
CEC3621 32
CEC3622 36
CEC3623 32
CEC3626 39
CEC3627 36
CEC3634 36
CEC3637 34
CEC3659 35
CEC3662 35
CEC3663 32
CEC3664 35
CEC3665 35
CEC3668 35
CEC3669 35
CEC3672 35
CEC3675 35
CEC3681 35
CEC3682 35
CEC3685 35
CEC3706 35
CEC3708 35
CEC3711 35
CEC4035 32
CEC4039 32
CEC4103 41
CEC4104 41
CEC4106 41
CEC4108 41
CEC4256 42
CEC4259 42
CEC4481 32
CEC4482 32

(Continued on next page)
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