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Drug resistance has sharply limited the effectiveness of HIV-1
protease inhibitors in AIDS therapy. It is critically important to
understand the basis of this resistance for designing new drugs.
We have evaluated the free energy contribution of each residue in
the HIV protease in binding to one of its substrates and to the five
FDA-approved protease drugs. Analysis of these free energy pro-
files and the variability at each sequence position suggests: (i)
single drug resistance mutations are likely to occur at not well
conserved residues if they interact more favorably with drugs than
with the substrate; and (ii) resistance-evading drugs should have a
free energy profile similar to the substrate and interact most
favorably with well conserved residues. We also propose an
empirical parameter, called the free energy�variability value,
which combines free energy calculation and sequence analysis to
suggest possible drug resistance mutations on the protease. The
free energy�variability value is defined as the product of one
residue’s contribution to the binding free energy and the variabil-
ity of that residue. This parameter can assist in designing resis-
tance-evading drugs for any target.

molecular dynamics � MM�PBSA � FV value

One of most challenging problems in AIDS therapy is that the
HIV virus develops drug-resistant variants rapidly because

of the low fidelity of its reverse transcriptase and the high
replication rate (1–4). Extensive research in the past decade has
been dedicated to designing resistance-evading drugs for the
HIV protease, which is critical for the maturation of viral
structural (gag) and enzymatic (pol) proteins. The HIV protease
is an aspartyl protease and is composed of two symmetric
monomers. Many crystal structures of the HIV protease and its
complexes with inhibitors have been solved, and extensive
clinical resistance data have been accumulated for the five
FDA-approved drugs. This information provides the ground for
understanding the molecular basis of drug resistance. Here we
show that resistance mutations to the five FDA-approved HIV
protease drugs occur only at not-well conserved positions, which
also interact more favorably with drugs than with the substrate.
A combination of conservation analysis and free energy calcu-
lations on each protease residue suggests that more potent
protease drugs should interact more favorably with well con-
served residues, i.e., those catalytically or structurally important
residues, especially with Leu-23, Ala-28, Gly-49, Arg-87, and
Asp-29. This strategy can be exploited to design resistance-
evading drugs for any target. We also propose an empirical
parameter, the free energy�variability (FV) value, defined as the
product of one residue’s contribution to the binding free energy
and the variability of that residue, to identify resistance muta-
tions for any HIV protease inhibitors, which can be easily
extended to identify critical residues for other protein–protein
and protein–ligand interactions.

Methods
(i) Molecular Dynamics (MD) Simulations. All MD simulations pre-
sented in this work were performed by using the AMBER 5.0
simulation package (5) and the Cornell et al. force field (6) with
the TIP3P water model (7). The starting structures of protease–

drug complexes are taken from the Protein Data Bank (PDB).
The PDB entries are: 1hxb (Saquinavir), 1hpv (Amprenavir),
1hxw (Ritonavir), 1hsg (Indinavir), and 1ohr (Nelfinavir). There
are two conformations for Saquinavir in the crystal structure,
and the first is used in our simulation. The structure of the
substrate (Ace-Ser-Gln-Asn-Tyr-Pro-Ile-Val) was modified
from an inhibitor JG365 [Ace-Ser-Leu-Asn-Phe-PSI(CH(OH)-
CH2N)-Pro-Ile-Val-OME] complexed with the protease (PDB
entry 7hvp) (8). This substrate covers the whole binding site of
the protease. The molecules are solvated in an 80 � 80 � 80-Å3

box of water. An appropriate number of counter ions are added
to neutralize the system. Particle Mesh Ewald (9) is used to
calculate the long-range electrostatic interactions. All structures
are minimized first by using the SANDER module in AMBER5.0.
MD simulations are carried out thereafter. The temperature of
the system is raised gradually from 50 to 298 K in 50 ps and
equilibrated at 298 K for another 120 ps. An additional 120 ps
of MD simulation is performed for data collection, and 100
snapshots are saved for the subsequent analysis. The deviations
are estimated by the difference between the first and second half
of the trajectories. The SHAKE procedure (10) is used to constrain
all bonds. The time step of the simulations is 2 fs. A 8.5-Å cutoff
is used for the nonbonded interactions. The nonbonded pairs are
updated every 15 steps.

(ii) The Molecular Mechanics (MM)�Poisson–Boltzmann Solvation Area
(PBSA) Method. The binding free energy is calculated as (11):

�Gb � �GMM � �Gsol
C � �Gsol

L � �Gsol
P � T�S, [1]

where �Gb is the binding free energies in water, �GMM is the
interaction energy between the ligand and the protein, �Gsol

L ,
�Gsol

P , and �Gsol
C are solvation free energies for the ligand,

protein, and complex, respectively, and �T�S is the conforma-
tional entropy contribution to the binding. �GMM is calculated
from MM interaction energies:

�GMM � �Gint
ele � �Gint

vdw, [2]

where �Gint
ele and �Gint

vdw are electrostatic and van der Waals
interaction energies between the ligand and the receptor, which
are calculated by using the CARNAL and ANAL modules in the
AMBER 5.0 software suite.

The solvation energy, �Gsol, is divided into two parts, the
electrostatic contributions, �Gsol

ele, and all other contributions,
�Gsol

nonpolar.

�Gsol � �Gsol
ele � �Gsol

nonpolar [3]
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The electrostatic contribution to the solvation free energy,
�Gsol

ele, is calculated by using the DELPHI II software package (12),
which solves the PB equations numerically and calculates the
electrostatic energy according to the electrostatic potential. The
grid size used is 0.5 Å. Potentials at the boundaries of the
finite-difference lattice are set to the sum of the Debye–Huckel
potentials. The value of interior dielectric constant is set to 1. As
shown in our previous study (13), after combining all of the
terms, the binding free energy is calculated as:

�Gb � �Gint
vdw � �Gsol

nonpolar � (1�n) �G1-1
ele �

(�GRFE n�80
C � �GRFE n�80

L � �GRFE n�80
P ), [4]

where n is the interior dielectric constant, which is 1 in this study.
�G1–1

ele is the molecular mechanics electrostatic interaction
energy between the ligand and the protein. �GRFE n�80

L ,
�GRFE n�80

P , and �GRFE n�80
C are reaction field energies obtained

from DELPHI II for ligand, protein, and complex, respectively,
with interior and exterior dielectric constants set to n and 80,
respectively.

The dielectric constant of water is set to 80. The dielectric
boundary is taken as the solvent-accessible surface defined by a
1.4-Å probe sphere. The radii of atoms are taken from the PARSE
parameter set (14). Partial charges are taken from Cornell et al.
(6) force field for standard amino acids.

The solvent-accessible surfaces (SAS) are calculated by using
the MSMS program (15). The nonpolar contribution to the
solvation free energy, �Gsol

nonpolar, is calculated as 0.00542 � SAS
� 0.92 kcal�mol (14).

(iii) PSI-BLAST and FV Value. PSI-BLAST (16) with default parameters
(BLOSUM62, Expect � 10, E-value threshold for inclusion in
PSI-BLAST iteration � 0.002, Descriptions � 500, Alignments �
500, composition-based statistics) is used to search the SWISS-
PROT database. Multiple sequence alignment is carried out on 80
sequences with scores �64 and E value �1 � 10�10 by using the
PILEUP module in the GCG software package (Ver. 10.1, Genetics
Computer Group) with default parameters. These 80 sequences
include HIV, simian immunodeficiency virus, and feline immu-
nodeficiency virus proteases.

To identify critical residues for binding, we defined an em-
pirical parameter called the FV value. The FV value is defined
as a product of one residue’s contribution to binding free energy
�Gres and variability of that residue, Vi. �Gres is estimated as:

�Gres � Evdw � Eele � �Gres
sol, [5]

where Evdw and Eele are van der Waals and electrostatic inter-
action energies between the residue and the whole ligand,
respectively. �Gres

sol is the contribution of solvation penalty by that
residue. It is calculated as:

�Gres
sol � �Gsol � �G0

sol, [6]

where �Gsol and �G0
sol are the solvation energies calculated from

Eq. 3 with normal partial charges and zero charges on that
specific residue, respectively (17).

The variability Vi is calculated as:

Vi � �j (1 � Pij�Pii) * Wj , [7]

where Wj is the weight of the jth sequence. Wj is calculated for
each sequence in the alignment on the basis of sequence identity.
If n sequences are �80% identical to each other, each sequence
has 1�n weight. Next, the sum of all sequences in the alignment
is normalized to 1. This weight prevents overpresenting very
similar sequences in the PSI-BLAST search results.

Pij in Eq. 7 represents how likely the amino acid aj in the jth
sequence can be mutated to the amino acid ai in the ith sequence
and is calculated as:

Pij � 2(2*Mij), [8]

where Mij is the element of BLOSUM62 for ai and aj. BLOSUM62 is
chosen to be consistent with the matrix used in PSI-BLAST search.
Mij for gap is assigned a penalty score of �4 in the BLOSUM62
matrix.

Results and Discussion
(i) No Single Drug Resistance Mutation Is Observed to Occur at Well
Conserved Residues. Drug resistance mutants of the HIV protease
significantly reduce inhibitor binding without severally deterio-
rating the protease’s own function. Therefore, those catalytically
or structurally critical residues, such as the catalytic triad Asp-25,
Thr-26, and Gly-27, are not tolerant to any mutations. The

Fig. 1. Variability at each position of the HIV protease. Single mutations on
any red-labeled residues can cause resistance to at least one drug, and residues
labeled blue cause resistance when occurring with other mutations, according
to the Stanford HIV database (http:��hivdb.stanford.edu�hiv�Notes.pl,
maintained by Robert Shafer).

Fig. 2. van der Waals interaction energy between each residue in the HIV
protease and the substrate. Solid black line, average of two monomers; red
and blue lines, monomer.
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variability of each position in the HIV protease is shown in Fig.
1. The variability is calculated on the basis of sequences from
different species. Low variability means that the residue in the
HIV protease is well conserved across species and may be
catalytically or structurally important. From Fig. 1, it is clear that
no single drug resistance mutations have ever been observed for
positions with variability lower than 0.25 (P9, D25, T26, G27,
A28, D29, G49, G51, G86, and R87). These conserved residues
are either crucial for catalyzing polypeptide cleavage, e.g.,
Asp-25, or stabilizing the structure of the protease dimer, e.g.,
Arg-87, which forms a salt bridge with Asp-29. These residues
alone apparently mutate very little or not at all under drug
selection pressure. Therefore, single drug resistance mutations
can occur only at those not-well conserved residues that are
critical for drug binding but are either unimportant or are
tolerant of mutations for viral activity.

(ii) Single Drug-Resistant Mutations Often Occur at Residues That Are
Not Well Conserved but Interact More Favorably with Drugs than the
Substrate. To understand the mechanism of drug resistance of
the HIV protease, we first identified residues responsible for
binding with ligands by calculating the van der Waals interaction
energy between each residue in the HIV protease and the
substrate; secondly, we evaluated each of these residues’ con-
tributions to the binding free energy, �Gres, and calculated the
difference of �Gres, ��Gres, between drugs and the substrate. By
analyzing ��Gres of each residue and the variability of that
sequence position, we found that single drug-resistant mutations
often occur at residues that are not well conserved but interact
more favorably with drugs than the substrate.

As the first step of our simulation, we modeled the complex
of the wild-type HIV protease and one of its gag cleavage
sequences, SQNYPIV, on the basis of the complex structure of
one linear peptide inhibitor, JG365 (8), because no crystal
structure of substrate–protease complex was available, and
JG365 is reasonably similar to the substrate. This substrate
covers the whole binding site of the protease. We optimized the
substrate complex in water by using molecular dynamics until
equilibrium was achieved (the rms deviation of all heavy atoms
became flat at 	1.5 Å). We note that Schiffer and coworkers
(18) recently have solved a complex structure between an
inactive HIV-1 protease (D25N) and a long substrate peptide,
KARVLAEAMS, which is different from the substrate we are
studying. The structure has been deposited in the PDB database
(on hold and PDB entry 1f7a). It would be interesting to
compare our modeled structure with this crystal structure after
it is released to public access.

Residues in the HIV protease are considered to be in or close
to the binding site if they have a van der Waals interaction energy
with the substrate that is more negative than �0.5 kcal�mol (Fig.
2). Residues with the most frequent single drug resistance
mutations have relatively more favorable van der Waals energies.

The exceptions are L24, G73, and L90, implying that resistances
caused by mutations at these three positions might be due to
changes of conformation or stability and, therefore, the proteo-
lytic kinetics of the HIV protease. All residues that have van der
Waals interaction energies with the substrate more favorable
than �0.5 kcal�mol as well as the three known single resistance
residues (L24, G73, and L90), which do not have such a favorable
van der Waals interaction energy, were evaluated for their
contributions to the binding free energy in this study. This set of
residues includes all major single drug resistance mutations. We
would like to emphasize that in this study, we discuss only single
mutations that can cause drug resistance, because (i) the number
of combinations of multiple mutations is huge, and (ii) free
energy calculations for individual residues are computationally
expensive.

Before we evaluate �Gres for each residue, we estimate the
binding free energies of the substrate and the five FDA-
approved drugs, i.e., Ritonavir, Saquinavir, Amprenavir, Indi-
navir, and Nelfinavir, by using the MM�PB Solvation Area
(PBSA) method (11) (Table 1). It is obvious that all inhibitors
bind more tightly than the substrate. The substrate is the largest
ligand and thus has the most favorable van der Waals interac-
tions with the protease. However, it also has the least favorable
electrostatic contribution �Gint � sol

ele to the binding free energy
because of the burial of polar residues Asn, Tyr, and Pro in the
active site. This calculation suggests that it is important for
potent drugs to have optimal electrostatic interaction with the

Fig. 3. Free energy difference between each residue’s contribution to the
binding with drugs and substrate (��Gres � �Gres

drug–�Gres
substrate). All residue

numbers are labeled for Saquinavir, but only a few residues are labeled for
other drugs. Solid black line � dimer; red and blue lines � monomer.

Table 1. Binding free energies of the substrate and five FDA-approved drugs

Name
Experimental

�Gb*, kcal�mol �Gint
vdw, kcal�mol �Gint

ele, kcal�mol �Gnonpol, kcal�mol �Gsol
ele, kcal�mol �Gint�sol

ele †, kcal�mol �Gb
‡, kcal�mol

Substrate N�A �88.3 
 0.1 �80.6 
 1.1 �7.6 
 0.0 �161.1 
 1.4 �80.6 
 0.3 �15.4 
 0.2
Ritonavir �14.9 �80.5 
 1.0 �38.4 
 0.5 �6.9 
 0.1 �100.8 
 0.6 �62.4 
 0.1 �24.9 
 1.0
Saquinavir �14.3 �67.6 
 0.3 �24.6 
 1.9 �6.6 
 0.1 �72.0 
 2.0 �47.4 
 0.1 �26.8 
 0.1
Amprenavir �13.9 �62.6 
 0.5 �49.6 
 0.1 �5.1 
 0.1 �96.5 
 0.8 �46.9 
 0.9 �20.8 
 0.4
Indinavir �13.3 �70.9 
 1.8 �31.7 
 3.8 �6.3 
 0.1 �86.3 
 3.5 �54.6 
 0.3 �22.6 
 2.2
Nelfinavir �13.0 �65.3 
 2.3 �36.8 
 0.8 �5.7 
 0.0 �82.8 
 0.8 �45.9 
 1.6 �25.1 
 0.6

*Experimental �Gb(Kis) were measured at pH � 6.5 (25).
†�Gint�sol

ele � �Gint
ele � �Gsol

ele.
‡T�S is not included (see text).
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protease but less desolvation penalty. It is worth pointing out that
the T�S for substrate or inhibitor binding is not included in Table
1. Given that our goal is a qualitative comparison of �Gbind for
substrate and inhibitors, we assume that the entropies are similar
in magnitude for the inhibitors and the substrate. This assump-
tion seems reasonable, given Kuhn and Kollman’s calculated
T�S for various ligands binding to avidin (19). Also, the results
of Kuhn and Kollman show that the T�S tends to be larger in
magnitude the larger the ligand; thus, inclusion of this term

would likely increase the relative ��Gbind between substrate and
inhibitors, because substrate is the largest ligand.

Studying drug resistance requires evaluation of each residue’s
contribution to the binding, which is an experimentally difficult
but computationally feasible task. Here we combine molecular
mechanics energies (van der Waals and electrostatic energy) and
desolvation penalty (by solving the PB equation) to estimate a
single residue’s contribution to the binding. ��Gress between
drugs, and the substrates for selected residues are plotted in Fig.
3. It should be noted that the HIV-1 protease is a dimer. A single
mutation of its gene is a double mutation in the protein. Fig. 3
plots ��Gress of the double mutations on dimer as well as single
mutation on each monomer. According to double mutations, for
example, Amprenavir interacts more favorably with residues
M46, I50, I84, and L90, but less favorably with residues I47, G48,
and V82 than the substrate. This calculation suggests that single
mutations on M46, I50, I84, and L90 but not on I47, G48, and
V82 may cause resistance to Amprenavir. Experimental mea-
surements show that six of seven (I47, G48, I50, V82, I84, and
L90) of our predictions are correct (see below) (Table 2). It is
worth noting that M46, I47, G48, and V82 are not conserved with
variability higher than 0.65, which suggests that these four
residues are either unimportant or tolerant of mutations for viral
activity.

On the basis of the above analysis, we suggest the following
mechanism for drug resistance: if a drug’s binding with the
protease depends on a favorable interaction with a not-well
conserved residue, either unimportant or tolerant of mutations
for viral activity, more than the substrate, mutation at that
residue would not affect the function of the protease but would
be able to significantly reduce inhibition of the drug; thus, the
mutation causes drug resistance. It is worth pointing out that in
vivo formation of heterodimer and multiple mutations could
provide the HIV virus with more sophisticated resistance

Fig. 4. Definition of residues in the drugs.

Table 2. Predictions of resistant mutations on the basis of FV
value calculations

Residue
no.

Experimental
Ki

mutant�Ki
wt

FVdouble

value

Resistant?
Experimental*

(Prediction†)
Prediction
accuracy

Saquinavir
V32 1.6–7.3 (V32I) (26) �0.4 
 0.3 N (N) 75%
M46 1.0 (M46I) (27) �0.8 
 0.2 N (N)
I47 1.0 (I47V) (27) �1.9 
 0.6 N (N)
G48 13.5 (G48V)(28)

163.6 (G48V) (25)
�2.5 
 1.2 Y (N)

I50 21.0 (I50V) (27) �0.2 
 0.6 Y (N)
V82 0.7–3.7 (V82A�F�I) (26)

3.3–7.3 (V82F�A�I) (29)
�1.1 
 0.5 N (N)

I84 5.8 (I84V) (26)
10.7 (I84V) (29)
12.0 (I84V) (27)

�0.8 
 0.5 N (N)

L90 3.0 (L90M) (28, 30)
20.7 (L90M) (25)

�0.4 
 0.0 N (N)

Amprenavir
M46 1.0 (M46I) (27) �1.7 
 0.2 N (Y) 86%
I47 1.0 (I47V) (27) �1.5 
 0.6 N (N)
G48 3.5 (G48V) (25) �3.7 
 1.1 N (N)
I50 83.0 (I50V) (27) �2.1 
 0.5 Y (Y)
V82 0.4–3.3 (V82A�F�I) (29) �0.9 
 0.6 N (N)
I84 23.0 (I84V) (27)

2.7 (I84V) (29)
�1.2 
 0.5 Y (Y)

L90 2.7 (L90M) (25) �0.7 
 0.0 N (N)
Ritonavir

M46 4.0 (M46I) (27) �0.5 
 0.2 N (N) 57%
I47 3.0 (I47V) (27) �1.5 
 0.7 N (N)
G48 66.7 (G48V) (25) �5.0 
 1.0 Y (N)
I50 10.0 (I50V) (27) �0.2 
 0.5 N (N)
V82 0.8–14.7 (V82A�F�I) (29) �0.7 
 0.5 Y (N)
I84 11.2 (I84V) (29)

20.0 (I84V) (27)
�0.0 
 0.5 Y (N)

L90 6.7 (L90M) (25) �0.3 
 0.0 N (N)
Indinavir

V32 8.0 (V32I) (26) �0.9 
 0.3 N (N) 86%
M46 4.3 (M46I) (26) �1.6 
 0.2 N (Y)
I47 3.0 (I47V) (27) �1.0 
 0.7 N (N)
G48 6.3 (G48V) (25) �3.4 
 1.1 N (N)
V82 0.6–6.4 (V82A�F�I) (29)

6.9–84.7 (V82A�F�I) (26)
�0.2 
 0.5 N (N)

I84 2.6 (I84V) (29)
10.0 (I84V) (26)

�0.9 
 0.6 N (N)

L90 5.8 (L90M) (25) �0.7 
 0.0 N (N)
Nelfinavir

G48 1.0 (G48V) (25) �4.0 
 1.0 N (N) 75%
V82 0.8–17.5 (V82F�A�I) (29) �1.5 
 0.5 N (N)
I84 3.5 (I84V) (29) �1.2 
 0.5 N (Y)
L90 3.5 (L90M) (25) �0.7 
 0.0 N (N)

Average prediction accuracy of five drugs is 76%. N, no; Y, yes.
*If Ki

mutant�Ki
wt � 10 for single mutation, that residue is considered to be

resistant.
†The criterion used for predicting resistance is FVdouble � �1.0 (in parentheses).
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schemes. In principle, our methods can be applied to the study
of these situations as well.

(iii) More Favorable Interactions with Well Conserved Leu-23, Ala-28,
Gly-49, Arg-87, and, More Importantly, Asp-29 Might Enable the Five
FDA-Approved Drugs to Be Nonsensitive to Viral Resistance. Among
residues with �0.25 variability (Fig. 1), it is shown that all drugs
interact much more favorably with Asp-25 and Gly-27, slightly

more favorably with Leu-23, but slightly less favorably with
Ala-28, Gly-49, and Arg-87, and much less favorably with Asp-29
than the substrate (Fig. 3). All these residues are well conserved
(Fig. 1) and appear to be catalytically or structurally important;
thus, mutations do not tend to occur at these positions.

The above analysis suggests that these five FDA-approved
drugs can be altered to become more powerful to combat HIV
drug resistance if their interactions with Leu-23, Ala-28, Gly-49,
Arg-87, and, more importantly, with Asp-29 are improved.
Leu-23 and Ala-28 are hydrophobic and in the center of the
binding site. More favorable interactions with them can be
achieved by adding some nonpolar groups in the drugs at P1 and
P1�. Interactions with Gly-49, Arg-87, and Asp-29 can be im-
proved only if drugs can have more favorable electrostatic
interactions with them but less desolvation penalty, which is
difficult but not impossible. One speculation is to add some polar
or even charged groups at P3 and P3�.

To further illustrate how to improve the five FDA-approved
drugs, we calculated the contribution to binding for every residue
in each drug (Fig. 5). A residue in a drug is defined on the basis
of chemical groups and chosen to be as similar as possible to a
natural amino acid (Fig. 4). Investigation of the van der Waals
and electrostatic contributions to binding can provide clues to
improve these drugs. For example, the third residue of Am-
prenavir has the least favorable van der Waals energy and the
second least free energy contribution, although its electrostatic
(PB � Coulomb term) contribution is the second most favorable.
This residue is close to Ala-23, which is well conserved. There-
fore an additional hydrophobic group, like substituting one of
the two methyl groups in the isobutyl by a ethyl group, which
makes more favorable interactions with Ala-23, can help Am-
prenavir to combat viral resistance.

(iv) The FV Value Can Identify Drug-Resistant Mutations. We have
plotted ��Gres and variability in Fig. 6. Most single drug
resistance mutations are in the region of ��Gres between 0 and
�3.0 kcal�mol. Seven of them have a variability between 0.65
and 0.85.

Encouraged by our successful combination of van der Waals
and conservation to suggest critical residues on the Sem-5 SH3
domain (20), we propose an empirical parameter, the FV value,
to quantitatively identify drug-resistant mutations (Table 2). The
FV value is defined as the product of �Gres and the variability
of that residue. The purpose of defining this parameter is to

Fig. 5. (A) Free energy, (B) electrostatic contribution (Coulomb � PB), and (C)
van der Waals energy of each residue in the drugs and the substrate.

Fig. 6. Two-dimensional plot of variability at each position and free energy
difference between each residue’s contribution to the binding with the
substrate and drugs.
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include free energy and evolution information into one value. A
mutation is commonly considered drug resistant if it causes
�10-fold change of Ki of drugs. Usually it is assumed that
homodimers of the HIV protease are formed, and thus double
mutations should be considered. A threshold of �1.0 (� 2 �
1.4 � 0.35) is used for the FV value of double mutations for
identifying resistance, which corresponds to 1.4 kcal�mol (10-fold
change of Ki) and variability �0.35 (most positions included). The
accuracy of identifying resistance mutations by the FV value varies
among drugs (see Table 2; also see Table 3, which is published as
supporting information on the PNAS web site, www.pnas.org), but
average accuracy is 76%, which we think is quite good.

The FV value did not find G48 resistant for Saquinavir and
Ritonavir. From previous studies (13, 21, 22), mutating Gly-48
to other hydrophobic residues favors formation of heterodimer
of the HIV protease. We can see single G48 interacts more
favorably with drugs than with the substrate, which implies that
possibly heterodimers of the HIV protease are formed under the
selection pressure of Saquinavir and Ritonavir. Another residue on
which the FV value is not informative is M46, possibly because M46
is on the surface of the protein and therefore at the boundary of the
interior and exterior region when solving the PB equation; thus,
more error may be introduced in the PB calculations.

Multiple mutations tend to be found in vivo, but in this study,
we compare only residues for which in vitro single mutation
experimental data are available. It is obvious that the same
analysis can be applied to study multiple mutations.

Conclusion
We have shown here that single drug-resistant mutations can
occur only at not-well conserved positions that are critical for
drug binding but are either unimportant or tolerant to mutations
for viral activity. Therefore, resistance-evading drugs should
interact strongly with those conserved residues. We have ana-
lyzed the five FDA-approved drugs and suggest that improving
interactions between these drugs and residues Leu-23, Ala-28,
Gly-49, Arg-87 and, more importantly, with Asp-29 in the

protease may possibly enhance their abilities to combat drug
resistance. An empirical parameter, the FV value, was exploited
to identify drug-resistant mutations and can also be useful in
studying other protein–protein or protein–ligand interactions.
The FV value is the generalization of the van der Waals
conservation value (VC) (20). After this work was finished, it
came to our notice that the spirit behind the FV or VC value is
consistent with the identification of the common folding nucleus
by looking at the number of contacts that certain amino acids
make and how conserved they are (23, 24). However, to our
knowledge, FV and VC values are the only quantitative param-
eters to combine energetic and evolutionary information. They
thus might be useful for studying protein folding as well.

We have presented only qualitative suggestions for how to
improve the five FDA-approved HIV protease drugs rather than
detailed calculations, because it makes more sense to do the latter
in the context of a program to synthesize and test such molecules.
Nonetheless, we feel the approach we have presented to decompose
�Gbind, in terms of either residue or ligand fragment components,
is powerful and general. When combined with the residue FV
values and the relative �Gbind of substrate and inhibitors, this
approach should be useful both in optimizing �Gbind and, during
such a process of optimization, minimizing viral resistance.

Soon after this manuscript was submitted, Prof. Peter A. Kollman sadly
died of cancer. W.W. truly appreciates completing his Ph.D. thesis with
Peter and has learned much from him. Peter was an incredible mentor,
and his enthusiasm for science, sense of humor, optimism, and respect
for students made doing research in his lab very enjoyable. W.W. also
thanks Dr. Junmei Wang for his kind help with PROFEC and Prof. Charles
Craik for his comments on the manuscript. This work was supported in
part by National Institutes of Health Grant GM-56531 (P. Ortiz de
Montellano, Principal Investigator). Part of this investigation was com-
pleted by using the facilities in the University of California, San
Francisco, Computer Graphics Lab (T. Ferrin, Director) and was
supported by Grant RR-1081 from the National Institutes of Health.
Supercomputer time at the National Science Foundation centers (Na-
tional Center for Supercomputing Applications and San Diego Super-
computing Center) is gratefully acknowledged.
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