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Calcium signaling in neurons as in other cell types can lead to varied changes in cellular
function. Neuronal Ca2+ signaling processes have also become adapted to modulate the
function of specific pathways over a wide variety of time domains and these can have
effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength.
Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its
physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie
many different neurological and neurodegenerative diseases. The mechanisms by which
changes in intracellular Ca2+ concentration in neurons can bring about diverse responses
is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been
established that synaptotagmins have key functions in neurotransmitter release, and, in ad-
dition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including
the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play
important physiological roles in neuronal Ca2+ signaling. It has become increasinglyapparent
that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and
disease either indirectly or directly as a direct consequence of genetic variation or mutations.
An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors
and the physiological roles of each protein in identified neurons may contribute to future
approaches to the development of treatments for a variety of human neuronal disorders.

Calcium signaling in many cell types can me-
diate a diverse range of changes in cellular

function affecting gene expression, cell growth,
development, survival, and cell death. In addi-
tion, neuronal calcium signaling processes have
become adapted to modulate the function of
other important pathways in the brain, including
neuronal survival, axon outgrowth (Spitzer
2006), and changes in synaptic strength (Cat-
terall and Few 2008; Catterall et al. 2013).

Changes in the concentration of intracellular
free Ca2+ ([Ca2+]i) are essential for the transmis-
sion of information through the nervous system
as the trigger for neurotransmitter release at syn-
apses. In addition, alterations in [Ca2+]i can lead
to a wide variety of different physiological
changes that can modify neuronal functions
over a range of time domains of milliseconds
through 10 sec, to minutes to days or longer
(Berridge 1998). It has long been believed that

Editors: Geert Bultynck, Martin D. Bootman, Michael J. Berridge, and Grace E. Stutzmann
Additional Perspectives on Calcium Signaling available at www.cshperspectives.org

Copyright © 2019 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a035154
Cite this article as Cold Spring Harb Perspect Biol 2019;11:a035154

1

mailto:burgoyne@liverpool.ac.uk
mailto:burgoyne@liverpool.ac.uk
mailto:burgoyne@liverpool.ac.uk
http://www.cshperspectives.org
http://www.cshperspectives.org
http://www.cshperspectives.org
http://www.cshperspectives.org/site/misc/terms.xhtml


the physiological outcome from a change in
[Ca2+]i depends on its location, amplitude, and
duration. The importance of location becomes
even more pronounced in neurons because of
their complex morphologies. Pathological
changes in Ca2+ signaling pathways have been
suggested to underlie various neuropathological
disorders (Braunewell 2005; Berridge 2010,
2018; Brini et al. 2014, 2017), including neuro-
logical abnormalities and neurodegenerative
disorders (Popugaeva and Bezprozvanny 2013;
Egorova and Bezprozvanny 2018; Pchitskaya
et al. 2018; Secondo et al. 2018; Wegierski and
Kuznicki 2018). Such changes have implicated
Ca2+ entry pathways and the release ofCa2+ from
intracellular stores (Popugaeva and Bezproz-
vanny 2013; Schampel and Kuerten 2017; Ego-
rova and Bezprozvanny 2018; Secondo et al.
2018; Wegierski and Kuznicki 2018).

The nature, magnitude, and location of the
Ca2+ signal is crucial for the particular effect of
neuronal physiology (Burgoyne 2007). Highly
localized Ca2+ elevations because of Ca2+ entry
though voltage-gated Ca2+ channels (VGCCs)
lead to synaptic vesicle fusion with the pre-
synapticmembrane for neurotransmitter release
within less than a millisecond (Burgoyne and
Morgan 1998; Barclay et al. 2005). Differently
localized and timed Ca2+ signals can result in
changes to the properties of the VGCCs them-
selves (Catterall and Few 2008), to alterations in
synaptic plasticity (Catterall et al. 2013), or lead
to changes in gene expression (Bito et al. 1997).
Postsynaptic Ca2+ signals arising from activation
of N-methyl-D-aspartate receptors (NMDARs)
give rise to two important processes in synaptic
plasticity, long-term potentiation (LTP) and
long-term depression (LTD). Interestingly, the
Ca2+ signals that bring about either LTP or LTD
differ only in their amplitude and duration
(Yang et al. 1999).

Specific neuronal Ca2+ signals are likely to
be decoded by various Ca2+ sensor proteins
(McCue et al. 2010b). These are proteins that
undergo a conformational change onCa2+ bind-
ing allowing them to interact with and regulate
various target proteins (Ikuro and Ames 2006;
Burgoyne and Haynes 2015). Among the Ca2+

sensors that are important for neuronal function

are the synaptotagmins that control neurotrans-
mitter release (Fernández-Chacón et al. 2001;
Südhof 2013), the ubiquitous EF-hand-contain-
ing sensor calmodulin (Faas et al. 2011) that has
many neuronal roles, and themore specific neu-
ronal EF-hand-containing proteins, including
the neuronal calcium sensor (NCS) proteins
(Burgoyne andWeiss 2001; Burgoyne 2007;Bur-
goyne and Haynes 2012, 2015) and the calci-
um-binding protein (CaBP)/calneuron families
(Haeseleer et al. 2002; Mikhaylova et al. 2006,
2011; McCue et al. 2010a; Haynes et al. 2012).
The potential involvement of members of these
protein families in neuronal disorders studied in
both experimental models and in human sub-
jects has become apparent in recent years. In
this review, we assess the information available
on the physiological roles of these various Ca2+

sensors and their modes of action, and also how
they may contribute to neuronal dysfunction or
be involved in disease-related processes in the
nervous system.

SYNAPTOTAGMINS

The Physiology and Function
of Synaptotagmins

The synaptotagmins are transmembrane pro-
teins predominantly associated with synaptic
and secretory vesicles. There aremultiple known
isoforms of synaptotagmins (Craxton 2004), of
which synaptotagmin 1 has been most widely
studied. The role of synaptotagmins in neuro-
transmitter release has been the subject of in-
tense investigations,whichhavebeen extensively
reviewed (Chapman 2008; Rizo andRosenmund
2008; Südhof and Rothman 2009). Synaptotag-
mins bind Ca2+ with relatively low affinity (Kd >
10 µM) through their twoC2domains (C2Aand
C2B) (Shao et al. 1998; Fernandez et al. 2001),
which are functional in many but not all syn-
aptotagmin isoforms. Ca2+ binding by C2 do-
mains requires coordination of Ca2+ by both
the protein and membrane lipids, and this lipid
interaction is a key aspect for its function. In
synaptotagmin 1, the C2A and C2B domains
(Fig. 1) bind three and twoCa2+ ions, respective-
ly (Shao et al. 1998; Fernandez et al. 2001). It is
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now well established that synaptotagmin 1 is the
key sensor for evoked, synchronous neurotrans-
mitter release in many classes of neurons (Fer-
nández-Chacón et al. 2001).More recently, a key
role for synaptotagmin 7 in neurotransmission
has also been identified (Turecek and Regehr
2018) and synaptotagmin 2 has been shown to
be a Ca2+ sensor in central inhibitory neurons
(Chen et al. 2017a). Structure–function studies
of synaptotagmin 1 based on expression of spe-
cific mutants have been carried out in mice,
worms, and flies. For example, disruption of
Ca2+ binding to the C2B domain of synaptotag-
min 1 has been shown to have amore deleterious
effect than disruption of Ca2+ binding to its C2A
domain (Mackler et al. 2002; Robinson et al.
2002). The details of exactly how it triggers exo-
cytosis and the function of other synaptotagmin
isoforms remain to be fully resolved. Membrane
fusion requires the pairing and interaction of so-
called SNARE proteins on vesicle and target
membranes (Söllner et al. 1993). These can as-
semble into a SNAREcomplex thatmay formthe
minimal fusion machinery. For synaptic vesicle
and neuroendocrine exocytosis, the SNARE
proteins are SNAP-25, syntaxin 1, and synapto-

brevin. In the case of neurotransmitter release,
vesicle fusion is tightly regulated and requires a
Ca2+ signal for activation. Ca2+ entry through
VGCCs leading to Ca2+ elevation in local micro-
domains close to themouth of the Ca2+ channels
is able to trigger rapid (<1 msec) fusion of syn-
aptic vesicles. A synaptotagmin can bind to both
syntaxin and SNAP-25, and fast neurotransmit-
ter release requires synaptotagmin (Geppert et
al. 1994), probably prebound to assembled or
partially assembled SNARE complexes (Schiavo
et al. 1997; Rickman et al. 2006), so that Ca2+-in-
duced interaction with phospholipids can occur
rapidly (Xue et al. 2008). It is still under debate
how important synaptotagmin is in vesicle dock-
ing (de Wit et al. 2009; Chang et al. 2018) and
how it acts at the plasma membrane in fusion
itself (Fig. 2; Tang et al. 2006; Hui et al. 2009).
A synaptotagmin could act as a brake on fusion
that is relieved by Ca

2+

binding or have a positive
role in membrane fusion (Chicka et al. 2008). A
recent focus has been on the combined role of
synaptotagmin and another SNARE-interacting
protein, complexin, in timing synaptic vesicle
fusion (Südhof and Rothman 2009). The struc-
ture of a complex of synaptotagmin 1, com-
plexin, and the SNAREs has been characterized
(Zhou et al. 2017). It was suggested that this tri-
partite complex could be a primed structure at
the site of vesicle docking that would then need
to be disrupted to allow fusion to occur. It
has also been suggested that oligomerization of
synaptotagmin is essential to control spontane-
ous fusion (Bello et al. 2018), but much still re-
mains to be learned about the molecular basis
of its function (Bello et al. 2018; Kweon et al.
2018).

Synaptotagmins and Disease

The association of certain synaptotagmin iso-
forms with disease has been made. For example,
synaptotagmin 7 has been implicated as a regu-
lator of cancer cell proliferation (Wang et al.
2018b). In addition, synaptotagmin 11 has
been identified as a Parkinson’s disease risk
gene and suggested to be involve in parkin-
linked neurotoxicity in dopaminergic neurons
(Wang et al. 2018a).

C2A C2B

Figure 1. Structures of the C2A and C2B domains of
synaptotagmin 1. The structures show the isolated C2
domains in their Ca2+-loaded state with the bound
Ca2+ ions shown in green. The coordinates for the
structures for the C2A and C2B domains come
from the Protein Data Bank (PDB) files 1BYN and
1K5W, respectively.
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More significantly forcentral nervous system
function and disease has been the discoveryof de
novo mutations in synaptotagmin 1 in patients
associated with mental abnormalities. Synapto-
tagmin 1 has been shown to be essential for sur-
vival in model organisms but mutations that
subtly change its function are not lethal (Chap-
man 2008). A rare variant in the gene SYT1 was
identified in a subject with movement and cog-
nitive disorders (Baker et al. 2015). Expression of
a rat SYT1 with this mutation in hippocampal
neurons in culture was found to impair exocyto-
sis and endocytosis suggesting that it is indeed
responsible for the mental abnormalities. A sec-
ondmissensemutation in SYT1was later discov-
ered (Cafiero et al. 2015). More recently, a series
of further de novo mutations in SYT1 has been
found in ninemore patients with various neuro-
developmental and movement abnormalities
(Baker et al. 2018). Five of the mutations were
found in the C2B domain clustered around the
Ca2+-binding pocket. The effect of these muta-
tions was functionally characterized by expres-
sion of the mutated proteins in rat hippocampal
cultures. While all the proteins were correctly
targeted to synapses, one of these mutations im-
paired expression and the other four mutations
resulted in differing defects in the rates of

exocytosis and endocytosis that could in part
be correlated with the disease phenotypes of
the patients. These results support the idea that
the SYT1mutations were responsible for synap-
tic defects that resulted in the observed patho-
physiology (Baker et al. 2018).

Interestingly, similar mutations to those
found in the C2B domain of SYT1 had been
identified in the C2B domain of SYT2 associated
withLambert–Eaton syndrome (Herrmannet al.
2014), which is the result of a defect at peripheral
motor neurons. Electrophysiological analysis in
patients indicated that themutations resulted ina
presynaptic defect (Whittaker et al. 2015). Fur-
ther support for the significance of these muta-
tions in SYT2 has come from functional studies
in Drosophila (Shields et al. 2017). A potential
linkage of SYT2 to defects of central nervous
function comes from the observation that SYT2
protein levels were reduced in the brains of pa-
tients who had dementias (Bereczki et al. 2018).

CALMODULIN

The Physiology and Functions of Calmodulin

Calmodulin is a ubiquitously expressed 16.7
kDa Ca2+-binding protein playing a major role

Vesicle

VAMP

Plasma
membrane

SNAP 25

Synaptotagmin 1

Syntaxin 1

2

Ca2+ Ca2+

Ca2+Ca2+

Ca2+

3 41

Figure 2. Potential role of synaptotagmin 1 in synaptic vesicle exocytosis. Key components of the minimal fusion
machinery are associated with the synaptic vesicle and the plasma membrane (1). Neurotransmitter release is
triggered by Ca entry though voltage-gated calcium channels. Ca2+ binds to synaptotagmin 1, which may then
lead to vesicle docking via interaction with phospholipids or with SNAP-25 on the plasma membrane (2). The
SNARE complex assembles from the key components of VAMP, SNAP-25, and syntax and synaptotagmin
associates with the complex (3). Through as-yet undefined steps synaptotagmin become dissociated from the
SNARE complex and fusion of the vesicle with the plasmamembrane occurs to allow release of neurotransmitter
from the vesicle (4).

R.D. Burgoyne et al.

4 Cite this article as Cold Spring Harb Perspect Biol 2019;11:a035154



in regulating a wide variety of cellular events
includingmotility, exocytosis, cytoskeletal assem-
bly, muscle contraction, andmodulation of intra-
cellular Ca2+ concentrations. This protein has
been highly conserved throughout evolution, is
found in all eukaryotes and is 100% identical
across all vertebrates at the amino acid level. Cal-
modulin can bind fourCa2+ ions through its four
EF-hand structural motifs (Chattopadhyaya et
al. 1992). The amino-terminal lobe of calmod-
ulin is formed by thefirst twoEF-hands, whereas
the carboxy-terminal lobe is formed by the third
and fourthEF-hands. The carboxy-terminal pair
of EF-hands has a higher affinity for Ca2+ and
slower binding kinetics than the amino-terminal
pair, which allows the two domains to behave
independently at varying Ca2+ concentrations
(Tadross et al. 2008). The highly flexible linker
between the two domains can alter confirmation
dramatically upon binding to target proteins
(Fig. 3) and is an essential property of calmodu-
lin, which permits this protein to interact with a
large and diverse array of partners. It has been
recently demonstrated that calmodulin’s bilobal
architecture is essential for VGCC regulation
(Banerjee et al. 2018). The significant conforma-
tional changes on binding to its targets (Fallon
et al. 2005) can increase its affinity for Ca2+.

Calmodulin is present in the brain at high
concentrations (up to ∼100 µM). In addition to
itsmore general functions, calmodulin also has a
series of specific roles in transducing Ca2+ sig-
nals in neurons, including the regulation of glu-
tamate receptors (O’Connor et al. 1999), ion
channels (Saimi and Kung 2002), proteins in
signaling pathways, such as neuronal nitric ox-
ide synthase, and it can affect synaptic plasticity
(Lisman et al. 2002; Xia and Storm 2005).

One key direct function of calmodulin is in
regulating the activity of VGCCs by interacting
with channel subunits (Catterall and Few 2008).
As an example, Ca2+-free (apo) calmodulin can
bind to the IQ domain of the α1 pore-forming
subunit of the L-type Ca2+ channel CaV1.2 (Fig.
4; Erickson et al. 2001, 2003; Pitt et al. 2001).
Prebound apo-calmodulin can then respond
rapidly to Ca2+ elevation in local nanodomains
and modulate the activity of the channel. Ca2+

binding to VGCC-associated calmodulin can

have a range of effects on channel function, in-
cluding mediating Ca2+-dependent facilitation
(CDF) or Ca2+-dependent inactivation (CDI)
(Peterson et al. 1999; Zühlke et al. 1999; Lee
et al. 2000; DeMaria et al. 2001; Catterall and
Few 2008; Liu et al. 2010). For CaV1.2 channels,
CDI is mediated by the carboxy-terminal lobe
of calmodulin (Peterson et al. 1999), whereas
for CaV2.1 (DeMaria et al. 2001; Lee et al.
2003), CaV2.2 (Liang et al. 2003), and CaV2.3
(Liang et al. 2003), CDI is controlled by the ami-
no-terminal lobe. Interestingly, for P/Q-type
CaV2.1 channels, calmodulin is required for
both CDI and CDF, with the amino-terminal
lobe of calmodulin involved in CDI and the car-
boxy-terminal lobe underlying CDF (DeMaria

Frq1 Frq1 + Pik1

Calmodulin Calmodulin
+ CaV1.2

Figure 3.Comparison of the structures of Ca2+-loaded
calmodulin and yeast frequenin with and without
bound target peptides. The structures at the top are
of Ca2+-bound calmodulin alone (Protein Data Base
[PDB] 1CLL) or in a complexwith the IQ-like domain
of the CaV1.2 Ca2+-channel α-subunit (PDB 2F3Z).
The structures at the bottom are of the Ca2+-bound
yeast frequenin (Frq1) alone (PDB 1FPW) or in a
complex with the binding domain from Pik1 (PDB
2JU0). In each of the complexes the target peptide is
shown in yellow.
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et al. 2001; Lee et al. 2003). It is important to note
that Ca2+-dependent regulation of VGCCs is
complex and involves several Ca2+ sensor pro-
teins as modulators. As an example, CaBP1 can
elicit CDI, but also reduces CDF by displacing
calmodulin from the IQdomain inCaV2.1 chan-
nels (Lee et al. 2002; Findeisen and Minor 2010;
Christel and Lee 2012; Findeisen et al. 2013; Oz
et al. 2013). In addition to calmodulin and
CaBP1, it has been shown that visinin-like pro-
tein (VILIP)-2 inhibits calmodulin-mediated
CDI and enhances CDF (Lautermilch et al.
2005; Nanou et al. 2012) through interaction
with both the IQ and the calmodulin-binding
domains. Calmodulin is also constitutively asso-
ciated with, and regulates the opening of, Ca2+-
activated potassium channels (Xia et al. 1998;
Schumacher et al. 2001), and other types of
potassium channels (Wen and Levitan 2002).
SK and IK Ca2+-activated potassium channels
lack Ca2+-binding sites but their intracellular
carboxy-terminal region contains calmodulin-
binding domains where calmodulin binds tight-
ly and confers Ca2+-sensitivity to the channel.
Two other major modes of action of calmodulin

are exerted through Ca2+/calmodulin-depen-
dent kinases (CaMKs) and calcineurin. CaMKs
contribute to several regulatory pathways involv-
ing, for example, phosphorylation of AMPA
receptors (Barria et al. 1997) and the nuclear
transcription factor CREB (Deisseroth et al.
1998). Calmodulin also positively regulates
presynaptic neurotransmitter vesicle release
probability, which is mediated via activation of
CaMKII (Pang et al. 2010). The Ca2+-activated
phosphatase calcineurin can dephosphorylate a
wide range of neuronal proteins leading to
changes in gene transcription following activa-
tion of the transcription factor NFAT and its
translocation into the nucleus. Calcineurin has
also been implicated in synaptic plasticity (Mal-
leret et al. 2001; Xia and Storm 2005).

Calmodulin and Disease

The human genome contains three calmodulin
genes (CALM1, CALM2, and CALM3) that en-
code for proteins with identical amino acid se-
quences. Despite the redundancy of calmodulin,
single missense mutations, which change the

Cytosol

Amino terminus

Extracellular space

N

Carboxyl terminus

I II III IV

Calmodulin

C

CIQ A

N
T

Figure 4. Schematic illustration of the pore-forming a1 subunit of a CaV1.2 channel. The a1 subunit is composed
of four domains (I–IV), each consisting of six putative transmembrane segments (orange). Several potential
binding sites for Ca2+ sensors (yellow) have been identified in the amino-terminal (NT) and the carboxy-
terminal region (A, C, and IQ) of CaV1.2 channels. Calmodulin (green), one of the major Ca2+ sensors, has
been shown to be preassociated with the channel through its interaction with the IQ motif. Once calmodulin
becomes Ca2+-loaded, it exerts its effects on channel function through either its amino or its carboxy lobe.
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way calmodulin functions, in any one of the six
alleles are associated with disease phenotypes
such as cardiac arrhythmia syndromes (Limpi-
tikul et al. 2014;Makita et al. 2014;Yin et al. 2014;
Boczek et al. 2016; Jiménez-Jáimez et al. 2016;
Pipilas et al. 2016). In the brain, calmodulin dys-
function has also been suggested to be potential-
ly linked to pathological conditions including
epilepsy,memory loss, and intellectual disability.
CaMKIIγ, a serine/threonine-specificprotein ki-
nase involved in long-term plasticity, learning,
andmemory, is a major target for calmodulin. A
point mutation in γCaMKII (R292P) has been
shown to interfere with calmodulin shuttling to
the nucleus and therefore disrupted spatial
learning, memory, and caused intellectual dis-
ability (de Ligt et al. 2012; Cohen et al. 2018).
In another study, it has been shown that muta-
tions in Kv7 potassium channels can decrease
calmodulin binding, and thereby disrupt chan-
nel trafficking to the plasma membrane. As a
result, neuronal excitability and firing frequency
can be affected, leading to pathological condi-
tions from mild epilepsy to early-onset enceph-
alopathy (Alaimo et al. 2018). Similarly, muta-
tions in NaV1.2 sodium channels can reduce
calmodulin binding and lead to epilepsy (Yan
et al. 2017). In addition, it has been experimen-
tally verified that calmodulin is involved in the
formation of amyloid-β plaques in Alzheimer’s
disease (O’Day et al. 2015). Altogether, these ob-
servations demonstrate the crucial role of cal-
modulin in regulating major signaling processes
in neurons and show that mutations interfering
with calmodulin binding or function can lead to
serious neuropathological conditions.

NCS PROTEIN FAMILY

Althoughmany aspects of neuronal function are
known to be regulated by calmodulin, proteins
related to calmodulin have been discovered in
recent years, which are exclusively expressed or
enriched in neurons. Duplication and diversifi-
cation of the calmodulin gene family may have
given rise to these NCS proteins, which are not
all expressed in lower organisms, so that they
can carry out neuronal functions specifically in
higher organisms.

The Physiology and Function of NCS Proteins

Although calmodulin is ubiquitously expressed,
the expression of other calcium-sensing proteins
can be restricted to particular tissues and cell
types. A good example of this is the NCS family
of proteins, which are primarily expressed in
neurons or retinal photoreceptors (Burgoyne
2007; Burgoyne and Haynes 2010). The NCS
family of proteins are related in their protein
sequence to calmodulin but have distinct prop-
erties, which allow them to carry out nonredun-
dant roles that do not overlap with the functions
of calmodulin (Fitzgerald et al. 2008). Members
of the NCS protein family have been implicated,
for example, in the regulation of neurotransmit-
ter release, regulation of cell-surface receptors
and ion channels, control of gene transcription
(Carrión et al. 1999; Mellström and Naranjo
2001), cell growth and survival (Burgoyne
2007; Burgoyne and Haynes 2012), and specific
retinal photoreceptor functions (Limet al. 2014).

The NCS proteins are encoded by 14 genes
in mammals, and with greater diversity from
alternative splicing of transcripts from a number
of the genes. All NCS gene products harbor four
EF-hand motifs and display limited similarity
(<20%) to calmodulin (Burgoyne 2004; Weiss
et al. 2010). NCS-1 is the most widely expressed
of the NCS proteins in and outside of the ner-
vous system. The protein was first discovered as
frequenin in Drosophila melanogaster (Pongs
et al. 1993) where there are two very closely re-
lated genes known as frq1 and frq2 (Sanchez-
Gracia et al. 2010). Although initially thought to
be neuronal specific (Nef et al. 1995), an NCS-1
ortholog with 59% sequence identity and closely
related structure has been identified in Saccha-
romyces cerevisiae (Hendricks et al. 1999), the
lowest organismwith anNCS-like sequence. Af-
ter this first evolutionary appearance of NCS-1,
there has been a steady increase in the diversity
of the family throughout evolution, which
roughly correlates with increasing organism
complexity. Five classes of NCS proteins have
now been identified in higher organisms
(Braunewell and Gundelfinger 1999; Burgoyne
2007). Class A contains NCS-1, which is present
in yeast and all higher organisms. Class B con-

Neuronal Calcium Sensor Proteins

Cite this article as Cold Spring Harb Perspect Biol 2019;11:a035154 7



sists of the VILIPs, which appear first in Caeno-
rhabditis elegans. Classes C and D evolved with
the appearance of fish, and comprise recoverin
and the guanylyl-cyclase-activating proteins
(GCAPs), respectively. Finally, class E contains
the K+ channel-interacting proteins (KChIPs),
which are found in insects and evolutionary sub-
sequent species (Burgoyne 2004). Mammals
have a single NCS-1, five VILIPs proteins (hip-
pocalcin, neurocalcin δ, andVILIPs1-3), a single
recoverin, three GCAPs and four KChIPs. Ex-
pression of the recoverins andGCAPs is restrict-
ed to the retina, whereas the rest of the NCS
family are found in varied neuronal populations
(Burgoyne 2007). It has been established that
certain neurons express several, or all, of the
NCS proteins, but in general the expression pro-
file for each of the NCS proteins is unique
(Paterlini et al. 2000; Rhodes et al. 2004). This
suggests that despite the high sequence homol-
ogy between the proteins (∼35%–90% identity
between each of the human family members, for
example) (Burgoyne and Weiss 2001), each is
likely to perform distinct functions in specific
cell types (Burgoyne 2007).

Unlike calmodulin, not all EF-hands are
functional in the NCS proteins, and the most
amino-terminal EF-hand is unable to bind Ca2+

in any of the family members. In the case of
recoverin and KChIP1, only two of its four EF-
handmotifs are functional inCa2+ binding (Bur-
goyne et al. 2004; Burgoyne 2007). Unlike the
dumbbell structure of calmodulin, the NCS pro-
teins are compact and globular when in their
Ca2+-bound states, and they undergo limited
conformational change following binding to
their target proteins (Fig. 3; Ames et al. 2006;
Pioletti et al. 2006; Strahl et al. 2007; Wang
et al. 2007). NCS proteins also differ from cal-
modulin in that many have motifs that allow
membrane association (McFerran et al. 1999;
O’Callaghan and Burgoyne 2003, 2004; Haynes
and Burgoyne 2008). KChIP1 and all the mem-
bersof classesA–DareN-myristoylated,whereas
certain KChIP2, KChIP3, and KChIP4 isoforms
possess palmitoylationmotifs. In some cases, the
membrane association conferred by these moie-
ties is dynamically regulated by Ca2+ binding
when a sequestered myristoyl chain becomes

exposed following a Ca2+-driven shift in confor-
mation.This isknownasthe reversibleCa2+/myr-
istoyl switch as originally described for recoverin
(Ames et al. 1997). TheVILIPs/neurocalcin/hip-
pocalcin are also cytosolic at resting [Ca

2+

]i but
localize to the plasma membrane or Golgi com-
plex upon Ca2+ elevation (O’Callaghan et al.
2002, 2003b; Spilker et al. 2002). In contrast,
NCS-1 does not show theCa2+/myristoyl switch.
Each of the NCS proteins displays distinct sub-
cellular localizations, which are in part deter-
mined by additional interactions with specific
phosphoinositidesmediated by basic amino-ter-
minal residues immediately proximal to the site
of acylation (O’Callaghan et al. 2003a, 2005).

NCS-1 is a multifunctional regulator of var-
ious processes, and it has been intensively stud-
ied (Burgoyne 2004; Burgoyne and Haynes
2012). Mammalian NCS-1 is highly evolution-
arily conserved, retaining 59% identity with its
yeast ortholog. It displays a high Ca2+-binding
affinity (Kd for Ca

2+∼200–300 nM) and is able to
respond to anyfluctuations in [Ca2+]i above rest-
ing levels. NCS-1 is amino terminally myristoy-
lated and is constitutively associated with mem-
branes including plasma and Golgi membranes
(O’Callaghan et al. 2002), although it is able to
rapidly exchange between membrane and cyto-
solic pools (Handleyet al. 2010). In contrast to all
other NCS family members, NCS-1 is not neu-
ron specific and is expressed in neuroendocrine
cells (McFerran et al. 1998), and at low levels in
several nonneuronal cell types (Gierke et al.
2004). NCS-1 has three functional EF-handmo-
tifs, which have differing cation specificities for
Ca2+ versus Mg2+. In the presence of elevated
[Ca2+]i, EF2 and EF3 become Ca2+-occupied si-
multaneously followed by Ca2+ binding to EF4
(Aravind et al. 2008; Mikhaylova et al. 2009).
Two variants of NCS-1 (frq1 and frq2) are ex-
pressed in Drosophila (Sanchez-Gracia et al.
2010) and may have distinct roles. A second hu-
manvarianthas beendescribed but it is likely not
to play any physiological role being expressed at
only low levels (Wang et al. 2016).

Muchof the currentunderstanding concern-
ing the function of NCS-1 derives from overex-
pression or knockout studies. Overexpression in
Drosophila caused a frequency-dependent facil-

R.D. Burgoyne et al.

8 Cite this article as Cold Spring Harb Perspect Biol 2019;11:a035154



itation of neurotransmitter release (Pongs et al.
1993), and its importance for neurotransmis-
sions has been confirmed by knockout of the
two Drosophila frequenin genes (Dason et al.
2009). In Xenopus, overexpression caused en-
hanced spontaneous and evoked transmission
at neuromuscular junctions (Olafsson et al.
1995). Consistent with a role of NCS-1 in neu-
rotransmitter release, overexpression was found
to increase Ca2+-dependent exocytosis of dense
core granules in PC12 cells (McFerran et al.
1998), and to enhance associative learning and
memory in C. elegans (Gomez et al. 2001).

Knockout of NCS-1 (frequenin) in the yeast
S. cerevisiae is lethal because of its requirement
for the activation of Pik1, one of the two yeast
phosphatidylinositol-4 kinases (PI4Ks) (Hen-
dricks et al. 1999). NCS-1 can also interact with
the equivalent mammalian Golgi enzyme
PI4KIIIβ and enhances its activity (Taverna
et al. 2002; Haynes et al. 2005; de Barry et al.
2006). The interaction with Golgi-associated
PI4KIIIβ suggests that it may regulate secretion
through the modulation of phosphatidylinosi-
tol-dependent trafficking steps (Hendricks et al.
1999; Zhao et al. 2001; Haynes et al. 2005). In
support of this,NCS-1has alsobeendemonstrat-
ed to associate with another PI4KIIIβ regulator
ARF1, a smallGTPase critical tomultiple traffick-
ing steps inmammalian cells (Haynes et al. 2005,
2007).Thephysiological significanceof this inter-
action has been confirmed using genetic ap-
proaches inC.elegans. In thisorganism,knockout
of NCS-1 impairs learning (Gomez et al. 2001)
and affects temperature-dependent locomotion
behavior (Martin et al. 2013). The role of NCS-1
in the control of temperature-dependent loco-
motion was shown to require interaction with
ARF1.1 and also potentially pifk1 in the C. ele-
gans ortholog of PI4KIIIβ (Todd et al. 2016).

Knockout of NCS-1 in organisms other than
S. cerevisiae is not lethal but does generate spe-
cific developmental phenotypes. In Dictyoste-
lium discoideum, loss of NCS-1 function alters
developmental rate (Coukell et al. 2004), and
in C. elegans results in impaired learning and
memory (Gomez et al. 2001). Knockdown of
one of the two NCS-1 genes in zebrafish, ncs-1,
prevents formation of the semicircular canals of

the inner ear (Blasiole et al. 2005). The signaling
pathway involving NCS-1, ARF1, and PI4KIIIβ
(Haynes et al. 2005) modulates the secretion of
components important for the development of
the vestibular apparatus of the inner ear (Petko
et al. 2009). Knockdown of NCS-1, or expres-
sion of a dominant-negative inhibitor based on
an EF-hand mutation (Weiss et al. 2000), dis-
rupted the induction of LTD in rat cortical neu-
rons (Jo et al. 2008). Overexpression of NCS-1 in
adult mouse dentate gyrus promotes enhanced
learning (Saab et al. 2009). Knockout of NCS-1
in mice was not lethal but caused behavioral
changes and learning deficits (de Rezende
et al. 2014; Nakamura et al. 2017).

Many different specific binding partners
(Fig. 5) have been identified for NCS-1, which
interact with either the Ca2+-loaded or Ca2+-free
(apo) forms ofNCS-1 (Haynes et al. 2006, 2007).
NCS-1 has a higher affinity for Ca2+ than cal-
modulin, and therefore may preferentially in-
teract with certain Ca2+-dependent binding
partners when the amplitude of a Ca2+ signal
falls below the threshold for activation of cal-
modulin. For example, both calmodulin and
NCS-1 have been shown to interact with, and
desensitize, dopamineD2 receptors, but are like-
ly to mediate their effects at different [Ca2+]i
(Kabbani et al. 2002; Woods et al. 2008). Func-
tional analyses have established that NCS-1 is a
physiological regulator of D2 receptors (Saab
et al. 2009; Dragicevic et al. 2014) (for clinical
relevance of this regulation, see below). Other
NCS-1 target proteins appear to be specific for
NCS-1 (Haynes et al. 2006).

Various studies have implicated NCS-1 in
the regulation of VGCCs (Weiss et al. 2000;
Weiss and Burgoyne 2001, 2002; Tsujimoto
et al. 2002; Dason et al. 2009). In Drosophila,
the effects of Frq1 on both neurotransmission
and nerve-terminal growth can be explained by
a functional interaction with the VGCC cacoph-
ony, which is related the mammalian P/Q-type
VGCCs, but despite the physiological evidence a
direct interaction of the proteins was not dem-
onstrated (Dason et al. 2009). In contrast, a di-
rect interaction of mammalian NCS-1 with the
CaV2.1 of VGCCs was subsequently shown to
occur (Lian et al. 2014), and this may be of
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physiological significance for the Ca2+-depen-
dent regulation of these channels by NCS-1 un-
derlying synaptic facilitation (Yan et al. 2014).

The structural basis of the interaction of
NCS-1 with its target proteins has been well
characterized. Key conserved residues within
the hydrophobic groove that is exposed in the
Ca2+-bound state have been shown to interact
with target peptides in structural studies (Hutt-
ner et al. 2003; Ames and Lim 2012; Burgoyne
and Haynes 2015). Moreover, functional muta-
genesis studies inworms have confirmed the im-
portance of these hydrophobic residues (Martin
et al. 2013). Direct analysis has been made of
NCS-1 interactions with two different target
peptides based on structures solved in parallel
by X-ray crystallography (Pandalaneni et al.
2015). Comparison to complexes involving oth-
erNCSproteins has shown structural differences

in how these interactions occur. Figure 6 shows
the structure of Ca2+-bound NCS-1 in complex
with two peptides from the dopamine D2 recep-
tor (Fig. 6A) or a single peptide fromGRK1 (Fig.
6C; Pandalaneni et al. 2015). In this figure, NCS-
1-target complexes are compared to earlier
structures of S. cerevisiae frequenin in complex
with two parts of a peptide from Pik1 (Fig. 6B;
Strahl et al. 2007), of KChIP1 with a fragment of
Kv4.3 (Fig. 6D; Pioletti et al. 2006), and of recov-
erin with one peptide fromGRK1 (Fig. 6F; Ames
et al. 2006). The two examined interactions for
mammalian NCS-1, as in the other reported
structures, involve residues within the exposed
hydrophobic groove, although these differ for
each target peptide. There are also differences
in interaction with a mobile carboxy-terminal
region of NCS-1, which can change its position
in the complexes (Pandalaneni et al. 2015).

D2R

PDE

PICK1

IL1RAPL1

CaV2.1

CALN
AP2 VAMP2

TRPC1

RIC8A

Kv4

HINT

DAN

A2A

GRK2

IP3R

PINK1

Ca2+-bound

NCS-1

ApoSCAMC2
TRPC5AP1

ARF1

CAPS

TGFβR1

PI4KIIIβ

Figure 5.Major known target proteins for neuronal calcium sensor (NCS)-1 indicating interactions that require
either the Ca2+-bound or the apo form of NCS-1. The interactions shown include ones that are based on in vitro
binding assays as well as interactions that have been substantiated and shown to have physiological relevance in
functional studies.
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The carboxy-terminal tail of NCS-1 appears to
be crucial for the nature and regulation of target
protein interactions being able to potentially oc-
clude the hydrophobic groove for certain sub-
strates (Handley et al. 2010; Lian et al. 2011; Hei-
darsson et al. 2012). There are also differences in
how two NCS proteins (NCS-1 and recoverin)
interact with the same target peptide fromGRK1
(Ames et al. 2006; Pandalaneni et al. 2015).

Much less is known about the VILIP/
neurocalcin/hippocalcin proteins, although the
VILIPs themselves appear to modulate various
signal transduction pathways such as cyclic nu-
cleotide and MAPK signaling (Braunewell and
Klein-Szanto 2009). VILIP-1 has been found to
regulate a class of purinergic receptors (Chau-
mont et al. 2008). They have been shown to
have effects on gene expression and are also
involved in trafficking of proteins to the plas-
ma membrane (Lin et al. 2002; Brackmann et
al. 2005). VILIP-3 (HPCAL1) was found to

control the differentiation of neuroblastoma
cells through its interaction with the transcrip-
tional regulator PHOX2B (Wang et al. 2014).

Hippocalcin has been suggested to be in-
volved as a Ca2+ sensor in LTD in (Palmer et
al. 2005; Jo et al. 2010). Consistent with this
suggestion, it was observed that hippocalcin in
cultured hippocampal neurons shows a rapid
and reversible Ca2+/myristoyl switch for trans-
location in response to acute stimuli (Markova
et al. 2008; Dovgan et al. 2010). Hippocalcin has
also been implicated in protection from neuro-
nal apoptosis (Mercer et al. 2000; Korhonen
et al. 2005), and in promoting neuronal differ-
entiation (Park et al. 2017).

Recoverin is expressed exclusively in the ret-
ina and is believed to have a role in light adap-
tation and can enhance visual sensitivity (Polans
et al. 1996; Sampath et al. 2005; Morshedian et
al. 2018). Recoverin is found primarily in rod
and cone cells of the retina (Yamagata et al.

A B
EF3/EF4
linker

Carboxy-terminal
region

C

C

C

C

C

C

N

N

N

N

D2R

GRK1

N

N
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D E F

Figure 6. Comparison of the mode of binding of target peptides to neuronal calcium sensor (NCS)-1. Cartoon
representation of the structures of (A) NCS-1 in complex with twomolecules of D2R peptide (magenta and cyan)
(PDB 5AER), (B) ScNcs1in complex with fragment of Pik1 (yellow) (2JU0) (45), (C) NCS-1 in complex with one
molecule of GRK1 peptide (pink) (PDB 5AFP), (D) KChIP1 with a fragment of bound Kv4.3 (blue) (PDB 2I2R)
(50), (E) recoverin bound to the amino terminus ofGRK1 residues 1–25withGRK1peptide (red; PDB 2I94) (52),
and (F) overlay of structures 5AER and 5AFP showing the locations of the D2R bound in the amino site and
GRK1 peptides. The peptide orientations are indicated as N and C in italics and the orientations of the NCS
protein are identical in all the structures. The EF3/EF4 linker is colored brown and the carboxy-terminal region
green; for clarity, these regions are indicated only for the NCS-1-D2R peptide complex. In all the structures, Ca
ions are shown as brown spheres. (From Pandalaneni et al. 2015; adapted, with permission, from the authors.)
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1990; Dizhoor et al. 1991). Recoverin was pre-
dicted to prolong the lifetime of photolyzed
rhodopsin by inhibiting its phosphorylation by
rhodopsin kinase to extend the light response
(Chen et al. 1995; Klenchin et al. 1995). The
function of recoverin has been controversial
and this hypothesis may be oversimplified. Dis-
crepancies have beennoted regarding the [Ca2+]i
required for rhodopsin kinase interaction,which
may lie outside normal physiological limits,
but analysis of recoverin knockout mice have
shown changes in photoresponses consistent
with a physiological role in inhibition of rho-
dopsin kinase (Makino et al. 2004).

The structure of recoverin has been exten-
sively studied in its Ca2+-bound and Ca2+-free
forms (Flaherty et al. 1993; Ames et al. 1995,
1997, 2002; Tanaka et al. 1995; Weiergräber
et al. 2003). Recoverin is composed of two
distinct domains connected through a linker
and forms a compact structure in the absence
of Ca2+. Unlike other NCS proteins, recoverin
has just two functional EF-hand motifs. Upon
binding of Ca2+, the amino-terminal domain
comprising EF1 and EF2 rotates through 45°
relative to the carboxy-terminal domain, driving
extrusion of its buried myristoyl group. This
permits recoverins to associate with membranes
and reveals a hydrophobic surface, which can
mediate interaction with the target protein rho-
dopsin kinase (Ames et al. 2006). The residues
involved in the interaction of the myristoyl
groupwith the hydrophobic pocket are also con-
served in the other members of the NCS family.
However, not all of the other family members
display the Ca2+/myristoyl switch (O’Callaghan
et al. 2002; Stephen et al. 2007). NCS-1 and
KChIP1 expose a similar hydrophobic surface
upon Ca2+ binding, which could be similarly
important for target interactions (Bourne et al.
2001; Scannevin et al. 2004; Zhou et al. 2004b;
Pioletti et al. 2006; Pandalaneni et al. 2015). In
contrast, other NCS proteins are able to interact
with certain binding proteins in their Ca2+-free
state, therefore Ca2+-driven exposure of a hydro-
phobic surface cannot be the sole mechanism by
which these proteins bind to effectors.

GCAPs are activators of retinal guanylyl cy-
clases (GCs) (Palczewski et al. 2004) and are

known to be physiological regulators of light ad-
aptation (Mendez et al. 2001; Burns et al. 2002;
Howes et al. 2002; Pennesi et al. 2003; Vinberg
et al. 2018). They show the unusual property of
activating GCs when in their Ca2+-free form but
become inhibitors ofGCsathigherCa2+ concen-
trations (Dizhoor and Hurley 1996). GCAP3 is
expressed in cone cells, whereas GCAP1 and
GCAP2 are expressed in rod cells. Although
GCAP1 and GCAP2 have the same function in
the same cell type, the twoproteins havedifferent
Ca2+-binding affinities for GC activation. This
means that both proteins are required for GC
activation over the full physiological Ca2+ con-
centration range,maximizing thedynamic range
of GC activity (Koch 2006). The GCAPs are an
example of how Ca2+ sensors have become
adapted to increase dynamic Ca2+ sensitivity of
regulatory mechanisms (Palczewski et al. 2004;
Lim et al. 2014; Koch and Dell’Orco 2015).

Four KChIP genes and a large number of
splice variants are expressed in mammals
(Pruunsild and Timmusk 2005). KChIPs were
so named as they were found to associate with
transient voltage-gated potassium channels of
the Kv4 family (An et al. 2000; Bähring 2018).
The majority of the KChIPs can stimulate the
trafficking of Kv4 channels to the plasma mem-
brane (O’Callaghan et al. 2003a; Shibata et al.
2003; Hasdemir et al. 2005; Prechtel et al.
2018). Certain KChIP isoforms, in contrast, in-
hibit the trafficking of Kv4 channels (Jerng and
Pfaffinger 2008). In addition, expression of
KChIPs regulates the gating kinetics of Kv4
channels while acting as channel subunits (An
et al. 2000; Bähring 2018) and can do so in re-
sponse to Ca2+ (Groen and Bähring 2017; Bäh-
ring 2018). Knockout of KChIP1 has revealed a
potential role in the GABAergic inhibitory sys-
tem (Xiong et al. 2009). The KChIPs are ex-
pressed predominantly in the brain but KChIP2
is also expressed in the heart and knockout of
KChIP2 causes a complete loss of calcium-de-
pendent transient outward potassium currents
and susceptibility to ventricular tachycardia
(Kuo et al. 2001). KChIP3 is also known as
DREAMorcalsenilin, andhas documented roles
in transcriptional regulation (Carrión et al. 1999;
Mellström and Naranjo 2001) and in the
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processing of presenilins and amyloid precursor
protein,which are important in the pathogenesis
of Alzheimer’s disease (Buxbaum et al. 1998; Jo
et al. 2004). Although many of the KChIPs and
their isoforms may have overlapping functions,
some differences between them have emerged
(Holmqvist et al. 2002; Venn et al. 2008).

Despite KChIP3 being implicated in three
quite distinct functions, it is likely that they are
all physiologically relevant. KChIP3 knockout
mice show reduced responses in acute painmod-
els because of changes in prodynorphin synthe-
sis (Cheng et al. 2002), decreased β-amyloid
production, and physiological defects consistent
with changes to the Kv4 channels (Lilliehook
et al. 2003). DREAM/KChIP3/calsenilin has
been found to interactwith awide range of target
proteins (Rivas et al. 2011). Recently, function-
al effects for DREAM/KChIP3/calsenilin have
been reported for the regulation of ryanodine
receptors (Grillo et al. 2019), and via an interac-
tion with RhoA on neurite growth (Kim et al.
2018).

The NCS protein family has evolved to carry
out specialized neuronal functions separate from
those of calmodulin. Of relevance is their ap-
proximately 10-fold higher affinity for Ca2+

when compared to calmodulin. Thehigheraffin-
ity allows the NCS proteins to be activated at
lower Ca2+ concentrations and, in combination
with calmodulin, extends the dynamic range
overwhichCa2+ can regulateneuronal processes.
In this way, the response of a cell to changes in
[Ca2+]i of different amplitude or kinetics would
depend on which populations of Ca2+-binding
proteins are activated under particular condi-
tions. The individual expression patterns and
subcellular localization of each of the NCS pro-
teins will also determine their specific roles in
neuronal cell signaling. The characteristic ami-
no-terminal myristoylation or palmitoylation
modifications that allow these proteins to asso-
ciate with membranes may spatially partition
them to distinct subcellular sites within the
cell, leading to a faster and more efficient re-
sponse to particular Ca2+ signals. Specific phys-
iological outcomes will also be determined by
their distinct target proteins (Burgoyne and
Haynes 2015). The various members of the

NCS family arose at points in evolution corre-
sponding to increasing neuronal sophistication
in higher animals. As such, these proteins repre-
sent an example of how the properties of CaBPs
have been fine-tuned to act in specific neuronal
signaling pathways.

NCS Proteins and Disease

In support of key roles for the NCS family in
higher organisms, a number of studies have
implicated these proteins in the pathological
progression of human neurological diseases.
Some evidence suggests indirect links with Alz-
heimer’s disease, but evidence has emerged for
more direct involvement based on key physio-
logical interactions and also on identification of
human genetic variants.

NCS-1 has been suggested to interact di-
rectly with and enhance the activity of inositol
1,4,5-trisphosphate receptors (IP3Rs) (Schlecker
et al. 2006; Nakamura et al. 2011), although this
has not been seen in all studies (Haynes et al.
2004). It has been suggested that the regulation
of IP3Rs by NCS-1 and changes in Ca2+ signal-
ing (Boehmerle et al. 2006) may underlie a po-
tential role ofNCS-1 peripheral neuropathy (Mo
et al. 2012), and also in tumor progressionwhere
it could be a therapeutic target (Moore et al.
2017; Boeckel and Ehrlich 2018).

Two other documented NCS-1 interactions
are of possible significance for neuronal dys-
function. The importance of the regulation of
dopamine D2 receptors by NCS-1, whereby
NCS-1 inhibits receptor internalization (Kab-
bani et al. 2002), comes from the fact that do-
pamine is of key importance for signaling within
the CNS and in addictive behavior (Koob 2006;
Dagher and Robbins 2009). Regulation of D2
receptors by NCS-1 underlies the effect of over-
expression of NCS-1 on spatial memory acqui-
sition (Saab et al. 2009). Dopamine D2 receptors
are the targets for all known effective antipsy-
chotic drugs (Seeman 1992), and NCS-1 is up-
regulated in patients with bipolar disorder or
schizophrenia (Koh et al. 2003) and in response
to antipsychotic drugs (Kabbani and Levenson
2006). NCS-1 is genetically associated with co-
caine addiction (Multani et al. 2012), which is
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believed to be linked to the effects of cocaine on
dopamine transporters (Ritz et al. 1987). It has
also been suggested that NCS-1 may be linked
to the effects of lithium on bipolar disorders
(D’Onofrio et al. 2015, 2017a,b).

NCS-1 has been shown to be required for an
adaptive response to dopaminergic agonists in
substantia nigra neurons. Coupled with its up-
regulation in the substantia nigra from Parkin-
son’s disease patients, this suggests that it could
be a target for modifying the vulnerability of
neurons in the substantia nigra to neurodegen-
eration (Dragicevic et al. 2014; Poetschke et al.
2015;Duda et al. 2016). The binding ofNCS-1 to
the D2 receptor involves the short cytoplasmic
carboxy-terminal domain of the receptor (Kab-
bani et al. 2002). This interaction has been par-
tially characterized using structural approaches
(Lian et al. 2011; Pandalaneni et al. 2015) and
this may allow exploration of the interaction as a
therapeutic drug target (Kabbani et al. 2012).

Another clinically important interaction is
with the interleukin 1 receptor accessory pro-
tein-like 1 protein (IL1RAPL1), which appears
to be specific for NCS-1 (Bahi et al. 2003). Mu-
tations in IL1RAPL1 have been shown to result
in X-linked mental retardation (Zhang et al.
2004; Tabolacci et al. 2006), and also have been
linked to autism spectrum disorder (ASD) (Pi-
ton et al. 2008). Knockout of IL1RAPL1 in mice
leads to neurodevelopmental and learning ab-
normalities (Montani et al. 2017). Effects of
IL1RAPL1 on exocytosis (Bahi et al. 2003), chan-
nel regulation, and neurite growth (Gambino
et al. 2007) appear to be mediated via NCS-1.

Interestingly, the study on IL1RAPL1 in
ASD also identified a mutation (R120Q) within
NCS-1 in an individual with ASD (Piton et al.
2008). This mutation was found to cause a func-
tional deficit in NCS-1 (Handley et al. 2010) that
appeared to be related to a change in the struc-
tural dynamics of the carboxyl terminus of the
protein (Handley et al. 2010) and overall struc-
tural flexibility (Zhu et al. 2014). However, the
physiological relevance of this mutation and its
exact relationship to the disease phenotype re-
mains to be established.

A second almost identical homolog of fre-
quenin expressed in Drosophila (Frq2) and

human NCS-1 are able to interact with the gua-
nine nucleotide exchange factor Ric8a and this
interaction was shown to be physiologically rel-
evant for development and neurotransmission
in flies (Romero-Pozuelo et al. 2014). Character-
ization of the structural basis for this interaction
identified an interface that was used to examine
potential therapeutic compounds that could pre-
vent complex formation (Mansilla et al. 2017). As
proof of principle, the authors showed that a
potential therapeutic compound could alleviate
the symptoms of fragile X syndrome in a fly
model. These studies demonstrate the potential
for such structural approaches to generate leads
for new therapeutics that could be used in NCS-
1-related pathologies (Roca et al. 2018).

The neurodegenerative disease known as
Wolfram syndrome is caused by loss of function
of the endoplasmic reticulum (ER) proteinWF1.
Themolecular basis of the disorder appears to be
because of a loss of coupling betweenmitochon-
dria and the ER that is required for transfer of
Ca2+ to the mitochondria (Angebault et al.
2018). This, in turn, leads to mitochondrial dys-
function and potential cell death. In exploring
this mechanism further, it was discovered that
WF1 intersects directly with NCS-1. Moreover,
overexpression of NCS-1 was able to compen-
sate for the loss of WF1 function in fibroblasts
from Wolfram syndrome patients (Angebault
et al. 2018), suggesting that NCS-1 may be a
useful target for development of new therapeutic
approaches.

VILIP1 has been suggested to have a role in
Alzheimer’s disease because of an association
with amyloid plaques in diseased brains
(Schnurra et al. 2001). It is not clear, however,
whether there is any causal relationship, but
VILIP1 in cerebrospinal fluid has been widely
studied as an early-stage biomarker of Alz-
heimer’s disease (Braunewell 2012; Groblewska
et al. 2015; Babić Leko et al. 2016; Kirkwood et
al. 2016).

A more direct involvement of neurocalcin δ
in neuronal disease has come from a study
(Riessland et al. 2017) showing that knockdown
of this protein results in protective effects in
various models of spinal muscular atrophy
across a number of species. Neurocalcin δ had
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previously been found to interact with clathrin
(Ivings et al. 2002), and the protective effects of
neurocalcin δ were attributed to a consequence
of the loss of neurocalcin δ as a negative regula-
tor of endocytosis. Neurocalcin δ could, there-
fore, be a potential therapeutic target by inhib-
itors of its activity (Riessland et al. 2017).

Dystonia is an early-onset movement disor-
der, which can be inherited in an autosomal-
dominant manner linked to a defined set of
genes or alternatively in an autosomal-recessive
manner (the latter is classified as DYT2 dysto-
nia). Missense mutations in hippocalcin were
found in subjects with DYT2-like dystonia
(Charlesworth et al. 2015). It was suggested
that the mutations could have disrupted hippo-
calcin’s role in neuronal calcium signaling.
Direct examination of the effect of dystonia mu-
tations on the physiological function of hippo-
calcin showed that the mutations did not affect
theprotein structure but resulted in anoligomer-
ization defect (Helassa et al. 2017). It is note-
worthy that for another NCS protein, namely
GCAP1, dimerization has been suggested to be
functionally important (Ames 2018; Lim et al.
2018). In addition, an increase in Ca2+ influx
through VGCCs of the CaV2 type in cells ex-
pressing the mutants was observed compared
to wild-type hippocalcin, thus suggesting a key
role for perturbed Ca2+ homeostasis in DYT2
dystonia because of the missense mutations
(Fig. 7). The existence of other mutations that
would produce truncated proteins have subse-
quently been discovered in two dystonia families
(Atasu et al. 2018) further substantiating the link
between hippocalcin and DYT2 dystonia.

The retinally expressed NCS proteins,
GCAPs, have known mutations that have been
shown to result in retinal dystrophies and retinal
degeneration (Behnen et al. 2010;Dell’Orco et al.
2010), consistent with their key functions in
photoreceptors. For GCAP1, which is encoded
by the human gene GUCA1A, nearly 20-point
mutations have been identified in patients with
autosomal-dominant retinal dystrophy, leading
to the suggestion that photoreceptor death is
linked to an abnormality in calcium signaling.
A recently identified mutation in GCAP1
(E111V) has been characterized biochemically

and shown to decrease GCAP1’s affinity for
calcium, and thereby shifts its regulation of
GCs out of the physiological range of calcium
concentration (Marino et al. 2018). In addition,
many mutations are known in the photorecep-
tor guanylate cyclase GUCY2D, the target for
GCAPs, which result in retinal dystrophies.
Characterization of the effects of some of these
mutations has indicated that their defects are in
the Ca2+-dependent regulation of their catalytic
activity by GCAPs (Wimberg et al. 2018).

The idea that KChIPs may contribute to
neuronal disease first arose when calsenilin/
KChIP3 was discovered as an interactor with
presenilins, and to regulate the processing of
presenilins, which suggested a link to the path-
ogenesis of Alzheimer’s disease (Buxbaum et al.
1998; Jo et al. 2004). KChIP1 has been implicat-
ed in changes in behavioral anxiety in knockout
mice (Xia et al. 2010) and a human genetic var-
iant associated with attention deficit disorder
(Yuan et al. 2017). KChIPs have also been shown
to be involved in pain control (Jin et al. 2012;
Kuo et al. 2017; Tian et al. 2018). More recently,
DREAMhas been shown to regulate the onset of
cognitive decline in a mouse model of Hunting-
ton’s disease (López-Hurtado et al. 2018). The
KChIPs may become targets for therapeutics
that could be used for several types of neurolog-
ical disorders. A major challenge will to be de-
velop drugs that target specific KChIP isoforms.

CaBP PROTEIN FAMILY

The Physiology and Function of CaBPs

The CaBPs are a family of EF-hand-containing
Ca2+-binding proteins, which are only found in
vertebrates (Haeseleer et al. 2000), and appear to
have arisen together in evolution as a family of
genes (Fig. 8;McCueetal. 2010a).Theyrepresent
another example of a diverse family of Ca2+-sen-
sors capable of regulating discrete processes in
the nervous systems of higher organisms. The
CaBPs share sequence homology with calmodu-
lin, and also display a similar structural arrange-
ment of EF-hand motifs. Each of the CaBPs has
four EF-hands although, like the NCS proteins,
they display different patterns of EF-hand inac-
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tivation(Fig.8). InCaBP1-5, thesecondEF-hand
is inactive, with the exception of CaBP3, which
also has an inactive EF-1 (although CaBP3 is be-
lieved to represent a pseudogene; Haeseleer et al.
2000). Two proteins were named CaBP7 and
CaBP8 (Haeseleer et al. 2002), but bioinformatic
analysis is more consistent with them being a
conserved and distinct subfamily of CaBPs

(McCue et al. 2010a). We will, therefore, refer
to them by their alternative names calneuron 2
and calneuron 1, respectively (Wu et al. 2001;
Mikhaylova et al. 2006). The calneurons, in con-
trast to theCaBPs, have a different pattern of EF-
hand inactivation with active EF-hands 1 and 2
and inactive EF-hands 3 and 4 (Mikhaylova et al.
2006). The CaBPs also differ from calmodulin
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Figure 7. Effect of dystonia mutations on the structure of hippocalcin and its effect on calcium entry. (Top)
Alignment of hippocalcin crystal structure (magenta) with hippocalcin (T71N) (marine) and hippocalcin
(A190T) (salmon) did not show any significant difference. Crystal structures were obtained for wild-type (wt)
human hippocalcin (PDB 5G4P), hippocalcin (T71N) (PDB 5M6C), and hippocalcin (A190T) (PDB 5G58) at a
resolution of the 2.42, 3.00, and 2.54 Å, respectively (Helassa et al. 2017). (Bottom) Dystonia-causing hippocalcin
mutants increase depolarization-induced calcium influx. Differentiated SH-SY5Y cells transfected with hippo-
calcin-mCherry constructs were loaded with Fluo-4 to monitor calcium concentration changes. After KCl depo-
larization, live cellswere imagedona spinning-disk confocalmicroscope.Maximumintracellularcalciumincrease
and time course after KCl stimulation, showing that both hippocalcin (T71N) and hippocalcin (A190T) increased
calcium entry in response to depolarization. (From Helassa et al. 2017; adapted under the terms of the Creative
Commons CC BY license, which permits unrestricted use, distribution, and reproduction in any medium.)
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in that their central α helical linker domain
connecting the carboxy- and amino-terminal
EF-hand pairs is extended by four amino acid
residues. This has been suggested to allow these
proteins to interact with unique targets (Haese-
leer et al. 2000). Calneuron 1 has been shown to
be expressed in essentially all rat and human
brain regions (Hradsky et al. 2015).

A major difference compared with calmod-
ulin is the ability of CaBP 1 CaBP2, calneurons 1
and calneuron 2 to target to specific cellular
membranes (McCue et al. 2009). CaBP1 and
CaBP2 are amino terminally myristoylated,
which allows localization to the plasma mem-
brane andGolgi apparatus (Haeseleer et al. 2000;
Haynes et al. 2004). The precise amino-terminal
sequence to which the myristoyl group is at-
tached is also important in the targeting of these
two proteins, as exemplified by the long and
short splice isoforms, which show subtle differ-
ences in their localization. CaBP1-Long localizes
predominantly to the Golgi and also displays
some cytosolic localization, whereas CaBP1-
Short localizes most prominently to the plasma
membrane and to Golgi structures (Haeseleer
et al. 2000; McCue et al. 2009). Alternative splic-
ing of the CaBP1 gene generates a third protein
product, caldendrin (Seidenbecher et al. 1998).

This splice isoform is significantly larger than
either CaBP1-Long or CaBP1-Short because of
an amino-terminal extension, but caldendrin
messenger RNA (mRNA) lacks the exon re-
quired for N-myristoylation and as a result the
protein displays a markedly different subcellular
localization to its shorter relatives.

Amino-terminal acylation is important in
the localization of some CaBPs, but the calneu-
rons appear to be targeted via a different mech-
anism. Like CaBP1 and CaBP2, calneuron 1 and
calneuron 2 localize to internal membranes that
colabel with Golgi specific markers and to vesic-
ular structures (McCue et al. 2009; Mikhaylova
et al. 2009). Calneuron 1 and calneuron 2 do not
possess an amino-terminal myristoylationmotif
and differ from the rest of the CaBP family be-
cause of a 38 amino acid extension at their
carboxyl terminus. Analysis of this sequence re-
vealed a predicted carboxy-terminal transmem-
brane domain with a cytosolic amino terminus
(McCue et al. 2011). The carboxy-terminal do-
main resembles tail-anchor motifs and directly
localizes calneuron 1 and calneuron 2 to mem-
branes particularly of the trans-Golgi network
(TGN) (McCue et al. 2009; Hradsky et al. 2011).

To date, only a limited number of CaBP
structures have been solved. These include

EF1 EF2 EF3 EF4 Calmodulin

CaBP/calneuron family

Caldendrin

CaBP1/2

CaBP3

CaBP4/5

Calneuron 1/2

EF1 EF2 EF3 EF4

EF1 EF2 EF3 EF4

EF1 EF2 EF3 EF4

EF1 EF2 EF3 EF4

EF1 EF2 EF3 EF4

Figure 8. Schematic diagram showing the domain structure of calmodulin and members of the CaBP/calneuron
protein family. Active EF-hand motifs are shown in red and inactive EF-hand motifs are shown in pink.
Compared to calmodulin the calcium-binding proteins (CaBPs) have an extended linker region between their
first EF-hand pair and their second EF-hand pair (shown in black). CaBP1 and CaBP2 have anN-myristoylation
site (shown in blue). CaBP1 and CaBP2 have alternative splice sites at their amino terminus, which give rise to
long and short isoforms (shown in orange). Calneurons 1 and 2 possess a 38 amino acid extension at their
carboxyl terminus (shown in purple).
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CaBP1-Short (Wingard et al. 2005; Li et al. 2009;
Findeisen and Minor 2010), CaBP4 (Park et al.
2014a,b; PDB codes: 2M28 [Ca2+-bound car-
boxy lobe]), 2M29 (Ca2+-bound amino lobe),
and calneuron 2 (McCue et al. 2012). This infor-
mationmayprovide insight into the structures of
the rest of the CaBPs. Analogy to calmodulin
would suggest that the CaBPs should adopt a
dumbbell-like tertiary conformation consisting
of an amino-terminal domain–containing EF-
hand 1 and EF-hand 2, and a carboxy-terminal
domain–containing EF-hand 3 and EF-hand 4
connected by a central linker. Nuclear magnetic
resonance (NMR) analysis revealed that CaBP1
does indeed have two independent, noninteract-
ing domains joined by aflexible linker (Wingard
et al. 2005). The NMR structures of CaBP4 and
calneuron 2 are of either the isolated amino- or
carboxy-terminal domains, although in every
instance these structures resemble compact, in-
dependently folded, helix-loop-helix arrange-
ments very much like those observed in CaBP1
and calmodulin. Investigation into the effects of
Mg2+ and Ca2+ binding has shown that, as pre-
dicted, the second EF-hand of CaBP1 is incapa-
ble of binding divalent cations. EF-hand 3 and
EF-hand4bind tobothMg2+and toCa2+,where-
as EF-hand 1 is thought to be constitutively oc-
cupied by Mg2+ (Wingard et al. 2005; Li et al.
2009).TheMg2+-boundformofCaBP1 is similar
to that of apo-calmodulin but the Ca2+-bound
formappearsmarkedly different. This is perhaps
unsurprising as neither of the amino-terminal
EF-hands of CaBP1 bind to Ca2+ under saturat-
ing conditions and only EF-hand 1 binds to
Mg2+. This results in a constitutively closed
conformation of the amino-terminal domain,
whereas the carboxy-terminal domain can
switch toanopenconformationuponCa2+bind-
ing to EF-hand 3 and EF-hand 4. Comparison of
the carboxy-terminal domain with that of cal-
modulin reveals differences in exposed hydro-
phobic residues thought to mediate target inter-
actions (Wingard et al. 2005).

The structural differences between calmod-
ulin and CaBP1 may go some way to explaining
how they mediate differing effects on the same
target molecules. For instance, both CaBP1 and
calmodulin bind to CaV1 VGCCs with calmod-

ulin causing Ca2+-induced channel closure, but
CaBP1 promotes channel opening (Zhou et al.
2004a, 2005).

Both calmodulin and CaBP1 also regulate
IP3Rs (Yang et al. 2002; Haynes et al. 2004; Kasri
et al. 2004) with CaBP1 binding the type I IP3R
with 100-fold higher affinity than calmodulin.
This high-affinity binding may result from the
exposure of a distinct hydrophobic patch re-
vealed in the carboxyl terminus of CaBP1 upon
Ca2+ binding (Haynes et al. 2004; Li et al. 2009).
This unique surface hydrophobicity profile is
likely to be important for the specialization of
the CaBP1 function in the brain and retina,
and the existence of splice isoforms is also likely
to further fine-tune the actions of this Ca2+ sen-
sor. The higher affinity of CaBPs compared with
calmodulin for the same target has led to the
notion that the mechanism by which CaBPs dif-
ferentially regulate such targets is through com-
petition for binding to the same regulatory sites.
It has been suggested that calmodulin, in spite of
being present in a large molar excess over the
various CaBPs, can be displaced from a target
because of its lower affinity. Much of the exper-
imental data leading to these conclusions has
been derived from in vitro studies examining
short binding motifs from a given effector pro-
tein (Kim et al. 2004; Zhou et al. 2005; Oz et al.
2011; Findeisen et al. 2013). To assess the situa-
tion in an intact system, an elegant study byYang
and coworkers (2014) tested Ca2+ channel regu-
lation by calmodulin and CaBP4 in live cells. It
was determined that in addition to a degree of
competition for binding to the same target sites
in CaV1.3 channels by calmodulin and CaBP4,
an allosteric mechanism was also likely to exist
whereby both proteins could simultaneously as-
sociatewith the channel.Thisdual bindingmode
couldpotentially be favored in resting conditions
where apo-calmodulin has high affinity for the
channel IQ motif. CaBP4 would simultaneously
be associatedwith a distinct bindingmotif on the
channel. Upon an increase in [Ca2+]i, a compet-
itive interaction is unmasked by the higher affin-
ity of CaBP4 for the calmodulin-binding site on
the channel. This model accurately predicts the
observed experimental data and loss of Ca2+-
dependent inactivationofCaV1.3 in thepresence
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of CaBP4 and Ca2+ even when physiological lev-
els of calmodulin are present (at least a 10-fold
excess of calmodulin over CaBP4). It seems cer-
tain that for other effector proteins, including
variousVGCCs and ligand-gatedCa2+ channels,
dual regulation by calmodulin and the CaBPs
will represent a combination of allostery and di-
rect competition.

In addition to novel modes of target interac-
tion as discussed above, differing expression pat-
terns, subcellular targeting mechanisms, and
Ca2+-binding properties of the variousmembers
of the CaBP protein family likely bestow further
specialization in the regulation of important
Ca2+-channels in the central nervous system.

The majority of studies to date on CaBP1
have examined the functions of the longest splice
isoform, caldendrin, and it is not yet clearwheth-
er the other splice isoforms of CaBP1 can carry
out the same functions. Indeed, detection of
CaBP1-Long and CaBP1-Short proteins in ro-
dent brain has proven elusive (Kim et al. 2014;
Reddy et al. 2014), and it would appear that cal-
dendrin is expressedat significantlyhigher levels.
In spite of this, in simplified experimental sys-
tems, CaBP1-Long and CaBP1-Short have been
found to have roles in the regulation of various
Ca2+channels, including P/Q-type (CaV2.1)
channels (Lee et al. 2002), L-type (CaV1.2) chan-
nels (Zhou et al. 2005; Cui et al. 2007), TRPC5
channels (Kinoshita-Kawada et al. 2005), and
IP3Rs (Yang et al. 2002), which they inhibit
(Haynes et al. 2004; Kasri et al. 2004). A struc-
tural basis for the inhibition of IP3Rs has been
determined, whereby CaBP1 binding locks the
receptor and prevents the intersubunit motion
required for initiation of channel opening (Li
et al. 2013). The interaction of CaV2.1 with
CaBP1 appears to rely acutely upon amino-ter-
minal myristoylation. Wild-type, myristoylated,
CaBP1-Long enhances channel inactivation and
shifts the activation range to more depolarizing
voltages (Lee et al. 2002). An N-myristoylation
mutant, however, was unable to mediate these
effects, and insteadmodulated channels in a sim-
ilar fashion to calmodulin (Few et al. 2005). Dif-
ferentialmodulation of L-type channels depend-
ing on the splice isoform of CaBP1 has also
been observed. CaBP1-Short has been shown

to completely inhibit inactivation of CaV1.2
channels (Zhou et al. 2005), but caldendrin
causes a more modest suppression and signals
through a different set of molecular determi-
nants (Tippens and Lee 2007). This suggests
that the subcellular localization of CaBP1 splice
variants is important for their differing func-
tions. In the auditory system, CaBP1 is expressed
in spiral ganglionneurons (Yang et al. 2016), and
CaBP1 knockout mice exhibit progressive hear-
ing loss, albeit less severely than that observed in
CaBP2 knockout animals (Yang et al. 2016). In
the visual system, CaBP1 appears to exert similar
functionstoCaBP2 (Sinhaetal. 2016), and lossof
the CaBP1 proteins induces defects in transmis-
sion of light responses by the retina. It should be
noted that a number of these studies have used
knockout animals that do not express any of the
CaBP1 isoforms and therefore assigning a func-
tion to a specific splice variant is not possible.

Interactions of caldendrin with other types
of proteins have also been reported, such as its
interaction with light chain 3 of MAP1A/B, a
microtubule cytoskeletal protein (Seidenbecher
et al. 2004), and with myo1c a member of the
myosin-1 family of motor proteins (Tang et al.
2007). A role for caldendrin in NMDAR signal-
ing has been reported involving an interaction
with a novel neuronal protein, Jacob. Upon ex-
trasynaptic NMDAR activation, Jacob translo-
cates to the nucleus to influence CREB activity,
resulting in the stripping of synaptic contacts
and an associated simplification of dendritic ar-
chitecture. Synaptic NMDAR-mediated synap-
todendritic [Ca2+]i elevation induces caldendrin
binding to Jacob, thereby inhibiting nuclear traf-
ficking and maintaining dendritic organization.
This interaction represents a novel mechanism
of synapse to nucleus communication and high-
lights the important roles of CaBP family mem-
bers in the mammalian central nervous system
(Dieterich et al. 2008). Finally, caldendrin has
recently been shown to control actin remodeling
in dendritic spines in response to synaptic activ-
ity (Mikhaylova et al. 2018). Animals in which
the caldendrin gene has been deleted exhibited
impaired dendritic spine plasticity, defective
LTP and impaired hippocampus-dependent
learning (Mikhaylova et al. 2018). Thesefindings
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are consistent with related studies highlighting a
function for caldendrin in the hippocampus. It is
required for efficient encoding of hippocampal-
dependent spatial and fear-basedmemory (Yang
et al. 2018a), and mice in which all CaBP1 iso-
forms are deleted, including caldendrin, exhibit
defects in excitation/inhibition in hippocampal
circuits (Nanou et al. 2018; Yang et al. 2018b).

Little information is available concerning
the function of CaBP2. Although it was initially
detected exclusively in the retina, it was also
identified in auditory inner hair cells (Cui et al.
2007). CaBP5 was also detected in inner hair
cells as well as in the retina, but in contrast to
CaBP2 was found to have a modest inhibitory
effect on the inactivation of CaV1.3 channels in
transfected cells (Cui et al. 2007). Newer re-
search points to an important role for CaBP2
in both the visual and auditory systems. Mice
lacking CaBP2 have no gross morphological de-
fects of the retina or retinal neuronal wiring;
however, they do exhibit impaired transmission
of retinal light responses (Sinha et al. 2016).
CaBP2 is now known to be expressed in the
cochlea in both inner and outer hair cells, and
gene deletion of all CaBP2 splice variants leads
to early-onset hearing loss (Yang et al. 2016,
2018c). Some of the functions of CaBP2 may
stem from its ability to stimulate CaMK activity,
although this has only been reported in vitro
(Cui et al. 2007). Little is known about the func-
tions of CaBP5 but knockout mice displayed
reduced sensitivity of retinal ganglion cells to
light responses implicating CaBP5 in photo-
transduction pathways. CaBP5 was also found
to interact with, and suppress, calcium-depen-
dent inactivation of CaV1.2 channels (Rieke et al.
2008). One report has detailed an interaction of
CaBP5 with components of the exocytotic ma-
chinery, and showed that expression ofCaBP5 in
a neuroendocrine cell line enhanced secretory
granule exocytosis (Sokal and Haeseleer 2011).
These data implicate CaBP5 as a potential regu-
lator of visual and auditory processing, perhaps
throughmodulation of neurotransmitter release
in special sensory neurons.

CaBP4 is the most extensively characterized
of the CaBP family. It is expressed in the retina
where it localizes to synaptic terminals and has

also been detected in auditory inner hair cells.
CaBP4 modulates VGCCs, and directly associ-
ates with the carboxyl terminus of the CaV1.4 α1
pore-forming subunit, shifting the activation
range of the channel to more hyperpolarized
voltages in transfected cells (Haeseleer et al.
2004; Shaltiel et al. 2012). A plausible structural
basis for this regulation has now been presented,
whereby CaBP4 is speculated (through molecu-
lar docking predictions) to relieve an inhibitory
self-interaction of the channel through binding
to the IQ motif (Park et al. 2014b). CaBP4 has
also been shown to eliminate Ca2+-dependent
inactivation of CaV1.3 channels, which is likely
to be important in themodulation of these chan-
nels in inner hair cells where Ca2+-dependent
inactivation is weak or absent probably allowing
the audition of sustained sounds (Yang et al.
2006). A stronger inhibitory effect has been
noted for CaBP1, however, suggesting that
CaBP4 may not be the key Ca2+ sensor involved
in this process (Cui et al. 2007). The function of
CaBP4 is modulated by protein kinase Cζ in the
retina,with increasedCaBP4phosphorylation in
light-adapted tissue. Phosphorylation prolongs
Ca2+ currents through CaV1.3 channels, which
suggests that light-stimulated phosphorylation
of CaBP4 might help to regulate presynaptic
Ca2+ signals in photoreceptors (Lee et al. 2007).
Conversely, dephosphorylation of CaBP4, stud-
ied in transfected HEK293T cells, by protein
phosphatase 2A, inhibited its ability tomodulate
CaV1.3activity (Haeseleeretal. 2013).CaBP4has
also been implicated in neurotransmitter release
at synaptic terminals because of its interaction
with unc119, a synaptic photoreceptor protein
important for neurotransmitter release and
maintenance of the nervous system (Haeseleer
2008). Knockout of CaBP4 results in mice with
abnormalities in retinal function where rod bi-
polar responses are approximately 100 times
lower than those observed in wild-type animals
(Haeseleer et al. 2004).

The functions of calneuron 1 and calneuron
2 have only recently begun to be investigated in
detail. Both have been found to and inhibit the
activity of PI4KIIIβ at low, or resting, [Ca2+]i.
Overexpression of the proteins was also found
to inhibit Golgi-to-plasma membrane traffick-
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ing, caused enlargement of the TGN and re-
duced the number of Piccolo-Bassoon-positive
transport vesicles. A molecular switch for the
production of phosphoinositides at the TGN is
thought to be created by the opposing roles of
NCS-1 and calneuron 1 or calneuron 2. At ele-
vated Ca2+ levels, NCS-1 preferentially binds to
PI4KIIIβ displacing the calneurons thereby ac-
tivating the enzyme to drive enhanced TGN-to-
plasma membrane trafficking (Mikhaylova et al.
2009). Calneuron 2 was discovered in a genome-
wide search for regulators of mitosis (Neumann
et al. 2010). Analysis of the role of calneuron 2
during cell division has suggested that it plays a
key role in cytokinesis through its inhibitory
control of PI4KIIIβ (Rajamanoharan et al.
2015).

Patch clamping experiments have shown
that overexpressed calneuron 1 can inhibit N-
type Ca2+-channel currents in 293T cells, and
this inhibition was not observed with a truncat-
ed calneuron lacking its hydrophobic carboxyl
terminus, suggesting normal localization is im-
portant in carrying out this function (Shih et al.
2009). Calneuron 1 and NCS-1 differentially
regulate adenosine receptor activity, an impor-
tant molecular target for the treatment of nu-
merous human neurological diseases (Navarro
et al. 2014). Similar differential regulation by
calneuron 1 and NCS-1 has recently been re-
ported for the CB1 cannabinoid receptor, an
important potential target in nociceptive signal-
ing (Angelats et al. 2018).

CaBP Proteins and Disease

CaBPs have been directly or indirectly implicat-
ed in multiple neuronal diseases. The postmor-
tem brains of chronic schizophrenics have lower
numbers of caldendrin-immunoreactive neu-
rons, which express the protein at amuch higher
level. This loss of caldendrin in someneurons (or
loss of the neurons themselves) and up-regula-
tion in others is likely to profoundly change
synaptodendritic signaling in schizophrenic pa-
tients (Bernstein et al. 2007). Changes in the dis-
tribution of caldendrin have also been observed
in kainate-induced epileptic seizures in rats. Cal-
dendrin translocates to the postsynaptic density

only in rats that suffered epileptic seizures, which
may implicate the protein in the pathophysiolo-
gy of the disease (Smalla et al. 2003). Mutations
in CaBP2 have now been identified and linked
with hearing impairments in humans (Schrau-
wen et al. 2012; Marková et al. 2016). One of
these studies identified a splice-site mutation in
three consanguineous Iranian families, which
likely generates a truncated CaBP2 protein with
lower affinity for CaV1.3, leading to moderate-
to-severe hearing loss (Schrauwen et al. 2012).
Calneuron 1 has recently been shown to be over-
expressed in aldosterone-producing adenoma
(Kobuke et al. 2018). The protein is required
for stimulated aldosterone production and may
therefore represent a therapeutic target for the
control of excess hormone production in such
tumors (Kobuke et al. 2018). CaBP4 function
has been linked to disease, and mutations in
this gene generate defects predominantly in ret-
inal function. Knockout of CaBP4 was shown to
cause a phenotype similar to that of incomplete
congenital stationary night blindness in patients
(Haeseleer et al. 2004), and mutations in CaBP4
can cause autosomal-recessive night blindness
(Zeitz et al. 2006). Patients with mutations in
the CaBP4 gene have been identified that display
congenital stationary night blindness. However,
some patients with mutations display different
phenotypes (Zeitz et al. 2006). In particular, a
novel homozygous nonsense mutation has
been reported in two siblings that resulted in
severely reduced cone function but only negligi-
ble effects on rod function (Littink et al. 2009).
CaBP4 null mutations have been observed in a
consanguineous family with four members af-
fected by Leber’s congenital amaurosis (Aldah-
mesh et al. 2010). This condition is relatively
rare, affecting about 1:80,000 of the general pop-
ulation, but is the most common cause of inher-
ited loss of vision in children. Numerous studies
now point to genetic mutations in CaBP4 as
causative factors in a set of related cone–rod ret-
inopathies (Littink et al. 2009; Aldahmesh et al.
2010; Bijveld et al. 2013; Hendriks et al. 2017;
Smirnov et al. 2018). Multimodal imaging of
five genetically characterized patients affected
by CaBP4-related retinopathy showed a variable
amount of photoreceptor dysfunction but this
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remained stable and did not deteriorate over a
period of years (Schatz et al. 2017). This has led
to the hope that CaBP4-based retinopathies
might be tractable to gene-therapy-mediated
correction. More recently, a CaBP4 missense
mutation (G155D) has been implicated in a
rare inherited form of frontal lobe epilepsy
(Chen et al. 2017b). This would suggest a wider
central function for CaBP4 outside of the visual
system, which requires further investigation in
future studies.

CONCLUDING REMARKS

It has become increasing clear that a full under-
standing of how specific aspects of physiological
neuronal function are regulated in response to
spatially and temporally distinct Ca2+ signals
will require a detailed knowledge of the Ca2+

sensors involved. In addition, many of these
the Ca2+ sensors may be implicated indirectly
because of abnormalities in Ca2+ signaling path-
ways in neurological or neurodegenerative dis-
orders. In some cases, the Ca2+ sensors may be
more directly implicated either because of their
specific regulatory roles that impinge on key dys-
functional pathways. Alternatively, genetic mu-
tations or variations of Ca2+ sensor activity may
have a more direct effect on brain dysfunction.
No matter how the Ca2+ sensors are involved,
they are likely to be potential therapeutic targets
for new drugs that can be used to treat human
disorders. For further understanding of the nor-
mal roles of each of the Ca2+ sensors, further
insight into the molecular basis for the regula-
tion of their targets andmore detailed dissection
of the physiological roles of each protein in iden-
tified neurons is required. This knowledge will
form the basis for future approaches to the de-
velopment of treatments that could alleviate a
variety of human neuronal disorders under-
pinned by defects in Ca2+ signaling.
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