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Abstract
The discovery of cell-free microRNAs (miRNAs)
in serum, plasma and other body fluids has yielded
an invaluable potential source of non-invasive
biomarkers for cancer and other non-malignant dis-
eases. miRNAs in the blood and other body fluids
are highly stable in biological samples and are
resistant to environmental conditions, such as freez-
ing, thawing or enzymatic degradation, which
makes them convenient as potential biomarkers. In
addition, they are more easily sampled than tissue
miRNAs. Altered levels of cell-free miRNAs have
been found in every type of cancer analysed, and
increasing evidence indicates that they may partici-
pate in carcinogenesis by acting as cell-to-cell sig-
nalling molecules. This review summarizes the
biological characteristics and mechanisms of release
of cell-free miRNAs that make them promising
candidates as non-invasive biomarkers of cancer.

Introduction

MicroRNAs (miRNAs) are non-coding RNAs that are
~21 nucleotides in length. They are synthesized in the
cell nucleus (1,2), processed by the Drosha enzyme com-
plex (3) and then exported to the cytoplasm by GTP-
dependent exportin-5 (4), where they are further pro-
cessed by the Dicer enzyme complex (5,6) to yield
mature miRNAs (7,8). In the cytoplasm, a leader strand
of mature miRNA is attached to the RNA-induced silenc-
ing complex (RISC) (9,10), and it recognizes messenger
RNA (mRNA) with a partially complementary sequence
(11), inducing degradation or inhibiting translation of the
mRNA (12–15). miRNAs are involved in post-transcrip-
tional gene regulation of virtually all cellular processes

that have been investigated so far. These include prolifer-
ation, differentiation, apoptosis and haematopoiesis
(7,12,16–18). It was soon discovered that cellular
miRNA expression levels were altered in multiple patho-
logical conditions, including cancer (12,19–23). In can-
cer, miRNA expression profiles could distinguish
malignant from non-malignant tissue, leading to the
search for potential cancer biomarkers. Several studies
have suggested that tissue miRNAs could be used as
biomarkers for the classification and diagnoses/prognoses
of lung cancer, breast cancer, colorectal cancer, pancre-
atic cancer, hepatocarcinoma and neuroblastoma, among
others (24–32). Moreover, experimentally manipulating
the levels of specific miRNAs affects many carcinogenic
properties of tumour cell lines, such as survival, invasion,
metastasis and tumour progression (33–37). Tissue miR-
NAs have undeniable potential for clinical use, but
accessing them in solid tumours remains problematic.

Later, it was discovered that miRNAs were also
secreted by a variety of cell types under normal and
pathological conditions. These secreted, or cell-free,
miRNAs are highly stable and can be delivered to recip-
ient cells in a functional way. It has been hypothesized
that secreted miRNAs are mediators of cell-to-cell com-
munication and gene expression, and currently, there is
experimental evidence that supports that hypothesis.

Cell-free miRNAs have been found in peripheral blood
(referred to as circulating miRNAs) and several other body
fluids, such as tears, urine and pleural effusions, exhibiting
distinctive expression patterns in healthy individuals (38–
40). Similar to tissue miRNAs, altered profiles of cell-free
miRNAs were found to be associated with several patho-
logical conditions including cancers (38,41). The accessi-
bility and stability of cell-free miRNAs (38,42,43) makes
them valuable non-invasive biomarkers (44), and they
have been actively investigated as such.

Cell-free miRNAs in serum and plasma

In 2008, cell-free miRNAs were isolated from the serum
and plasma of healthy individuals in a stable form and
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were protected from endogenous ribonuclease (RNase)
activity in the blood (38,42).

Mitchell et al. (38) first confirmed the presence of
small RNA species ranging 10–70 nt in size in human
plasma by characterizing the size of total 32P-labelled
RNA extracted from healthy donor plasma. Then, they
generated a small RNA cDNA library from the 18–
24 nt RNA fraction, demonstrating that 91 of 98
sequences corresponded to known miRNAs and directly
confirming that mature miRNAs are present in human
plasma. Finally, they quantified three known mature
miRNAs (miR-15b, miR-16 and miR-24) in the plasma
of three healthy donors using specific probes and RT-
qPCR. Additionally, Chen et al. (42) used semi-quanti-
tative RT-PCR to detect six randomly selected mature
miRNAs in human plasma and serum. They then
sequenced the PCR products from serum and showed
that 87 of 100 sequences corresponded to the appropri-
ate miRNAs. Both studies demonstrated that endogenous
miRNAs in serum and plasma are resistant to RNase
digestion. Nevertheless, synthetic miRNAs added
directly to serum and plasma samples were rapidly
degraded, indicating that endogenous miRNAs exist in a
protected form that is not related to their intrinsic short
length or structure (38,45,46). In contrast, large RNAs
from serum were rapidly degraded by ribonuclease
digestion, which illustrated the potential biological rele-
vance of cell-free miRNAs in the blood (42). It was
later shown that miRNAs are protected by encapsulation
in exosomes and by protein-binding complexes (see the
Mechanisms of miRNA release section). In addition,
miRNAs were shown to be resistant to environmental
conditions, such as freezing, thawing, pH and enzymatic
degradation (38,42), which makes them to be used as
potential biomarkers.

In addition to the high stability of cell-free miRNAs,
the first studies reported that miRNA levels are consis-
tent among healthy individuals (42,47). Chen et al. (42)
analysed the levels of 14 randomly selected miRNAs in
the serum of seven healthy Chinese individuals (22–
25 years old; four men and three women) by reverse
transcriptase (RT)-PCR and found that the expression
levels were consistent. Gilad et al. (47) analysed 18
highly expressed miRNAs in the serum of two unrelated
healthy individuals (females; age not specified) by RT-
PCR and found that their levels were consistent. Mitch-
ell et al. (38) measured the levels of three miRNAs that
are found in the plasma at moderate to low levels from
three healthy individuals (unspecified age or gender),
and they found no differences in expression levels.
Unfortunately, none of these studies assessed how indi-
viduals were determined to be healthy; only Gilad et al.
mentioned that they were chosen by self-reporting of

good health. On the other hand, it was reported that
serum miRNA levels vary with pregnancy in healthy
women, suggesting that the levels of miRNAs differ
according to physiological status. However, this study
analysed pregnant women compared with unrelated non-
pregnant women rather than analysing the same subjects
when pregnant and when not (47). In addition, it was
reported that subjects with diabetes had altered levels of
serum miRNAs compared with healthy subjects (42),
showing that metabolic diseases could be associated
with altered miRNA levels. Nevertheless, there are no
studies that systematically analysed the levels of circu-
lating miRNAs from healthy subjects of different ages,
ethnicities or physiological states. In addition, the levels
of miRNAs during subclinical pathologies or after the
natural resolution of infectious diseases have not been
investigated. Therefore, miRNA studies should include
healthy controls who are matched in age, ethnicity and
gender. Equally important, healthy status should be
assessed by clinical and laboratory measurements. Addi-
tionally, recent reports have suggested that environmen-
tal contaminants can alter the expression profile of
endogenous miRNAs in human and mouse cells (48–
50). There are several studies of endogenous miRNA
expression changes attributable to air pollutant exposure
in human beings (50–53), but only two studies regarding
the effect of environmental contaminants on cell-free
miRNAs have been published (54,55). Consequently,
studies searching for miRNAs biomarkers may consider
the influence of environmental pollution in the alter-
ations of miRNAs levels: for example, people living in
highly polluted regions compared with people living in
regions without contamination or people exposed to a
particular contaminant such as smokers versus non-smo-
kers.

Regarding total concentration of miRNAs from
healthy subjects, the cell-free miRNA concentration in
serum and plasma is much lower than the miRNA con-
centration in blood cells from the same individual,
although there is an enriched miRNA fraction within the
small RNA fraction from serum (42). Moreover, miR-
NAs comprise >80% of the small RNA fraction from
serum compared with <40% of the small RNA fraction
from peripheral blood cells (Fig. 1). Consequently, total
RNA extraction from the serum would not require the
use of techniques to concentrate small RNAs. On the
other hand, plasma contains a greater concentration of
miRNAs than serum, although it was later demonstrated
that this was due mainly to the miRNAs released by pla-
telets during sample processing (56). To accurately anal-
yse cell-free miRNAs in plasma, the sample should be
ultra-centrifuged to eliminate platelets before storage
(freezing) or RNA extraction (56). Additionally, serum
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obtained from haemolysed samples contains increased
concentrations of certain miRNAs due to release from
erythrocytes. Mature erythrocytes contain abundant miR-
NAs even when they lack ribosomal and large RNAs
(57,58). According to McDonald et al. (56), the levels
of four miRNAs were not altered if serum samples con-
tained <10 mg/dl of haemoglobin; therefore, this param-
eter could be used for the quality control of samples.

Early studies of circulating miRNAs revealed that
while the levels of serum miRNAs in healthy individu-
als remained constant, the levels of miRNAs in patients
with prostate cancer (38), lung cancer and colorectal
cancer (42) were altered and distinguishable from
healthy individuals. Moreover, it was shown that miR-
NAs originating from human prostate cancer cells were
detected in the plasma of NOD/SCID mice after xeno-
graft transplantation (38). All of this evidence prompted
a search for circulating miRNAs in serum and plasma
that could be potential non-invasive biomarkers for can-
cer. Biomarkers that can be noninvasively sampled are
particularly important for solid tumours because tissue

samples for histopathological evaluation require invasive
and sometimes dangerous procedures.

Altered levels of miRNAs have been found in serum
and plasma from patients with every type of solid
tumour analysed thus far, and miRNA signatures have
been reported to be potentially useful for diagnoses and
prognoses of lung, breast, prostate, ovarian, bladder,
pancreatic, gastric, liver, colorectal, oral and oesopha-
geal cancer (27,38,42,59–89) (Table 1). Table 2 summa-
rizes the candidate cell-free miRNA tumour biomarkers
that have been reported in the literature during the last
5 years.

Cell-free miRNAs in other body fluids

To date, cell-free miRNAs have been detected in every
body fluid analysed. Serum, plasma, tears, urine, amni-
otic fluid, colostrum, breast milk, bronchial lavage, cere-
brospinal fluid, peritoneal fluid, pleural fluid, seminal
fluid, saliva and gastric juices from healthy individuals
all contain miRNAs (Table 1) (39,40,90–92). They have

Figure 1. Small RNA profile in serum and
peripheral blood mononuclear cells
(PBMCs) assessed on the Agilent 2100 Bio-
analyzer (Agilent Technologies, Santa
Clara, CA, USA) and the Small RNA chip.

Table 1. Blood-derived and other body fluids that contain cell-free miRNAs

Body fluid Healthy subject Cancer disease References

Breast milk Pregnant women Not reported 39
Colostrum Pregnant women Not reported 39
Saliva Yes Oral cancer 39,92
Tears Yes Not reported 39
Urine Yes Bladder and renal cancer 39,40,96,97,99
Seminal fluid Yes Not reported 39
Amniotic fluid Yes Not reported 39
Pleural fluid Yes Not reported 39
Bronchoalveolar
lavage

Yes Lung cancer 39

Pleural effusion No Lung and gastric cancer 41,103,104
Gastric juice Yes Gastric cancer 91
Pancreatic juice No Pancreatic cancer 96
Peritoneal fluid Yes Gastric cancer (metastasis) 39,105
Cerebrospinal fluid Yes Brain cancer 39,107,108
Plasma Yes Lung, breast, prostate,

ovarian, bladder, pancreatic,
gastric, liver, colorectal, oral
and oesophageal cancer

27,74,75,77–81,83,84,86,88

Serum Yes Lung, breast, prostate, ovarian, gastric,
liver and oesophageal cancer

59–63,65–69,78
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also been detected in pancreatic cyst fluids (93). Sada-
kari et al. (94) reported the presence of miRNAs in pan-
creatic fluid, but the total RNA was extracted from a
cell pellet; therefore, they were not cell-free or secreted
miRNAs. It was reported that cell-free miRNAs showed
a distinctive expression pattern in each body fluid anal-
ysed (39,95), suggesting a potential biological function
associated with the surrounding tissues. These distinctive
expression patterns include variations in miRNA con-
centrations in different body fluids, as well as differ-
ences in the species of miRNAs detected. For example,
of 12 body fluids analysed, saliva, breast milk and semi-
nal fluid had the highest number of detectable miRNA
species (~400), whereas urine, cerebrospinal fluid, and
pleural fluid had the fewest detectable miRNA species
(~200) (39). Weber et al. (39) also reported variation in
the concentration of total RNA obtained from 300 ll of
different body fluids of 113–48 240 lg/l. In addition, it
was reported that highly abundant miRNAs are detected
in many different fluids, but several miRNAs are present
exclusively in one body fluid, such as miR-637 in tears
and miR-193b in breast milk (39). According to Hanson
et al. (95), a panel of nine miRNAs allows for the iden-
tification of the body fluid of origin of forensic samples.
In addition, it was shown that cell-free miRNAs in urine
could be used to detect physiological status such as
pregnancy in normal individuals (39,47).

Similar to cell-free miRNAs in serum and plasma,
there is evidence to indicate that alterations in the levels
of cell-free miRNAs in other body fluids might indicate
diseases such as oral (92), bladder (40,96–98), renal
(99), lung (41,100–104), gastric (91,105), pancreatic
(106) and brain cancer (107,108) (Tables 1 and 3). In
particular, saliva and urine are fluids that are easy to
obtain and do not require invasive procedures. Table 3
summarizes the miRNAs that are candidates as biomark-
ers for cancer that have been reported in the literature to
date.

Mechanisms of miRNA release

The potential usefulness of circulating miRNAs as reli-
able biomarkers in cancer may be based on their poten-
tial biological function. If cells actively secrete miRNAs
as a mechanism of cell communication, then the levels
and patterns of these miRNAs should be specific and
would depend on the type of secretory cell and its meta-
bolic activity. Because cancerous cells have higher
metabolic activity than normal cells, it is feasible that
certain miRNAs released from those cancerous cells can
be used as biomarkers of cancer. Therefore, it is
necessary to understand the release mechanisms of
miRNAs.

Experimental evidence indicates that four potential
forms of miRNAs are released from cells: miRNAs that
are encapsulated within exosomes (109), complexed
with Argonaute2 protein (Ago2) (45,46), bound to high-
density lipoprotein (HDL) (110) or bound to the RNA-
binding protein nucleophosmin (NPM1) (111) (Fig. 2).
Importantly, none of this evidence contradicts the exis-
tence of one or another extracellular form of miRNA in
any cell line or biological sample analysed. In addition,
it has been suggested that miRNAs are released from
broken cells passively, due to injured tissue, chronic
inflammation, apoptosis or necrosis (42,46). These pro-
cesses regularly occur in cancer, and it has been sug-
gested that the high stability of these leaked miRNAs
could be associated with their binding to Ago proteins
(46). However, a systematic or quantitative analysis of
the passive release of miRNAs has not been reported.

Apart from the leaked free miRNAs, it has been
hypothesized that miRNAs are secreted as mediators of
cell-to-cell communication and gene regulation. Consis-
tent with this hypothesis, it has been shown that secre-
tion of miRNAs via exosomes and HDL is energy
dependent, as they are transported and delivered to other
cells in a functional state (109,110,112–115). There is
still no direct evidence that miRNAs bound to AGO2
and NPM1 are actively released from cells or that they
are transported to other cells.

Exosomes

In 2007, Valadi et al. (109) provided the first evidence
that exosomes from human and mouse mast cell lines
contained miRNAs that were transferred to other cells
and maintained their functional capacity. Soon, it was
shown that both normal and tumour cells secreted miR-
NAs contained in exosomes (116–119). Moreover, evi-
dence suggested that tumour cells are capable of
influencing their microenvironment and promoting
cancer development through exosomal miRNAs
(114,116,120).

Exosomes are homogenous membrane vesicles of
endocytic origin (20–90 nm) that are released into the
extracellular medium by the merging of multivesicular
bodies (MVB) with the plasma membrane using active
secretion (121,122). First, early endosomes are formed
by the fusion of endocytic vesicles from the plasma
membrane. These endosomes mature to late endosomes
where intraluminal vesicles bud off into the lumen to
form MVBs. MVBs directly fuse with the plasma mem-
brane and release exosomes into the extracellular med-
ium. These exosomes contain small RNAs, cytoplasmic
proteins and cell receptors, which can be transferred to
recipient cells (116,118,123) (Fig. 2). Exosome
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biogenesis requires the endosomal sorting complex
required for transport (ESCRT complex) (124) as well
as associated proteins, such as Alix (125) and Tsg 101
(126). Evidence suggests that GW182 and AGO2, which
are two main components of the RISC, are enriched in
MVBs and could be involved in the function of miR-
NAs (127,128) (Fig. 2). Li et al. (128) reported evi-
dence that AGO2 selectively protects the miRNAs in
exosomes, providing a second model of stability of cir-
culating miRNAs in addition to the exosomal lipid
bilayer. Recently, Lv et al. (129) showed that AGO2
facilitates the packaging of miR-16 into MVBs secreted
by HeLa cells. In addition, they reported that incubation
of 293T cells with MVBs from HeLa cells co-trans-
fected with HA-tagged-AGO2 and miR-16 induced a
higher inhibition of Bcl2 (the putative target of miR-16)
expression in recipient 293T cells than incubation with
MVBs containing only miR-16. On the other hand, Vil-
larroya-Beltru et al. (130) showed that mature miRNAs
contain specific motifs that are recognized by the
sumoylated-heterogeneous nuclear ribonucleoprotein
A2B1 (hnRNPA2B1), which controls their loading into
MVBs. Likely, the mature miRNAs along with AGO2-
GW182 and hnRNPA2B1 are loaded into MVBs and
released as exosomes into the extracellular medium.
Although the mechanisms of exosome interactions with
the receptor cells are not well known, labelling of puri-
fied exosomes with the green fluorescent lipid dye
PKH67 showed that exosomes carrying miRNAs fuse
with the plasma membrane of the target cells (113,131).

Ago2-associated miRNAs

The first studies that explored the possibility of extracel-
lular miRNAs outside exosomes in clinical samples were
reported in 2011 (45,46). Turchinovich et al. (46)
reported that of 188 miRNA species detected in plasma,
97 miRNAs were detected in both exosomal and exo-
some-free fractions (51%), while 69 were found exclu-
sively in the exosome-free fraction (37%) and 22 were
detected exclusively in exosomes (11%). Arroyo et al.
(45) reported that of 128 miRNAs detected in plasma,
66% were detected in the exosome-free fraction and
43% were detected only in this fraction. In addition to
showing the presence of exosome-free miRNAs, these
studies revealed that specific miRNAs were exclusively
detected in one or another fraction, suggesting the exis-
tence of selective release mechanisms. More impor-
tantly, using differential centrifugation purification and
immunoprecipitation methods, they showed that exo-
some-free miRNAs were associated with Ago2, a major
component of the RISC (9) (Fig. 2), and this association
protects miRNAs from RNase A activity. This findingT
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revealed an alternative mechanism of miRNA release
and cell communication. However, there is no direct evi-
dence that cells actively secrete miRNAs associated with
Ago2, that they are taken up by recipient cells, or that
there are specific Ago2-miRNA complexes associated
with cancer.

NPM1-associated miRNAs

Wang et al. (111) first reported that cell-free miRNAs
were found in both exosomes and exosome-free frac-
tions obtained from the supernatants of tumour cell lines
cultured after serum deprivation. Moreover, similar to

the studies by Turchinovich et al. (46) and Arroyo et al.
(45), they found that there are miRNA species exclu-
sively in one or another fraction. These authors found
important levels of the RNA-binding protein nucle-
ophosmin 1 (NPM1) in the exosome-free fraction from
fibroblast culture supernatants (Fig. 2), and they showed
that NPM1 binds and protects miRNAs from RNase
activity. They did not report the discovery of Ago2 in
their study. However, this study did not provide direct
evidence that NPM1-associated miRNAs are taken up
by recipient cells, that they are secreted via an energy-
dependent mechanism or that they are detected in clini-
cal samples.

Figure 2. Biogenesis and proposed release mechanisms of free-cell miRNAs. miRNA precursors (pri-miRNAs) are transcribed in the nucleus
and processed by the Drosha complex to generate pre-miRNAs. Pre-miRNAs are exported to the cytoplasm via exportin-5 and are excised by
DICER into a mature form of double-stranded RNAs that are ~22 nucleotides long. One strand is loaded into the RISC along with Argonaut 2
(AGO2) and GW182 to form the miRISC. There, miRNAs can bind to complementary sequences on target mRNAs to repress translation or trigger
mRNA cleavage. miRNAs can also be transported to the extracellular environment via four proposed mechanisms. (1) Encapsulated within exo-
somes: miRNAs are sorted into multivesicular bodies (MVBs), which are derived from early endosomes, through a mechanism that requires cera-
mide production on the cytosolic side by neutral sphingomyelinase 2 (nSMase2), the endosomal sorting complex required for transport (ESCRT)
machinery and the sumoylated hnRNPA2B1 protein, which specifically binds mature miRNAs and controls their loading into MVBs. MVBs fuse
with the plasma membrane and release exosomes into the extracellular medium. MVBs are enriched with GW182 and AGO2, the two main compo-
nents of the RISC, which could be involved in the function of miRNAs. (2) Complexed with Argonaute2 protein (Ago2): miRNAs can be stably
exported when they are associated with Ago2, a major component of the RISC. (3) Bound to high-density lipoprotein (HDL): miRNA can also be
stably exported in conjunction with HDL, via a mechanism that is repressed by nSMase2. (4) Bound to the RNA-binding protein nucleophosmin
(NPM1): NPM1 was shown to bind and protect exosome-free miRNAs from RNase activity in blood circulation.
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HDL-associated miRNAs

High-density lipoprotein-associated miRNAs were found
in plasma from healthy human beings and from patients
with familial atherosclerosis, stable coronary artery dis-
ease and acute coronary syndrome (110,132). Notably, it
was reported that the HDL-miRNA profile was distinctly
different than the exosome-miRNA profile from matched
healthy individuals, which correlates with previously
described data suggesting that more than one selective
mechanism for miRNA release exists (110). Vickers
et al. (110) also reported that HDL purified from human
plasma transfers miRNAs into cultured hepatocytes
(Huh7) with functional capacity, while Tabet et al.
(115) showed that HDL suppresses the expression of
intercellular adhesion molecule-1 (ICAM-1) through the
transfer of miR-223 to endothelial cells (HCAEC).

The exact mechanism by which HDL is loaded with
miRNAs and which proteins could facilitate this associa-
tion are not known. However, it was hypothesized that
HDL could bind to extracellular plasma miRNAs
through divalent cation bridging (110). Vickers et al.
reported that the inhibition of nSMAse2 significantly
increased the amount of miR-223 exported to HDL
using J774 macrophages, suggesting that nSMase2 and
the ceramide pathway repress miRNA export to HDL
(Fig. 2). Conversely, it was previously reported that
overexpression of nSMase2 and activation of the cera-
mide pathway induced export of miRNAs by exosomes
(112).

Distinct HDL-miRNA plasma profiles were found in
familial hypercholesterolaemia (FH) patients compared
with healthy individuals (110), but none have been pub-
lished so far regarding cancer.

Circulating and body-fluid miRNAs as
biomarkers in cancer

A biomarker is defined as any cellular, molecular or
genetic component that can be measured and associated
with a biological process, pathogenic process or pharma-
cologic response to treatment (44). Current studies aim-
ing to identify circulating miRNAs with diagnostic
value in cancer are mainly based on the different expres-
sion profiles of miRNAs in samples from patients with
cancer compared with healthy individuals, as the first
approach in the pre-clinical exploratory phase. These
differentially expressed miRNAs should be able to dis-
tinguish cancer patients from non-cancer subjects, which
requires measuring the sensitivity and specificity of the
candidate biomarker in a second exploratory phase
(133), preferably in an independent cohort. Finally, a
biomarker for cancer diagnosis should be able to detect

a specific type of cancer in a general population with a
high specificity and sensitivity. Evidence has indicated
that circulating and body-fluid miRNAs are potential
biomarkers for diagnosis, as well as biomarkers for
prognosis and indicators of disease stage in several
cancers.

Nevertheless, a suitable cancer biomarker has to be
associated with the presence of tumour cells or the
malignant process; therefore, the hypothesis that tumour
cells are the main source of the secreted miRNAs with
altered levels in cancer patients is relevant. Identifying
actual cancer-related miRNAs is crucial, considering that
the levels of circulating miRNAs seem to depend on
several normal and pathological physiological condi-
tions, such as pregnancy, diabetes and hypertension
(42,47,134–136).

We summarized two types of evidence that may
indicate that certain upregulated or downregulated miR-
NAs in cancer patients are associated with malignant
processes and, potentially, cancer diagnosis.

Before and after tumour removal

There are studies that have reported that highly
expressed circulating miRNAs from cancer patients
return to normal levels after tumour resection, suggest-
ing that such miRNAs are of tumour origin. First, sev-
eral studies designed screening strategies to identify
candidate miRNAs with diagnostic value by comparing
the serum or plasma of cancer patients to that of healthy
controls. Then, they analysed the levels of the candidate
miRNAs in pre- and post-surgery samples from patients
diagnosed with breast cancer, osteosarcoma, head and
neck squamous cell carcinoma, hepatocellular carci-
noma, tongue squamous cell carcinoma and gastric can-
cer (67,83,137–141).

In contrast, Konishi et al. (142) first used microarray
analysis to compare the expression levels of miRNAs in
pre- and post-operative paired plasma samples from gas-
tric patients. They then confirmed the levels of nine can-
didate miRNAs, which were markedly decreased in the
post-operative plasma, in a large cohort using RT-qPCR.
Finally, they compared the miRNA levels of two candi-
date miRNAs between 56 cancer patients and 30 healthy
controls and found that they were significantly decreased
in post-operative plasma in 90 and 93% of patients
(miR-451 and miR-486, respectively). Correspondingly,
this strategy was used to identify serum and plasma
miRNAs with diagnostic value in colorectal cancer, cer-
vical squamous carcinoma and lung carcinoma (143–
145). In addition, Li et al. (146) used this strategy to
identify serum miRNAs to predict post-operative disease
recurrence for stage II/III colorectal cancer patients.
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Similar to the findings in serum and plasma, the
expression levels of two upregulated candidate miRNAs
in the urine of urothelial carcinoma patients (miR-96
and miR-183) were significantly lower in urine collected
after surgery from the same patients (98), suggesting
tumour origin of such altered miRNAs.

Role of secreted miRNAs in oncogenesis

In cancer, tumour cells may deliver specific miRNAs to
their surroundings to promote tumour survival. Those
miRNAs could be associated with potential carcinogenic
mechanisms that may overcome the normal cellular
environment, making such miRNAs suitable biomarkers
for the detection of tumour cells.

Correspondingly, the analysis of the potential roles
of candidate miRNAs in oncogenesis is a good support-
ive approach for choosing reliable miRNAs with diag-
nostic potential during the exploratory phase of
biomarker discovery.

First, the function of a miRNA depends on its target
gene; therefore, a miRNA could function as either a
tumour suppressor or an oncogene during cancer develop-
ment. Accordingly, miRNAs functioning as oncogenes
(also named oncomirs) promote tumour development by
inhibiting tumour suppressor genes, mainly when they are
upregulated. miRNAs functioning as tumour suppressors
prevent tumour development by negatively inhibiting
oncogenes or genes that control cell differentiation or
apoptosis; however, downregulation of these miRNAs
could lead to cancer development.

For example, miR-10b is highly expressed in the
metastatic breast cancer cell line MDA-MB-231 com-
pared with the non-metastatic breast cancer cell line
HMLE or non-malignant breast cells (147). This miRNA
was also actively secreted via exosomes, and it was
shown that treatment with miR-10b-enriched exosomes
suppressed protein levels of its target genes HOXD10
and KLF4 in HMLE target cells. As a result of this sup-
pression, HMLE cells acquired invasion ability (147).
Other studies have also reported that low expression of
HOXD10 and KLF4 induces cell migration and metasta-
sis (148,149); therefore, miR-10b, which is found to be
upregulated in breast and bladder cancer
(147,148,150,151), could be considered an oncogene.

Another example is miR-105 (152), which is
expressed and secreted by highly metastatic breast can-
cer cells (MBC) isolated from pleural effusions. MBC-
secreted miR-105 can be transferred to endothelial cells
via exosomes and results in a significant decrease in the
expression of its putative target gene zonula occludens
(ZO-1), which induces the downregulation of tight junc-
tions and the destruction of the barrier function of

endothelial monolayers. Transfecting the recipient cells
with a miR-105 inhibitor abolished this effect. It was
also demonstrated that cancer-secreted miR-105 induces
vascular permeability and promotes metastasis in vivo.

The well-known oncomir miR-21 is highly expressed
in several tumours, including breast, ovarian, colorectal,
lung and leukaemia (153). miR-21 targets tumour sup-
pressors, such as PTEN (154) and TPM1 (155).

An example of a miRNA functioning as a tumour
suppressor is miR-152. miR-152 has been found to be
downregulated in glioblastoma stem cells (156), non–
small-cell lung cancer (NSCLC) tissues (157,158), gas-
tric cancer tissues (159) and hepatocellular carcinoma
cells (160). All of these studies reported that overexpres-
sion of miR-152 reduced the proliferation, migration and
invasion capacity of tumour cells. Although the authors
reported different target genes in every study, the
expression level of each target gene was associated with
those common cellular functions. In addition, evidence
indicates that the function of a miRNA depends on the
type of cell that the miRNA acts on. miRNAs such as
miR-125b, miR-29 and miR-146 have been described as
oncogenes or suppressors in different cell types (161–
165). Consequently, identifying the potential roles of
candidate miRNAs in oncogenesis may require the anal-
ysis of the specific expression/release patterns and the
identification of specific target genes in each type of
tumour cell.

Role of secreted miRNAs in cancer progression:
metastasis

Cancer progression involves the regulation of the cellu-
lar and tissue microenvironment to promote carcinogen-
esis and spreading of cancerous cells to distant anatomic
sites. This regulation involves cell–cell contact-mediated
signals and cell-to-cell signals mediated by secreted fac-
tors. miRNAs, in addition to functioning as oncogenes
and oncosuppressors inside cancer and stromal cells, are
secreted and taken up by nearby cells within the cancer
microenvironment and by distant cells in other tissues or
organs, thereby delivering regulatory signals that poten-
tially participate in the spreading of those cancer cells.
This section describes recent experimental evidence
regarding the role of miRNAs in cancer progression,
focusing on pivotal mechanisms involved in metastasis
and on the secreted form of miRNAs.

Metastasis and epithelial-mesenchymal transition

Metastasis is a multistep biological process that involves
dissemination of cancer cells to surrounding and distant
organs sites for the formation of new tumour lesions.
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This process is frequently referred to as the invasion-
metastasis cascade (166). During metastasis, tumour
cells exit their primary sites of growth by breaching the
basement membrane, intravasate into the blood and lym-
phatic vessels, disseminate through the lymphatic system
and blood circulation, extravasate to nearby and distant
organs and finally adapt to a new microenvironment for
metastatic colonization (167). Metastasis, not the pri-
mary tumour, is the major cause of mortality in cancer
patients, and it plays a critical role in tumour recurrence
and poor prognosis; therefore, it is clinically relevant
(168).

In carcinomas arising from epithelial tissues, the
epithelial–mesenchymal transition (EMT) is an early
step of cancer metastasis, which is characterized by the
breaching of the basement membrane that separates
epithelial cells from multiple layers of stroma. The EMT
is a highly conserved process characterized by a transi-
tion from immotile epithelial cells to motile mesenchy-
mal cells. The EMT is fundamental for normal
embryonic development; however, it is aberrantly acti-
vated during cancer progression, providing cancer cells
the ability to migrate and form distant metastases
(169,170). This transition process is characterized by a
decrease in the expression of cell–cell contact proteins
such as the epithelial marker E-cadherin and by the loss
of cell–cell junctions and apico-basal cell polarity (169–
171).

Several endogenous miRNAs associated with metas-
tasis have been identified, and their roles in the EMT
have been reported recently (172,173). However, there
is limited experimental evidence regarding the participa-
tion of the secreted forms of such miRNAs in metasta-
sis-EMT. Still, several circulating miRNAs have been
identified as biomarkers for cancer metastasis.

Toiyama et al. (174) specifically analysed the diag-
nostic value of miR-200 family members that were pre-
viously associated with the regulation of the EMT in
cancer cells in the serum of colorectal cancer patients.
They showed that high expression of serum miR-200c
was significantly associated with a metastatic phenotype,
lymph node metastasis, liver metastasis and the develop-
ment of distant metastasis in colorectal cancer patients.
They analysed the levels of four candidate miRNAs
(miR-200b, miR-200c, miR-141 and miR-429) in the
serum samples of stage I (n = 12) and stage IV
(n = 12) patients and further validated the increased
levels of miR-200c in stage IV patients in a larger inde-
pendent cohort of 182 patients and 24 normal controls.
The miR-200 family (miR-200a, miR-200b, miR-200c,
miR-141 and miR-429) was the first group of endoge-
nous miRNAs reported to regulate the EMT, and their
roles in tumour progression have been associated with

several cancers (175–178). They inhibit the EMT by
retaining the epithelial phenotype by targeting the E-cad-
herin transcriptional repressors ZEB1 and ZEB2, which
results in upregulation of E-cadherin (179,180). In this
study, the authors also reported that miR-200c was over-
expressed in liver metastases compared with matched
primary colorectal cancer tissues, which was in agree-
ment with a previous study in which they demonstrated
that miR-200c was overexpressed in metastatic colorec-
tal cancer tissue compared with matched primary col-
orectal cancer tissue (181). The authors speculated that
the origin of serum miR-200c could be from the meta-
static site, but no further studies regarding the potential
function of this circulating miRNA were performed.
One hypothesis is that the low expression of miR-200c
in primary tumours facilitates the EMT and exit of can-
cer cells, but, after metastasis, high expression inhibits
the EMT and facilitates the settlement and proliferation
of cancer cells, which undergo the opposite process
known as the mesenchymal-to-epithelial transition
(MET) (182).

However, Imaoka et al. (183) also evaluated serum
EMT-associated miRNAs as metastatic biomarkers by
analysing the expression levels of the miR-200 family
and miR-203 in serum from stage I (n = 12) and stage
IV (n = 12) gastric cancer (GC) patients. They per-
formed a validation phase in serum samples from 130
patients and 22 controls. They found that serum miR-
203 expression was lower in GC patients with a higher
T stage, vessel invasion, and lymph node and distant
metastases; therefore, miR-203 has the potential to serve
as a noninvasive biomarker to predict metastasis. How-
ever, no further studies were performed. Regarding the
endogenous expression of this miRNA, recent studies
reported that forced expression of miR-203 was associ-
ated with inhibited proliferation and reduced invasion
and induction of MET in cancer cells from neck, laryn-
geal and tongue cancer. However, one study reported
that miR-203 promoted proliferation and invasion in
pancreatic cancer cells (184). Perhaps, studies regarding
miR-203 expression in metastatic and matching primary
tumour tissue, as well as in vitro studies in invasive and
non-invasive clones of cancer cells, would provide more
clues regarding its participation in metastasis.

Another recent study by St€uckrath et al. (185)
reported that plasma levels of miR-16, miR-107, miR-
130a and miR-146a were decreased in lymph node-posi-
tive patients compared with lymph node-negative breast
cancer patients; therefore, they could be potential
biomarkers of metastasis. The authors further examined
the effect of miR-107 expression on cell migration and
invasion in breast cancer cell lines. They found that
miR-107 overexpression reduced migration and
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invasiveness of both non-invasive MCF-7 and invasive
MDA-MB-231 cells, while miR-107 inhibition
increased migration of MCF-7 cells and invasiveness
of both cell lines. This study did not further analyse
the molecular mechanisms involved in the observed
effect. Nevertheless, another recent study regarding
endogenous miR-107 reported that its overexpression
increased the migration of the hepatocarcinoma cell
lines HepG2 and Huh7 through its target CPEB3 that
acts via the EGFR pathway (186). This discrepancy
could be an example of different miRNA functions that
depend on the specific target gene and the specific type
of tumour cell analysed. Moreover, observed miRNA
function could depend on the type of miRNA expres-
sion: secreted or endogenous. Nevertheless, several cir-
culating miRNAs have been recently identified as
potential biomarkers for cancer metastasis (Table 4)
(107,187–198).

The participation of cell-free miRNAs in metastasis
has also been analysed in in vitro models. As was previ-
ously mentioned, miR-10b was highly secreted via exo-
somes by a metastatic breast cancer cell line compared
with a non-metastatic breast cancer cell line and non-
malignant breast cells (147). The authors showed that
treatment with miR-10b-enriched exosomes suppressed
protein levels of its target genes HOXD10 and KLF4 in
the non-metastatic breast cancer line HMLE, inducing
acquired invasion ability. However, they did not report
the levels of circulating or endogenous miR-10b in clini-
cal samples. Although, another study by Xu et al. (199)
reported that serum mR-10b could be used as a biomar-
ker to distinguish oesophageal cancer patients from
healthy subjects. Another example is the study by
Ostenfeld et al. (200). The aim of the study was to
determine whether exosomal miRNAs were associated
with the metastatic properties of bladder carcinoma cells.

Table 4. Cell-free microRNAs as biomarkers for cancer metastasis

Body fluid Cancer miRNAs Biomarker for References

Plasma CRC miR-96, miR-203, miR-141
and miR-200b

miR-96 distinguished stage I–IV CRC
from HC; miR-203 distinguished
stage III–IV CRC patients from
stage I–II; miR-141 differentiated
stage IV CRC from stage I–III
patients; miR-96 and miR-200b
were independent prognostic factors
for overall survival

187

Plasma BC miR-200a, miR-200b, miR-200c,
miR-210, miR-215 and miR-486-5p

Onset of metastasis 188

Plasma Breast cancer (BC) miR-16, miR-107, miR-130a
and miR-146

Predicts lymph node metastasis 185

Serum GC miR-203 Predicts metastases, early recurrence
and poor prognosis

183

Serum Small-cell lung
cancer (SCLC)

miR-184, miR-574-5p, miR-874,
miR-3074-5p, miR-4459,
miR-4685-5p and miR-4746-3p

SCLC metastasis 189

Cerebrospinal
fluid

Glioma miR-21 Tumour spinal/ventricle metastasis 107

Plasma Gastric cancer (GC) miR-214 GC diagnosis and distant metastasis 198
Serum Cholangiocarcinoma (CCA) miR-106a Higher risk of metastasis to lymph node 190
Plasma Hepatocellular carcinoma

(HCC)
miR-101 Distant metastatic 191

Serum Melanoma miR-210 Early systemic melanoma recurrence 192
Serum Colorectal cancer (CRC) miR-200c Predicts metastatic phenotype, lymph

node metastasis, liver metastasis and
the development of distant metastasis

174

Serum GC miR-218 Metastasis 193
Plasma Nasopharyngeal carcinoma

(NPC)
miR-9 Metastasis 194

Serum Cervical squamous cell
carcinoma (CSCC)

miR-1246, miR-20a, miR-2392,
miR-3147, miR-3162-5p and
miR-4484

Predictive for lymph node metastasis
in patients with early-stage CSCC

195

Serum GC miR-21, miR-146a and miR-148a Metastasis to lymph node 196
Serum Melanoma miR-29c and miR-324-3p Metastasis 197
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Ostenfeld et al. (200) first found a relative increase in
the secretion of exosomal miRNAs previously associated
with tumour-suppressor functions (including miR-23b,
miR-224 and miR-921) using SLT4 (metastatic) versus
parenteral T24 (non-metastatic) cells and LUL2 (high
metastatic) versus UMUC3 (low metastatic) cells. Then,
they ectopically expressed miR-23b in T24 and FL3
cells and observed that invasion capacity was reduced
for metastatic FL3 cells and increased for non-metastatic
T24 cells. They further examined early lung metastasis
in NCr nude mice upon tail injection of FL3-GFP-
miR23b and FL3-GFP (control) cells, and they observed
a reduced tumour cell burden for FL3-GFP-miR23b.
The authors suggested that the tumour suppressor miR-
23b was secreted by metastatic carcinoma cells for dis-
posal and to improve the metastatic capacity of parental
cells as a secondary effect. Notably, this study provided
evidence that the same miRNA can act differently in a
specific type of cell with different metastatic abilities.

Angiogenesis

Meanwhile, there are little more studies that analysed
the participation of circulating miRNAs in angiogenesis.
Angiogenesis is another vital process associated with
tumour progression and metastasis. Angiogenesis is the
physiological process of the formation of new capillaries
from pre-existing vessels that is initiated by ischaemic
and hypoxic conditions. Aberrant tumour angiogenesis
occurs when rapidly proliferating cancer cells outgrow
their blood supply and induce tumour hypoxia. Tumour
hypoxia and excessive growth-promoting signals pro-
duced by tumour cells induce persistent and unresolved
angiogenesis. Therefore, angiogenesis is vital for the
survival, proliferation and propagation of tumour cells.

Zhuang et al. (201) reported that miR-9 was secreted
by tumour cells and promoted endothelial cell migration
and angiogenesis. They used co-cultures of tumour cell
lines and matching endothelial cells from normal tissue
to discover that miRNAs packaged into microvesicles,
and not known growth factors, promoted endothelial
migration. Then, they found that miR-9 was a relevant
miRNA by inhibiting its expression in tumour cells and
observed that the effect was retained using the condi-
tional media from tumour cells. Overexpression of miR-
9 in endothelial cells reduced SOCS5 levels, leading to
activation of the JAK-STAT pathway, which promotes
cell migration. In addition, they used a mouse model of
subcutaneous implantation of the human colorectal car-
cinoma cell line HM7, which resulted in elevated levels
of miR-9 in the plasma, and found that intratumoural
injection of miR-9 antagomirs significantly decreased
tumour angiogenesis.

However, Yamada et al. (202) reported that colorec-
tal cancer cells secreted microvesicles containing
miR-1246 and TGF-b that promoted angiogenesis by
activating Smad 1/5/8 in human umbilical vein endothe-
lial cells, inducing proliferation, migration and tube
formation. Kosaka et al. (203) showed that exosomal
miR-210, which was released from metastatic breast
cancer cells via an nSMase2-dependent secretion mecha-
nism, enhanced angiogenic activity in endothelial cells.
These authors found that the known angiogenic miR-
210 was highly enriched in exosomes from the
metastatic cell line (MDA-MB-231) compared with the
non-metastatic cell line (MCF7) and normal mammary
epithelial cells (MCF10A). To show that exosomal miR-
210 contributed to the enhancement of endothelial
angiogenic activity, they used miR-210-enriched exo-
somes from miR-210 transiently transfected 4T1 cells to
induce capillary formation and migration of HUVECs.
Accordingly, the levels of plasma miR-210 were found
to be increased in breast cancer patients with lymph
node metastasis in another study (204).

Meanwhile, Li et al. (205) implanted mouse sarcoma
S-180 cells into C57BL/6J mice and found that the
plasma levels of exosomal miR-150 of the tumour-
implanted mice were higher than those of the control
mice. Using Matrigel plugs, they found that tumour
implantation stimulated angiogenesis and that this angio-
genic effect was suppressed in mice treated with
microvesicles containing a miR-150 inhibitor. They ini-
tially reported that microvesicles containing high levels
of miR-150 were secreted by the human monocyte cell
line THP-1 and enhanced the tube formation of endothe-
lial HMEC-1 cells.

There are other studies that reported that exosomes
affected tumour angiogenesis and metastasis (206,207),
but they did not analyse the participation of the miR-
NAs contained in such exosomes.

Evasion of immune response

The immune system is able to distinguish cancer cells
from normal cells and eliminate them. Nevertheless,
when cancer cells evade the anti-tumour immune
surveillance, they grow progressively and take advan-
tage of the proliferative and angiogenic signals delivered
during the immune response (208). Recent studies have
reported that dysregulation of certain endogenous miR-
NAs in the tumour microenvironment may contribute to
immune evasion (209–212); however, only one study
regarding secreted miRNAs has been published (120).

Ye et al. (120) examined the role of tumour-derived
exosomes in tumour progression in nasopharyngeal car-
cinoma (NPC). This study reported that tumour-derived
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exosomes promote T-cell dysfunction through the regu-
lation of enriched exosomal miRNAs. However, the data
showed that NPC-derived exosomes impeded the prolif-
eration of T cells and the differentiation of Th1 and
Th17 and altered the cytokine profiles of stimulated
lymphocytes without assessing that the enriched miR-
NAs found in exosomes participated in these effects.
After obtaining experimental evidence of the effect of
tumour-derived exosomes on T cells, the authors found
that five miRNAs, including miR-24-3p, miR-891a,
miR-106a-5p, miR-20a-5p and miR-1908, were com-
monly enriched in the exosomes from the serum of NPC
patients and in TW03 or TW03 NPC cells. Then, they
performed a bioinformatics analysis that predicted that
the mitogen-activated protein kinase (MAPK) signalling
pathway was associated with those miRNAs.

There are other publications regarding the role of
tumour-derived exosomes in immune evasion, but they
did not analyse whether the miRNAs contained in those
exosomes were responsible for the observed effect on
the immune response (213,214).

Regulation of miRNA expression

Alterations in the expression levels of miRNAs have
been associated with the pathogenesis of several human
diseases, including cancer. Therefore, understanding the
regulation of the expression of miRNAs is relevant to
elucidate which mechanisms are involved in dysregula-
tion of miRNA expression. However, studies have only
recently provided clues about this crucial topic. This
section briefly describes some mechanisms of regulation
of miRNA expression and the causes of their dysregula-
tion in cancer. There are extensive reviews about this
topic elsewhere (215,216).

miRNA transcription and dysregulation by transcription
factors

Most miRNAs are transcribed by RNA polymerase II
(217); therefore, they are subjected to the same regula-
tory mechanisms as mRNA transcripts. miRNA promot-
ers contain CpG islands, TATA boxes and TFIIB
recognition sites, and histone modifications have been
observed within them (217). Additionally, the expression
of primary miRNA transcripts was found to be regulated
by several transcription factors. For example, c-Myc is
an oncogene that is frequently dysregulated in cancer
and was found to bind to E box elements in the miR-
17~92 gene promoter, inducing the transcriptional acti-
vation of miR-17~92 (218). The cluster miR-17~92 pro-
motes cell-cycle progression and proliferation, through
the regulation of E2F transcription factors that regulate

cell-cycle progression (219), and the suppression of the
tumour suppressor Pten and the pro-apoptotic protein
Bim (220). The miR-17~92 is clustered within the
region of C13orf25 transcript variant 2, which is a target
for 13q31-q32 amplification in malignant lymphoma
(221). It was found that genomic amplification of this
region correlated with overexpression of five members
of the miR-17~92 cluster in malignant lymphoma cell
lines (222). Additionally, c-Myc negatively regulates the
transcriptional activity of tumour suppressor miRNAs,
such as miR-15a, miR-34 and the let-7 family of miR-
NAs (223). Another example is p53, which binds to the
promoter of miR-34a and miR-34b/c and induces their
expression (224). The miR-34 family of miRNAs,
including miR-34a/b/c, promotes cell-cycle arrest, cell
senescence and apoptosis in cancer (225). Other regula-
tory pathways that affect the expression of miR-34a in
cancer include CEBPa, which when mutated induces
decreased miR-34a levels and enhanced expression of
E2F3, resulting in acute myeloid leukaemia (226).

Methylation of miRNA promoters

MicroRNA genes can be epigenetically silenced through
DNA methylation. Saito et al. (227) reported for the
first time that miRNAs were strongly upregulated after
treatment with the DNA methyltransferase inhibitor 5-
aza-20-deoxycytidine in T24 bladder cancer cells.
Among them, miR-127 was later found to be downregu-
lated in primary prostate, bladder and colon cancer tis-
sues compared with matched normal tissues. Further
evidence indicated that miR-127 functions as a tumour
suppressor by targeting the proto-oncogene BCL6.

Another example of epigenetic silencing of tumour
suppressor miRNA is the study by Toyota et al. (228).
They found that miR-34b and miR-34c were epigeneti-
cally silenced in colorectal cancer by hypermethylation
of the neighbouring CpG island. Methylation of the
miR-34b/c CpG Island was observed in colorectal can-
cer cell lines and primary tumours but not in normal
colonic mucosa. Overexpression of miR-34b/c sup-
pressed colony formation of HCT116 cells.

MiRNA editing

RNA editing is the site-specific modification of an RNA
sequence to yield a product differing from that encoded
by the DNA template (229). Most RNA editing in
human cells is adenosine-to-inosine (A-to-I) RNA edit-
ing and is catalysed by the adenosine deaminases acting
on RNA (ADARs). Blow et al. (229) identified novel
A-to-I editing sites in 6 of 99 pri-miRNAs, using an
assay that detect relatively high levels of editing.
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Previously, Luciano et al. (230) had shown that the pri-
miRNA transcript of miR-22 is subject to A-to-I RNA
editing in a number of human and mouse tissue (230).
Editing of pri-miRNAs would have major effect for
miRNA biogenesis and function, because DICER activ-
ity depends on proper base pairing within the stem
region, and editing within the 20–22mer portion of the
mature miRNA would alter the target mRNA repertoire
for that particular miRNA. It was hypothesized that dis-
ruption to the A-to-I editing of the transcripts would
lead to altered gene expression profiles in cancer that
regulate tumour phenotypes and clinical behaviours. The
study by Choudhury et al. (231) demonstrated that the A-
to-I editing of the miR-376 cluster miRNAs is signifi-
cantly reduced in high-grade human gliomas, resulting in
accumulation of the unedited form in glioblastoma cells.
Furthermore, authors showed that the overexpression of
unedited miR-376a* in glioblastoma cells promoted their
migration and invasion while edited miR-376a* sup-
pressed this ability in vitro. It was shown that unedited
miR-376a* targeted RAP2A (a member of the RAS onco-
gene family), which produces a protein involved in both
cancer cell migration and axomal branching, while the
edited miR-376a* targeted autocrine motility factor recep-
tor (AMFR). For more information regarding miRNA
processing, refer Schmittgen (232).

Conclusions

The potential usefulness of cell-free miRNAs as reliable
biomarkers in cancer may be based on their biological
characteristics and potential functions. Evidence indi-
cates that miRNAs are released from normal and tumour
cells into the blood and other fluid in highly specific
patterns and through mechanisms that depend on the
physiology of each cell type. Such specificity suggests
that miRNAs in fluids might not be the result of passive
leakage from broken cells, but rather might be due to
specific cellular transport mechanisms.

Currently, miRNAs are thought to be released to the
outside environment for cell-to-cell communication. Like
their intracellular counterparts, cell-free miRNAs func-
tion as key regulators of gene expression, and disrupting
or altering them could lead to carcinogenesis. The dis-
covery that extracellular miRNAs are involved in car-
cinogenesis has led to potential applications to
determine cancer diagnosis and prognosis and could
even play a role in cancer therapy. Easy access to cell-
free miRNAs and their relative stability are important
advantages for their use as biomarkers; however, reliable
miRNA biomarkers still need to be identified, consider-
ing that their levels appear to depend on several normal
and pathological physiological conditions. For their use

as biomarkers, it is essential to determine the biological
characteristics, release mechanisms/external forms and
functions in oncogenesis of cell-free miRNAs.
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