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Abstract
Objectives: Diffuse low-grade gliomas are charac-
terized by slow growth. Despite appropriate treat-
ment, they change inexorably into more aggressive
forms, jeopardizing the patient’s life. Optimizing
treatments, for example with the use of mathemati-
cal modelling, could help to prevent tumour
regrowth and anaplastic transformation. Here, we
present a model of the effect of radiotherapy on
such tumours. Our objective is to explain observed
delay of tumour regrowth following radiotherapy
and to predict its duration.
Materials and methods: We have used a migra-
tion–proliferation model complemented by an equa-
tion describing appearance and draining of oedema.
The model has been applied to clinical data of
tumour radius over time, for a population of 28
patients.
Results: We were able to show that draining of
oedema accounts for regrowth delay after radiother-
apy and have been able to fit the clinical data in a
robust way. The model predicts strong correlation
between high proliferation coefficient and low pro-
gression-free gain of lifetime, due to radiotherapy
among the patients, in agreement with clinical
studies.
We argue that, with reasonable assumptions, it is
possible to predict (precision ~20%) regrowth delay
after radiotherapy and the gain of lifetime due to
radiotherapy.

Conclusions: Our oedema-based model provides an
early estimation of individual duration of tumour
response to radiotherapy and thus, opens the door
to the possibility of personalized medicine.

Introduction

Diffuse low-grade gliomas (DLGG), grade II gliomas
according to the World Health Organization classification
(1), are primary brain tumours that affect young adults.
At the beginning of their evolution, they grow slowly and
continuously, and absence of angiogenesis is assessed by
lack of contrast enhancement detected on T1-gadolinium
MR images (2). At this stage, extent of these tumours can
be estimated only on T2 weighted or Fluid Attenuated
Inversion Recovery (FLAIR) images, that show maximal
visible abnormalities (3). After several years growth, and
despite treatment (surgery, chemotherapy and radiother-
apy), angiogenesis is eventually triggered and DLGGs
inexorably evolve into more aggressive forms, impeding
social and professional life of the patients (4). A number
of major clinical observations have been recently made
concerning evolution of DLGGs:

1 They are invasive; isolated glioma cells can be found
beyond MRI limits of signal abnormalities, including
T2 weighted and FLAIR sequences (5,6). This charac-
teristic explains systematic recurrences observed after
oncological treatment, including MRI-based gross
total removal (7).

2 Mean radius of the tumours measured on MRI images
increases linearly with time (8,9), and value of growth
velocity is a prognostic factor for both malignant pro-
gression-free survival and overall survival (9–11).

3 According to studies of correlation between histology
and imaging, size of the T2 weighted abnormality
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(that we measure on MRI to assess size of the
tumour), is not linked to glioma cell density but rather
to density of associated oedematous fluid (12–14).
This interstitial oedema appears on haematoxylin and
eosin-stained samples as ‘holes’ between loose fibres
of the tissue (13,15). It is probably created by glioma
cells since it appears in tumour-invaded tissues
(15,16).

4 In one recent study, dynamics of DLGG during and
after radiotherapy (RT) have also been asssessed (17).
In particular, it has been observed that, even after the
end of RT, tumour radius continues to reduce, some-
times over a number of years. However, regrowth
invariably occurred for all patients under investsiga-
tion. Strong negative correlation between proliferation
coefficient and overall survival has also been
revealed.

On the basis of these clinical observations, the work
described here addresses the question of modelling evo-
lution of DLGG treated by RT as first-line oncological
therapy, and in particular the question of delay in
tumour regrowth after RT.

Stochastic models usually describe behaviour of a
moderate number of glioma cells (18–20) whereas deter-
ministic (21–23) and hybrid models (24,25) are able to
describe evolution of a real tumour, with a large number
of cells. The archetypical model is one where migration of
glioma cells is represented by a diffusion process. The
simplest migration–proliferation model takes the form of
a partial differential equation governing glioma cell den-
sity q (see eqn (1)) (21,22,26). This model is extremely
simple but allows one to obtain estimates of medical inter-
est. In particular, theoretical prediction from eqn (1) that
radius r of the tumour increases linearly over time for
extensive periods, has been verified by clinical data (8,9).
One can, therefore, easily estimate survival time of a
given patient (27).

Modelling effects of RT has already been the object
of previous research [for a review, see (28)]. Sachs and
collaborators (29) have presented a model for RT, based
on what is known as the linear-quadratic model for radi-
ation efficiency (30). The model has no spatial structure
and is thus only appropriate for description of homoge-
neous, well-localized, tumours. Ribba and collaborators’
approach is different, but it also relies on absence of
spatial structure (31). Since an essential feature of
DLGG is their capacity to invade surrounding normal
tissue, it seems more accurate to use a model that
involves a spatial structure, as in the work of Rockne
and collaborators (32). Their starting point was the inva-
sion-proliferation model, with cell death term due to RT
(present only while the therapy lasts). However, it

appears that the basic migration–proliferation model,
such as the one used by Rockne and collaborators for
high-grade gliomas (32), cannot account for the most
striking feature of clinical follow up – radii following
RT; reduction of tumour radius lasts much longer than
the treatment itself. The same group has proposed a
migration–proliferation model with oedema and angio-
genesis for high-grade gliomas that is closer to our
approach (33).

Here, we present a model for the long-term effect of
RT on DLGG. We thus will not describe early and tran-
sient effects of RT, such as formation of cytotoxic
oedema, probably related to blood–brain barrier disrup-
tion (34,35). This oedema requires steroid administration
during and after RT but can be tapered within the month
after the end of RT (35).

We use a migration–proliferation model augmented by
an equation describing appearance and draining of oedema
in tumour-invaded tissues (16). This model is based on
clinical data obtained from analysis of tumour biopsies
(14) and takes into account all clinical observations of
DLGG listed above. Draining of oedema accounts for
delay of the tumour’s regrowth after the end of RT.

We show that our model is able to fit clinical data
on the effect of RT, that all the parameters of the fit can
in principle be estimated before RT, and that some pre-
dictions of time of regrowth after RT and gain of life-
time due to RT are possible.

Materials and methods

The patients

We had at our disposal a series of 28 patients with
DLGG, diagnosed at the Sainte-Anne Hospital (Paris,
France) from 1989 to 2000. These patients were selected
according to precise criteria detailed elsewhere (17). In
short, only adults with typical DLGG (that is, no angio-
genesis and thus no contrast enhancement on gadolinium-
T1 images), available clinical and imaging follow-up
before, during, and after RT and RT as their first oncologi-
cal treatment except for stereotactic biopsies, were eligible.

Figure 1 top describes an example of tumour evolu-
tion. The patient had MRI follow-up before, during and
after RT (Fig. 1 bottom). Three tumour diameters in
axial, coronal and sagittal planes on each MRI image
with T2 weighted and FLAIR sequences, were measured
manually. Mean radiological tumour radius is defined as
half the geometric mean of these three diameters (8) and
is plotted as a function of time (see Fig. 1 top). A good
model should be able to capture regrowth delay after the
end of RT, visible in Fig. 1 top.
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The model and its parameters

Oedema-based model for tumour growth. To build a
model for RT, we needed a model that could account
for glioma growth. As such, the migration–proliferation
model, which describes evolution of glioma cell density
q as a combination of diffusion and proliferation, has
already proven its usefulness (21,23,26,36,37):

oq
ot

¼ DDqþ jqð1� qÞ ð1Þ

where q (x, y, z, t) is glioma cell density, D diffusion
coefficient of glioma cells, and j their proliferation coef-
ficient. Glioma cell density q is defined as ratio of gli-
oma cell concentration C to maximum glioma cell
concentration that can be handled by the tissue Cm (also
called the tissue carrying capacity): q = C/Cm. In exist-
ing models of glioma growth, limit of MRI-signal
abnormality is usually assumed to be a curve of isoden-
sity of glioma cells, and its position allows calculation
of radius of the portion of tumour on visible on MRI
(usually called the “tumour radius”). But experimental
results suggest instead that abnormality seen on MRI
images (with T2 weighted or FLAIR sequences) is not
due to glioma cells but to oedema associated with gli-
oma cells (12–14,33). To illustrate importance of
oedema in tumour tissues, two haematoxylin and eosin
stained biopsy samples are presented in Fig. 2, one with
fraction of oedema ~80%, close to the centre of the
tumour, inside the limits of MRI-defined abnormalities
(represented here as a grey rectangle), and the other with
no oedema, taken outside limits of the MRI-defined

abnormalities (27,38). Thus, a model of tumour growth
coupled to oedema appearance is in order, and to
eqn (1) that describes evolution of glioma cell density,
we have added a second equation that governs evolution
of tumour-associated oedema:

on
ot

¼ lq nm � nð Þ � knc ð2Þ

where ξ(x, y, z, t) is the fraction of volume occupied by
oedema, and l, k and c are oedema parameters. The
first term of the equation represents production of
oedema. We have modelled the fact that presence of
oedema is a consequence of presence of glioma cells,
by having an oedema production coefficient that
depends on glioma cell density. Oedema production
depends also on oedema concentration and becomes
zero when oedema reaches its maximal value. There is
global conservation between glioma cells, oedema and
healthy tissue: if V is total volume available occupied
by the three components, we have V = Vg + Ve + Vt

where indices g, e, t stand for glioma cells, oedema and
healthy tissue. Dividing by V and introducing ξt for the
fraction of total volume occupied by healthy tissue, we
find qCmV0 + ξe + ξt = 1 where Cm is maximum gli-
oma cell concentration introduced above, and V0 is
volume of a single glioma cell. Putting a = CmV0 we
have finally conservation ξe + ξt = 1 – aq. When
oedema has replaced all healthy tissue, reaching its max-
imal value ξm, we have ξm = 1 – aq. The second term
in [2] models draining of oedema. Clearance of oedema
is a complex phenomenon that involves a number of

(a) (b) (c) (d) (e)

Figure 1. Top: Example of spontaneous
velocity of radius expansion of a left temp-
oro-insular diffuse low-grade glioma
through the evolution of its mean tumour
radius on MRI over time. Each point repre-
sents an MR examination. Before treatment
by radiotherapy (a), the tumour grew sponta-
neously and continuously. Duration of radio-
therapy is indicated by joined arrows.
Following radiotherapy, tumour volume mea-
sured on follow-up MRIs decreased for more
than 5 years. Then, tumour progression was
observed on MRI with a tumour regrowth.
Bottom: MRI images corresponding to the
times indicated by letters on the radius-
versus-time curve.
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mechanisms such as drainage into the cerebrospinal fluid
(corresponding to a constant drainage rate) or reabsorp-
tion into blood vessels in the oedematous tissue (corre-
sponding to a drainage rate proportional to quantity of
oedema) (16,39,40). For the sake of simplicity, we have
opted for a phenomenological representation where the
exponent c = 0.1. This value has the advantage of being
very close to constant-rate draining, while ensuring that
oedema concentration remains positive at all times
(something impossible in the case of constant draining
where a cut-off must be applied ad hoc when value of
concentration reaches 0).

For simplicity, we have assumed spherical symmetry
of the tumour. Therefore, q and ξ depend on distance r
to the centre of the tumour and at time t only.

oq
ot

¼ D
o2q
or2

þ 2
r
oq
or

� �
þ jq 1� qð Þ ð3Þ

For numerical simulations it is more convenient to intro-
duce an auxiliary variable. We put q = u/r and, multi-
plying both sides of (1.2) by r, we obtain the equation

ou
ot

¼ D
o2u
or2

þ ju 1� u
r

� �
ð4Þ

where, because of the relationship between q and u, we
must have u(r = 0, t) = 0 and (ou/ðr)(r = 0, t) = q(r = 0,
t). The problem is now reduced to a one-dimensional one.
We have solved eqn (4) by discretizing it over a radial
mesh, size Dr = 0.01 mm (thus Dr is close to the radius of
a single cell) with time step Dt = 0.01 year, using an
implicit scheme for the diffusion component and a homo-
graphic-type discretization for the logistic component.

Standard Euler-type integration was used for integration of
oedema eqn (2). Once both equations were solved, profiles
of tumour cells as well as of oedema density were obtained,
at a given time step, and we defined tumour radius as dis-
tance r to the tumour centre where the fraction of oedema ξ
crossed a fixed threshold c. Our oedema-based model
accounted for the limit of the MRI abnormality on T2
weighted images corresponding not to a threshold on den-
sity of glioma cells but rather to a threshold on fraction of
tissue occupied by oedema (12–14).

Modelling the effect of RT. Next we turn to modelling
of the radiotherapy process itself. Given the time scale
of the whole process of tumour growth before and after
therapy, we decided, for simplicity, to apply radiother-
apy at a given point in time instead of spreading it over
the duration (typically 6 weeks, or 0.11 year) of treat-
ment in a real-life situation (for comparison, mean
re-growth delay after radiotherapy for the patients we
will present in what follows, is 1.25 year).

We assumed that cell density q(r, 0�) just before
RT drops to q(r, 0+) = q(r, 0�) f(r) during RT (that
occurs at t = 0).

It is useful to stress here that when we speak of “cell
density q(r, t)”, we refer to cells that are able to prolifer-
ate, migrate and produce oedema, that is, cells that are
alive. By killing cells, RT triggers a drop in density via-
ble cells.

Function f(r) was chosen to obtain a profile of cells
killed by treatment, q(r, t) (1 � f(r)), that is, close to
zero at the centre of the tumour, and displays a maxi-
mum at the periphery of the tumour, where proliferating
cells are located (see Fig. 2 left, dotted curve represents

Figure 2. Left: Profiles of cell densities before and after RT. The dashed (respectively solid) black curve corresponds to the cell density profile
just before (resp. after) RT. The cell density just after RT is obtained by multiplying the cell density just before RT by a parabola-shaped function
that crosses the horizontal axis at x = R0. The dotted-dashed curve is the difference between the solid and the dashed black curves, and represents
the cell density that has been killed by RT. The dotted black curve is the density of cells that has been created by proliferation during 6 weeks,
between t = �0.12 year and t = 0. The parameters are common to all the curves: j = 7.0 year�1, D = 1.75 mm2/year, k = 0.79 year�1, x = 0.60.
Right: Example of an oedema fraction curve, at the onset of RT. The parameters are the following: j = 1.8 year�1, D = 0.9 mm2/year,
k = 0.17 year�1, x = 0.97 (patient 12). The value of oedema fraction 0.1 (dashed line) is the threshold between the visible part of the tumour on a
T2-weighted MR image (indicated by a grey rectangle) and the invisible part. For the same patient, samples from a biopsy (haematoxylin and eosin
staining) inside the MRI-defined abnormalities are associated with a high fraction of oedema in the tissue [80%, as measured in (14)], whereas out-
side the MRI-defined abnormalities, the fraction of oedema is lower and reaches zero for normal tissue. The black bar represents 50 lm.
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proliferating cells and dashed-dotted curve represents
cells killed by RT). A simple one-parameter inverted
parabola meets these requirements:

f ðr�R0Þ ¼ 1� r=R0ð Þ2
f ðr�R0Þ ¼ 0

�

An example of the effect of RT can be visualized in
Fig. 2 left: dashed curve represents the profile of cell
density q(r, 0�) just before RT, whereas the solid curve
represents the profile of cell density just after RT, q(r,
0+) = q(r, 0�) f(r).

The profile of cells killed by RT is:
qKðrÞ ¼ qðr; 0�Þ � qðr; 0þÞ ¼ qðr; 0�Þ r=R0ð Þ2 for r ≤ R0
and qK(r) = q(r, 0�) for r > R0 and is represented by the dot-
ted-dashed curve in Fig. 2, left. Parameter R0 is radius of
action of RT: for r > R0, no cell is killed (see Fig. 2 left).

Number of glioma cells N� in the tumour just before
RT is calculated as N� ¼ A

R1
0 qðr; 0�Þr2dr where A is

constant. Number of glioma cells N+ in the tumour just
after RT is calculated as Nþ ¼ A

R1
0 qðr; 0þÞr2dr. To

characterize effects of treatment by a parameter more
concrete than radius of the parabola R0, we defined
0 < x < 1 as fraction of glioma cells killed by RT:
x = (N� � N+)/N�. By using expressions N� and N+, x
can also be expressed as follows:
x ¼ ðR1

0 qKðrÞr2drÞ=ð
R1
0 qðr; 0�Þr2drÞ. If x is close to

0 (i.e. R0 = 0), no cell is killed and fraction of cells
killed by RT increases with x: parameter x is, therefore,
a measure of tumour sensitivity to RT.

The parameters. Once the model is fixed, we must
address the question of its parameters, their number and
their influence on the results. A first remark concerns
variables of time and space. They were both calibrated
so that time was counted in years and distances mea-
sured in mm.

The second remark concerns number of parameters in
the model: from eqns (1) and (2) it is clear that the model
introduced five parameters, j and D control the natural
tumour’s growth, l, k and a define dynamics of oedema.
Modelling RT brings one more parameter, x. Initial con-
ditions can also introduce further parameters. While for
oedema density the initial value is 0, for glioma cell den-
sity we started from an initial cell number. Finally, esti-
mating radiological radius of the tumour necessitated
introduction of one more parameter, namely threshold c.
Thus naive counting lead to no fewer than eight parame-
ters. However, we will show that we were able to fix
some of them, reducing numbers of unknown parameters.

First, the term ξm = 1 – aq. In (14,41), value of Cm

for low-grade gliomas has been estimated to be around
105 cells/mm3 and volume of a glial cell is 0.5 pL (42),

which provides a value of 0.05 for a. Given that q < 1,
the term aq is negligible compared to 1 (except when q
is close to 1). We thus simplified the model by approxi-
mating 1 – aq – ξ by1 – ξ.

Second, number of cells in the initial mass. As we
do not know what occurs at very early stages of tumour
growth, we decided to start with one cell only, as in
(27). Next we investigated the effect of threshold c.
Analysis of stereotactic biopsies (14) suggested that this
threshold should be set between 0.1 and 0.2. However,
changing the value of c did not affect RT consequences
in an appreciable way, so we chose to set c = 0.1, see
Fig. 2 right.

Finally, five parameters remained: growth parameters
D and j, oedema parameters k, l, and RT parameter x.
These three families of parameters (growth, oedema,
RT) control different parts of the tumour radius-versus-
time curve. In Fig. 3 left, we show simulated evolution
radius of a DLGG before, during and after treatment.
One can distinguish four parts in this evolution.

The first, (number 1 in Fig. 3 left) is the invisible
phase when oedema density is beneath detection thresh-
old and the tumour cannot be discovered. We will not
discuss this phase here as it has been studied in detail
elsewhere (27).

The second part of the curve (number 2 on Fig. 3 left)
is linear growth of tumour radius, before RT. It is well
known that increase in radius of a tumour is governed by
eqn (1) alone, and becomes asymptotically linear with
time (22), velocity of the detectable tumour front being:

v ¼ 2
ffiffiffiffiffiffiffi
Dj

p
ð5Þ

This linear behaviour persists even in the case where
growth is governed by the coupled system [1] and [2] as
eqn (2) does not present any spatial dependence. For
example, asymptotic velocities shown in Fig. 3 left
(model with oedema), and right, (model without oedema)
are the same. If, for a patient, the velocity of radial expan-
sion v can be measured, we can fix the product of D and j
using eqn (5) and have only one effective parameter D/j
to be adjusted in our simulations.

The third part of the curve (number 3 in Fig. 3 left)
corresponds to reduction in tumour radius after RT. Just
after RT, number of glioma cells becomes dramatically
lower. At the periphery of the tumour, cells that were
producing oedema have been killed, thus draining of
oedema is not compensated by its production, and radius
of the tumour gets smaller. Meanwhile, remaining gli-
oma cells proliferate, and when they reach sufficient
density, the production term of oedema is again large
enough to compete with draining, reducing velocity of
reduction in tumour radius. After tumour radius has
reached its minimum, its growth starts again when (and
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where) proliferation overcomes the draining. We defined
the lower velocity vd as the absolute value of the mean
slope during the regrowth delay. This decreased velocity
not only mainly depends on oedema production and
draining coefficients but also on j and D (see Fig. 4
top). Effects of lowering draining coefficient k can be
visualized in Fig. 4 top by comparing the solid thick
black curve with the solid thin black one: decrease
velocity vd gets smaller. On the other hand, if produc-
tion coefficient l is lowered, decrease velocity vd gets
larger (compare the solid thick black curve with the
thick dashed black one).

The fourth part of the curve (number 4 in Fig. 3
left) corresponds to regrowth of the tumour. After the
radius has reached its minimum, oedema production
overcomes draining, and tumour radius returns to its
pre-RT linear evolution. In Fig. 4 top, influence of
parameter x can be visualized by comparing the solid
thick black curve (x = 0.90) with the thick dashed
grey one (x = 0.74): if fewer cells are killed during
RT, regrowth delay is reduced. Influence of parameter
j can be visualized by comparing the solid thick
black curve (j = 1 year�1) with the solid thick grey
one (j = 2 year�1): with a higher proliferation coeffi-
cient, glioma cells proliferate faster and regrowth
occurs earlier. Natural growth velocity v is also larger
in this case.

Oedema fraction. After a given time of evolution, cell
density is saturated at the centre of the tumour and its
value does not change further, see Fig. 2 right, solid
black curve. Thus, even if, at the scale of the whole sys-
tem, a steady state is not reached, locally at the centre
of the tumour, where cell density is saturated, the
oedema fraction reaches a steady value. Value of the
oedema fraction at the centre of the tumour ξe can be
deduced from eqn (2), with oq/ot = 0 and q = 1. One
finds that ξe is solution of the equation:

1� ne ¼
k
l
n0:1e ð6Þ

Fraction of oedema ξe depends only on the ratio k/
l. In Fig. 2 right, for patient 12, l = 1 and k = 0.25,
which yields ξe = 0.76. Conversely, if one can measure
the fraction of oedema (for instance by an MRI-based
and spatially oriented stereotactic biopsy and using the
method described in (14) to calculate the fraction of
oedema), one can deduce the ratio k/l. For the same
patient, we found that haematoxylin and eosin stained
biopsy sample inside the limits of the MRI-defined
abnormalities materialized by the grey rectangle, is char-
acterized by a fraction of oedema around 80%, whereas
the sample taken outside the limits of the MRI-defined
abnormalities has no oedema (see Fig. 2 right) (27,38).

Sensitivity to the parameters. To study the influence of
the parameters on output of the model, we defined two
variables, that can be measured both in simulations and
on radius-versus-time curves from real patients: regrowth
delay after RT, Dt, measures time from RT until onset of
tumour regrowth and progression-free gain of lifetime due
to RT, DT, which is time interval between RT and when
the tumour radius reaches the value it had just before RT,
without any anaplastic transformation of the tumour (see
Fig. 3 top left). Influence of the parameters can be visual-
ized in Fig. 4 left (for DT) and right (for Dt). The parame-
ter of oedema production l has a very small influence on
values of DT and Dt in the range 0.5–10 year�1. Since all
the patients lie in this range (see next section), we were
able to simplify the model by fi Sin l = 1 when fitting the
clinical data. By contrast, the parameter that influences
the most DT and Dt is fraction of cells killed by RT, x,
indicated here with white circles.

Since for what follows, we needed fitting of the
function DT (j, D, l, k, x), we performed here the
analysis of its limiting behaviours: for example, if x = 0

Figure 3. Left: Definition of the regrowth delay Dt and of the gain of lifetime due to RT DT and of the four phases that compose the
radius-versus-time curve. Right: A radius-versus-time curve, with the migration–proliferation model without oedema (the radius of the tumour vis-
ible on MRI is calculated from the cell density). The threshold of visibility on the cell density is set to 0.02 (37). The parameters are the following:
j = 1.0 year�1, D = 1 mm2/year, k = 0.5 year�1, x = 0.63.
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(no glioma cells killed), then DT (j, D, k, 0) = 0 (for
finite values of the other parameters). If draining coeffi-
cient was k > (1 � c)/c0.1 (i.e. k > 1.133 with c = 0.1),
value of the oedema fraction at equilibrium ξe calculated
from eqn (6) becomes lower than the detection threshold
c = 0.1 and detectable radius of the tumour is always
zero. If k is slightly smaller than (1 � c)/c0.1, after RT,
regrowth occurs very late, as almost all produced
oedema drained right away. So DT ? ∞ when
k ? (1 � c)/c0.1. If j ? 0, regrowth after RT occurred
very slowly, and thus DT ? ∞. On the other hand, if
j ? ∞, regrowth after RT occurred almost instanta-
neously and thus Dt ? 0. This analysis led us to
assume that function DT can be approximated by a
product of four one-variable functions (with l = 1) (see
Fig. 4 left):

DTðx; k; j;DÞ ¼ 2:5xð1:05� xÞ�0:68ð1:134
� kÞ�0:05j�0:72D�0:3 ð7Þ

In eqn (7) DT is measured in year, k and j in
year�1 and D in mm2/year.

Fitting procedure. A total of 326 data points (326 cou-
ples time-radius), that represented a mean of 11.6 data
points per patient, was available. From the radius-

versus-time curve of each patient, 3 variables are
measured:
-Slope of linear growth phase before RT, v.
-Regrowth delay after RT, Dt.
-Progression-free gain of lifetime due to RT, DT.

As explained above, themodel is comprised of five param-
eters: j, D, l, k and x, but since value of v is used to fix the
product jD, removing parameter D, only four parameters are
varied to fit the clinical data. The four parameters were varied
by steps of 10�1 year�1 for j, l and k and of 10�2 for x in the
following ranges: 0.1 < kc0.1/(1 � c) < l < 10 year�1,
0.1 < j < 15 year�1 and 0 < x < 1 and mean of the square
residual v2 is measured at each step.

The best quadruplet (j, l, k, x) for each patient cor-
responded to a radius-versus-time curve that:
1 Fulfilled the following constraints, as in our previous
work (27):

- Age constraint: age of the tumour can not exceed
age of the patient.

- Linearity constraint: we require linearity of evolution
of tumour radius from time the radius exceeds
15 mm onwards, that is, value of slope of the radius-
versus-time curve at r = 15 mm should not exceed
value of the asymptotic slope by more than 20%.

Figure 4. Top: Influence of the parameters on the radius-versus-time curve. Thick solid black curve: j = 1.0 year�1, D = 1 mm2/year,
l = 1.0 year�1, k = 0.5 year�1, x = 0.90; thick solid grey curve: same parameters as for the thick solid black curve, except j = 2.0 year�1; dashed
grey curve: same parameters as for the thick solid black curve, except x = 0.74; thin solid black curve: same parameters as for the thick solid black
curve, except k = 0.1 year�1; dashed black curve: same parameters as for the thick solid black curve, except l = 0.65 year�1. Bottom: Influence of
the parameters of the model on DT (left) and on Dt (right). The variation of DT and Dt (year) obtained by simulation are plotted against the parame-
ters of the model: white triangles for the oedema production coefficient l (year�1), grey squares for the diffusion coefficient D (mm2/year), crosses
for the proliferation coefficient j (year�1), white circles for the fraction of glioma cells killed by RT x, black circles for the draining coefficient k
(year�1). The solid lines are the best fits (with l = 1 year�1): DT = 7.7/D0.37; DT = 8.1/j0.72; DT = 2.6x/(1.05 � x)0.68; DT = 7.8/
(1.134 � k)�0.05.
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2 Minimizes v2.
3 Is characterized by progression-free gain of lifetime
due to RT, DT and regrowth delay, Dt, that are the
closest possible to ones measured by clinical data.

Results

Comparison with a model without oedema

The first result of our model was to show that oedema
is essential: we simulated evolution of a tumour with
the migration–proliferation model without oedema
(eqn (1) only), see Fig. 3 right. Since in this case, the
tumour limit corresponded to an isodensity line of gli-
oma cells, reduction of tumour radius was instantaneous
when cells were killed by the treatment, and tumour
regrowth occurred as soon as treatment is stopped.
Therefore, the basic migration–proliferation model could
not account for the regrowth delay after RT. In the
following, we always used the oedema-based model.

Application to clinical data

All our 28 patients were very well fitted to the model.
Figure 5 displays superimposition of clinical data and
best fit for six patients. Error bars for clinical data are
set to �1 mm. For some patients, with large uncertainty
on the measure of Dt, several fitting solutions with
comparable v2 were found (see Fig. 6 top right). In
Fig. 6 top left, the 326 tumour radii obtained by simula-
tions for the 28 patients are plotted against experimental
radii measured from clinical images. Coefficient of
determination of the linear regression is R2 = 0.96.

Dependence of DT to j

Variable DT (k, x, j, D) depended strongly on x and j,
but weakly on k, the draining coefficient. Since standard
deviation of x between the 28 patients was very small
(rx = 9.910�2, x = 0.88), the main contribution to the
standard deviation of DT came from j (rj = 3.2 year�1,
j = 3.5 year�1). Therefore, even if all the parameters
varied from one patient to another, variation of j domi-
nated, and the plot DT-versus-j could be ficoul by the
function, i.e. DT / j�0.76 (see Fig. 6 bottom left), which
is close to the function given by eqn (7): DT / j�0.72.

Prediction of recurrence time

For 19 patients, duration of total survival after diagno-
sis was known (11). For these patients, we found that
there was correlation between regrowth delay Dt and
overall survival (R2 = 0.61) but also between gain of

lifetime due to RT DT and overall survival (R2 = 0.66).
Study of these two variables thus present clinical inter-
est, and it is of the utmost importance to be able to
predict them. In this section, we tried to discover
whether it was possible to answer the following ques-
tions that are crucial for clinicians: would we be able
to predict the time at which the tumour would start to
regrow after RT, and progression-free gain of lifetime
due to RT?

To be able to perform predictions, parameters of the
model need to be known well before regrowth, and
ideally before the end of treatment.

Here, we show that it was possible to fix values of
parameters l and j without greatly changing values of
DT and Dt, that it was possible to measure the value of
parameter k at the time of RT, and that, from the value
of the parameter k, we were able to infer the value of
the last parameter x.

Fixing l. As shown in fig 4 bottom left, parameter l
had little influence on DT and Dt. It had stronger influ-
ence on decrease velocity after RT, vd. However, if l

Figure 5. Superimposition of the tumour radius from patients
(black dots) and the fit obtained with our model (solid line), versus
time, for six patients. Top left: patient 1, j = 15 year�1, D = 4.8 mm2/
year�1, l =2.8 year�1, k = 0.6 year�1, x = 0.99; top right: patient 5,
j = 15 year�1, D = 3.75 mm2/year�1, l = 3.2 year�1, k = 1.8 year�1,
x = 0.95; middle left: patient 12, j = 1.8 year�1, D = 0.89 mm2/year�1,
k = 0.17 year�1, x = 0.97; middle right: patient 19, j = 4.2 year�1,
D = 1.06 mm2/year�1, l = 0.4 year�1, k = 0.2 year�1; x = 0.97; bottom
left: patient 16, j = 3.2 year�1, D = 1.6 mm2/year�1, k = 0.6 year�1,
x = 0.92; bottom right: patient 25, j = 1.5 year�1, D = 0.78 mm2/year�1,
k = 0.5 year�1, x = 0.82.
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was fixed to 1 for example, we verified that decrease
velocity could be reset to its initial value by changing
the other oedema parameter k. Moreover, the histogram
of values of l obtained after the fitting procedure in the
general case shows that most patients were compatible
with a value of l close to 1 (see Fig. 6 bottom right).
We thus decided to fix l to 1 for all the patients.

The fitting procedure with l = 1 provides new val-
ues of Dt and DT for each patient, that differed only by
7% on average for Dt and by 2% on average for DT
from values obtained with the fitting procedure in the
general case (range: 0–31% for Dt and 0–20% for DT).

Fixing j. We could not fix j to the same value for all the
patients, since constraints of age and linearity were differ-
ent for each patient. We thus fixed j to the minimum
value compatible with constraints of age and linearity for
each patient. The fitting procedure with l = 1 and j set to
its minimum possible value, gave new values of Dt and
DT for each patient, that now differed by 13% on average
for Dt and by 5% on average for DT from values obtained
with the fitting procedure in the general case (range:
0–75% for Dt and 0–32% for DT). In Fig. 7 left (respec-
tively right), values of Dt (resp. DT) corresponding to the
general case appear as white circles, and values of Dt
(resp. DT) corresponding to the case with l = 1 and j set

to its minimum possible value, appear as crosses. Values
of Dt and DT directly measured by the clinical data are
represented with error bars as thick grey lines.

Measuring k. We have seen that if cell density had been
saturated for at least one year before RT (which is the
case for all patients), value of the oedema fraction at the
centre of the tumour ξe is the solution of the eqn (6)
and depends only on the ratio k/l. Thus, if one can
measure the fraction of oedema (for instance via a MRI-
based and spatially oriented stereotactic biopsy and
using the method described in (14) to calculate the frac-
tion of oedema) just before or at the time of RT, one
can deduce the ratio k/l. As l has been fixed to 1, this
measure would directly give access to the value of the
draining coefficient k.

Estimating x. The last parameter to be estimated was
the fraction of cells killed by RT. Values of x for all
patients lay between 0.65 and 0.99, mean 0.88 standard
deviation 10�1. Since the standard deviation is small,
we could have used the same value of x for all patients.
However, to increase accuracy of our estimation, we
preferred to use the linear correlation observed between
fraction x of cells killed and draining coefficient, see
Fig. 6 bottom right, to deduce the fraction of cells killed

Figure 6. Top left: The tumour radii obtained by simulations for the 28 patients are plotted against the experimental radii measured on
clinical pictures. The coefficient of determination of the linear regression is R2 = 0.96. Top right: Example of the series radius-versus-time for a
patient, that can be fitted with different set of parameters, with a comparable mean square difference between the simulated and the experimental
data, v2. In this case, the uncertainty on the measure of Dt is large (see Fig. 7 left, patient 4). Bottom left: The gain of lifetime due to RT DT is
plotted against j, in a log-log scale. The equation of the linear regression is y = 10.4/x0.76. Bottom right, inset: histogram of distribution of the
oedema production l obtained when fitting all the patients. The relative cell number killed by RT is plotted against the draining coefficient k, with
the best linear regression (y = �0.22x + 0.99) and the two linear curves that comprise all the data points (y = �0.08x + 1 and y = �0.35x + 0.9).
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by RT, from the measured value of draining k. All data
points were included between two lines that underlay
the uncertainty associated with the value of x, see Fig. 6
bottom right.

Parameters were now all fixed or measured:
l = 1 year�1 for all the patients, j fixed to its minimum
value compatible with linearity and age constraints, k
given by the fraction of oedema at saturation that could
be measured by biopsy performed just before RT, and
value of x deduced from value of k by a linear relation.
Values of parameters could now be used in the simula-
tion of tumour growth to “predict” regrowth delay Dt
and gain of lifetime DT. “Predicted” values of Dt and
DT corresponded to the case where all parameters were
fixed or measured, and thus were the ones represented
by squares in Fig. 7.

Mean relative error on Dt “predicted” compared to
Dt in the general case is 21.7% (r = 21.8%, range: 0–
89%). However, the most representative error lies in
comparison between Dt measured from clinical data and
Dt “predicted” obtained with the simulation, see Fig. 7
left. When all parameters were fixed or measured, “pre-
dicted” Dt lay for all but one patients (patient 2) inside
the experimental error bars. For all patients, there was
an overlap between experimental values of Dt and simu-
lated ones, with error bars.

Mean relative error on the “predicted” DT was
22.6% (r = 18%, range: 0–79%). Since DT was more
sensitive to x than Dt, error bars on the estimation of DT
were larger. Even when “predicted” DT lay outside error
bars of measured DT for several patients, there was
overlap between experimental values of DT and simu-
lated ones with error bars, for all patients, see Fig. 7
right. Moreover, the four patients with very short gain
of lifetime (patients 1, 5, 8 and 10) were very well iden-
tified and their “prediction” of DT was good.

Discussion

In this article, we proposed an oedema-based migration–
proliferation model that described evolution of DLGG
under RT. The model used for assessment of RT effects
is admittedly a very simple one. Being simple offers the
advantage of eschewing intricate mechanisms and
restricting the number of parameters. As explained in
the previous sections, the effective number of parame-
ters, which may influence results in an appreciable way,
is just four: two parameters for tumour growth, one for
oedema production and draining and one for the RT
process.

To test our model, we fitted clinical data. We
showed that we were able to obtain very good fits of
experimental data. The results are robust and are not
due to high numbers of independent fitting parameters.
This agreement does not fully validate our model, but
we have shown that a model without oedema fails at fit-
ting the data.

We showed that variation of j dominateed variations
of others parameters in the patient population and that
there exists a strong correlation between high prolifera-
tion coefficient and low progression-free gain of lifetime
of the patients. This result is consistent with results of
clinical studies on the same data where high prolifera-
tion rates were associated with poorer outcomes (17).

We found that, for our population of patients, RT
killed around 88% glioma cell number, the remaining
12% being responsible for recurrence of the tumour. In
our model, proliferating cells represent only a small part
of cells killed by RT (8% on average), see Fig. 2 left,
the dotted curve, and it is interesting to note that Ribba
et al., with a different model, also predicted that RT
may have killed not only proliferative cells but also qui-
escent ones (31). We found that there was weak linear

Figure 7. The different Dt (left) and DT (right). The measured values with the associated error bars (thick grey lines), the simulated values in
the general case with the four free parameters (white circles), the simulated values with l fixed to 1 year�1and j fixed to its minimum value com-
patible with the constraints (crosses), the simulated values with l fixed to 1 year�1, j fixed to its minimum value compatible with the constraints
and x calculated from the linear relation with the draining coefficient (squares) (in this case, the error bars correspond to the different linear regres-
sions, see Fig. 5 bottom right).
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correlation between draining coefficient and fraction of
cells killed by RT: larger draining coefficient was asso-
ciated with lower fraction of cells killed by RT.
A hypothesis to explain this correlation would be that
high draining coefficient washed out quickly factors
released by irradiated cells, thus preventing them from
killing other non-irradiated cells by any bystander effect
(43). However, a larger cohort of patients would be
needed to confirm this hypothesis.

In addition, we showed that in theory, it should
be possible to estimate all parameters of the model
when RT starts. In this case, the model could predict
future evolution of the tumour radius. The regrowth
delay and the gain of lifetime due to RT could be
predicted with an uncertainty of around 20%. How-
ever, any additional uncertainty on the estimate of the
parameters can dramatically increased uncertainty of
predictions. Due to these uncertainties inherent in any
clinical data, the model could not be used to provide
regrowth delay or gain of lifetime with high precision,
but it certainly could provide an order of magnitude
of its duration.

Estimating regrowth delay and gain of lifetime due
to RT could be very useful for RT clinicians: first, it
seems that these variables are correlated to overall sur-
vival of patients. Second, since RT has very strong side
effects on patients, clinicians could use predicted
regrowth delay to decide whether risks for patients’
health outweigh benefits or not. If, for example, very
short regrowth delay would be predicted, RT may be
cancelled in favour of another more efficient oncological
treatment. And third, during treatment, estimate of re-
growth delay could help clinicians anticipate regrowth
of the tumour. More frequent MRI scans could be
planned at the approach of the estimated regrowth time.
A new treatment could start just as growth resumes,
when radius of the tumour would be close to its mini-
mum, improving efficiency of this second treatment, and
maybe delaying anaplastic transformation.

Our conclusions have been drawn for a particular set
of patients and will have to be confirmed by studies per-
formed on larger cohorts. Several improvements to our
model also spring to mind. For instance, duration of RT
could be modelled rather as a small but finite time inter-
val. The pattern of cells removed during radiotherapy
could be chosen differently from the one used here.
Draining of oedema could be modelled in a way differ-
ent from the one adopted here, perhaps based on more
detailed experimental investigations. Although these
suggested modifications may lead to an improvement of
the model, their implementation would entail introduc-
tion of more parameters, something we have strived to
avoid throughout this study.
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