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Abstract
Objective: The aim of this study was to investigate
effects of low-intensity pulsed ultrasound (LIPUS)
on differentiation of adipose-derived stem cells
(ASCs), in vitro.
Materials and methods: Murine ASCs were treated
with LIPUS for either three or five days, immedi-
ately after adipogenic induction, or delayed for
2 days. Expression of adipogenic genes PPAR-c1,
and APN, was examined by real-time PCR. Immu-
nofluorescence (IF) staining was performed to test
for PPAR-c at the protein level.
Results: Our data revealed that specific patterns of
LIPUS up-regulated levels of both PPAR-c1 and
APN mRNA, and PPAR-c protein.
Conclusions: In culture medium containing adipo-
genic reagents, LIPUS enhanced ASC adipogenesis.

Introduction

Mesenchymal stem cells (MSCs) compose a group of
multipotent stem cells derived from adult organs and tis-
sues including from bone marrow, ligaments, muscles,
adipose tissue and dental pulp (1–3). MSCs may undergo
self-renewal over several generations while maintaining
capacity to differentiate into multi-lineage tissues such as
bone, cartilage, muscle and fat (4). In previous studies,
we have investigated MSCs derived from human adipose
tissue as well as from other species, reporting the multi-
lineage potential focusing on adipogenic differentiation
(5). Adipose-derived stem cells (ASCs) can be readily
available, being relatively easily isolated from elective

surgery to remove excess adipose tissue (6). They can be
differentiated into adipocytes using standard cocktail
differentiation medium (DM) containing dexamethasone,
3-isobutyl-1-methylxanthine (IBMX), insulin and indo-
methacin (7). Thus, differentiation of ASCs provides an
excellent in vitro model to uncover mechanisms of adi-
pogenic differentiation and insulin sensitivity of mature
adipocytes, vital for treatment of obesity, insulin resis-
tance and fat tissue regeneration. Recently, functional
studies on adipogenic differentiation have been per-
formed on pre-adipogenic progenitor cell lines such as
3T3-L1, but research based on the ASC model would be
more beneficial to clinical use, as translation of knowl-
edge from primary cells to clinical practice would be
safer than from immortalized cells.

Strength of low-intensity pulsed ultrasound (LIPUS)
is below 100 mW/cm2 and a time interval is incorpo-
rated between each two pulses. Relative heat production
of LIPUS is weak and it is less invasive than more tra-
ditional ultrasound (8). Previous studies have confirmed
that LIPUS can effectively promote healing of recent
fractures and can be used for treatment of bone disconti-
nuities (9,10). In 1983, Duarte and Xavier (11) first
reported that low-intensity (30 mW/cm2) pulsed ultra-
sound could be used successfully as treatment for refrac-
tory bone non-union. In 1994, the FDA approved a
commercial LIPUS device designed by Exogen (Smith
& Nephew Inc., London, UK) for fracture healing, and
a further device to treat bone non-union was designed in
2000. Recently, studies performed on SAOS-2 and bone
marrow stromal cells (BMSCs) have shown effective-
ness of high-frequency vibration treatment for their dif-
ferentiation into osteoblasts.

Mechanical stimuli are thought to be important for
regulation of tissue development and cell differentiation
(12); they have roles in structure and function of cells
and are responsible for post-natal adaptation through
pre- and post-transcriptional regulation (13). Addition-
ally, mechanical stimulation can promote osteogenic and
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adipogenic differentiation of stem cells, a moderate level
of mechanical loading being considered essential for
physiological bone modelling and remodelling (14).
Modulation of bone mass and architecture is mainly
performed by osteoblasts (15). A variety of studies
has shown that daily mechanical loading can increase
b-catenin signal duration and suppress PPAR-c-induced
expression of adiponectin and lipid droplet accumula-
tion, indicating that mechanical stimuli might inhibit
adipogenesis; however, up to now no study had been
performed to examine effects of LIPUS on ASCs. Much
research has been limited to parameter choices available
commercially. Many studies have been focused on dif-
ferent variations in intensity (16–23); however, a system
consisting of a 1 MHz sine wave, 30 mW/cm2 spatial-
averaged temporal-averaged intensity, pulsed for 200 ls
with a PRF of 1 kHz, providing a 20% duty cycle,
applied for 20 min per day is the most commonly used.
Here, we employed different patterns of LIPUS to stim-
ulate mouse ASCs (mASCs) and to investigate expres-
sion patterns of adipogenesis-related genes, in a murine
model.

Materials and methods

Isolation and culture of mASCs

Four-week-old Kunming mice from the Sichuan Uni-
versity Animal Center (24,25) were used in this study,
in accordance with International Guiding Principles for
Animal Research (1985). Inguinal fat pads were dis-
sected from the mice and were washed extensively in
sterile PBS to remove tissue debris. Fat pads were
then digested using 0.075% type I collagenase
(Sigma-Aldrich, St. Louis, MO, USA) in PBS, for
60 min at 37° C, with agitation. After neutralization
of collagenase, cells released from specimens were fil-
tered and collected by centrifugation at 1200 g for
10 min. Resulting pellets were resuspended, washed
three times in medium and cells were seeded in plas-
tic flasks in control medium (a-MEM, 10% FBS)
(26). Cultures were maintained in a humidified atmo-
sphere of 5% CO2 at 37° C and resultant mASCs
were passaged three times prior to differentiation or
measurement.

Adipogenic induction and experimental groups

The third passage of mASCs was seeded into flasks, and
on glass coverslips into six-well plated at an appropriate
initial density. Cells were thus cultured in basic medium
for 2 days to reach confluence, then basic medium
was replaced with adipogenic induction medium contain-

ing a-MEM, 10% FBS, dexamethasone(1 lM), insulin
(10 lM), indomethacin (200 lM) and isobutyl-methylxan-
thine (0.5 mM) (Sigma-Aldrich).

Potentially enhanced effects of LIPUS on adipogene-
sis of ASCs, were investigated at two time points, imme-
diately after adipogenic induction or 2 days after
induction. These murine ASCs were divided into four
experimental groups (Fig. 1). Group 1(2 + 5D), mASCs
cultured in adipogenic induction medium for 2 days,
before LIPUS being applied for 5 days and mASCs in
the control group cultured in adipogenic induction med-
ium for 7 days (Fig. 1a). Group 2(2 + 3D), LIPUS
applied for 3 days after 2 days culture of mASCs in adi-
pogenic induction medium and mASCs in the control
group cultured in adipogenic induction medium for
5 days (Fig. 1b). Group 3(5D), mASCs treated with LI-
PUS directly after adipogenic induction for 5 days and
mASCs in the control group cultured in adipogenic med-
ium for 5 days (Fig. 1c). Group 4(3D), mASCs treated
with LIPUS for 3 days immediately after adipogenic

(a)

(b)

(c)

(d)

Figure 1. Experimental groups. (a) Group 1: mouse ASCs
(mASCs) cultured in adipogenic induction medium for 2 days, before
low-intensity pulsed ultrasound (LIPUS) being applied for 5 days; rel-
evant controls were cultured in adipogenic induction medium for
7 days. (b) Group 2: LIPUS applied for 3 days after 2 days culture
of mASCs in adipogenic induction medium; relevant controls cultured
in adipogenic induction medium for 5 days. (c) Group 3: mASCs
treated with LIPUS directly after adipogenic induction for 5 days; rel-
evant controls cultured in adipogenic medium for 5 days. (d) Group
4: mASCs treated with LIPUS for 3 days immediately after adipo-
genic induction; relevant controls cultured in adipogenic induction
medium for 3 days.
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induction and mASCs in the control group cultured in
adipogenic induction medium for 3 days (Fig. 1d).

The LIPUS system

Principles of LIPUS are the same as for general ultra-
sound. However, our LIPUS system has two innovative
aspects, designed to fulfil several criteria: first, to pre-
cisely control stimulatory waveforms over a relatively
wide, adjustable frequency range. Second, to deliver LI-
PUS to the cells, transducers of the LIPUS system were
designed as 3 cm diameter structures (the same as of a
single well of standard 6-well plates), and operated in
close proximity beneath the target cells, seeded in wells
of the plates.

Extraction of total RNA, RT-PCR and real-time PCR

RNA was extracted half an hour after completion of ultra-
sound stimulation. We assessed transcriptional levels of
PPAR-c1 and APN by real-time PCR assay. Initially, total
RNA of the cells was extracted using Total Tissue⁄cell
RNA Extraction Kit (Watson, Yunnan, China) according
to the manufacturer’s protocol. Total RNA (11 ll) was
reverse-transcribed into cDNA in a 20 ll reverse tran-
scription system (Fermentas, Vilnius, Lithuania). Total
RNA and cDNA of each sample were examined using
agarose electrophoresis according to protocols outlined in
Molecular Cloning: A Laboratory Manual (2001, 3rd edi-
tion). cDNA samples were amplified using an RT-PCR
kit (Tiangen, Peking, China) with primers as displayed in
Table 1. Expression of specific genes was then quantified
using real-time PCR and SYBR Premix Ex TaqTM (Per-
fect Real Time) kit (Takara, Tokyo, Japan); reactions
were carried out on the ABI 7300 system (ABI, Foster
City, CA, USA). For each reaction, a melting curve was
generated to test primer dimmer formation and false prim-
ing, then relative quantification of mRNA levels was car-
ried out by means of a double standard curve method. To
compare transcription levels of target genes in different
quantities of sample, expression of GAPDH was used for
normalization of real-time PCR results.

Immunofluorescence staining of de-PPAR-c and ph-
PPAR-c

Mouse ASCs cultured in adipogenic medium were pla-
ted on glass coverslips in six-well plates 24 h before
use of LIPUS. Cells of experimental and control groups
were then washed briefly in PBS, fixed in cold acetone
for 30 min at room temperature and blocked in 0.5%
bovine serum albumin for 15 min. Coverslips were sub-
sequently incubated overnight at 4° Cwith rabbit poly-
clonal antibody against.

PPAR-c (1:100) (AbCam, Cambridge, UK) or rabbit
monoclonal antibody against PPAR-c with phosphoser-
ine at residue 82 (1:100) (Upstate, Lake Placid, NY,
USA). Sequentially, slides were incubated in secondary
antibodies conjugated to rhodamine (Pierce) for 1 h at
room temperature, and nuclei were stained with DAPI
(Molecular Probes, Eugene, OR, USA) for 10 min.
After rinsing in PBS, cells were observed and photomi-
crographs were taken using an Olympus IX 710 micro-
scope (Olympus, Tokyo, Japan). Images were analysed
using Image-Pro Plus 6.0.0.260 (Media Cybernetics,
Rockville, MD, USA) and integral optical density (IOD)
was measured to evaluate PPAR-c.

Statistical analysis

We performed three or more independent sets of experi-
ments, and each experiment was run at least three times.
Quantified data are expressed as mean values � SD and
ANOVA was used to analyse differences within groups
in all assays. To specify significant difference between
experimental groups and controls, the Dunnett t-test was
conducted. To determine effectiveness of different dura-
tions of action, data were also analysed using LSD
t-testing. P values <0.05 were considered to be statisti-
cally significant.

Results

LIPUS promoted PPAR-c1 and APN transcription after
adipogenic induction

In all groups, PPAR-c1 and APN mRNAs were detected
by real-time PCR. mRNA level of PPAR-c1 increased to
63.22 � 8.96 of its previous value (Group 1), 15.07 �
3.44 (Group 2), 3.27 � 0.51 (Group 3) and 2.85 � 0.08
(Group 4), with significant differences from control
groups, respectively, P values were 0.0102 (Group 1),
0.0286 (Group 2), 0.0244 (Group 3) and 0.0010
(Group 4), respectively (P < 0.05, Dunnett t-test). Data
of real-time PCR indicated that mRNA level of PPAR-
c1 Group 1 was significantly higher than of other groups,

Table 1. Primer sequences of target genes and GAPDH for real-time
PCR

Target gene (mouse) Primer sequence (5′–3′)

PPAR-c1 F: CCAACTTCGGAATCAGCTCTR: CAACC
ATTGGGTCAGCTCTT

Adiponectin F: GCAGAGATGCACTCCTGGAR: CCCT
TCAGCTCCTGTCATTCC

GAPDH F: TATGACTCTACCCACGGCAAGTR: ATA
CTCAGCACCAGCATCACC
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with P values being 0.0030, 0.0030, 0.0030, respectively
(P < 0.05, by LSD t-test); there was no statistically sig-
nificant difference between data of Groups 2–4 (Fig. 2a).
mRNA level of APN increased to 126.85 � 37.37 of its
previous value (Group 1), 6.46 � 1.57 (Group 2),
7.05 � 0.96 (Group 3) and 7.19 � 1.71 (Group 4), with
significant differences from control groups, respectively.
P values were 0.0414 (Group 1), 0.0388 (Group 2),
0.0125 (Group 3) and 0.0361 (Group 4), respectively
(P < 0.05, Dunnett t-test). This indiates that mRNA level
of APN on 2 + 5 days was significantly higher than that
on 3 days, 5 days, 2 + 3 days and that of control
groups. P values were <0.0001, <0.0001 and 0.0010
respectively (P < 0.05, by LSD t-test); mRNA levels of
APN on days 3.2 + 3, 5 were similar to each other
(Fig. 2b). PCR products were then run on argarose gel to
test specificity of primers (Fig. 2c).

LIPUS promoted expression of de-PPAR-c and ph-
PPAR-c with adipogenic induction

PPAR-c is commonly activated by dephosphorylation in
the cytoplasm. Dephosphorylated PPAR-c moves into
nuclei and functions as in intranuclear transcriptional

factor. After 3 days (Group 4), 2 + 3 days (Group 2),
5 days (Group 3) and 2 + 5 days (Group 1) differentia-
tion, IF was performed using anti-de-PPAR-c (Fig. 3)
and anti-ph-PPAR-c (Fig. 4) antibodies, respectively.
Expression of de-PPAR-c and ph-PPAR-c on day 3
(Group 4), 2 + 3 (Group 2), 5 (Group 3) and 2 + 5
(Group 1) were higher when compared to control
groups, respectively, and de-PPAR-c (Fig. 5) was
expressed significantly more highly in LIPUS-treated
groups compared to control groups: in Group 1, de-
PPAR-c expression (7.16 � 0.30%) was higher than
controls (3.07 � 0.15%); in Group 2, de-PPAR-c
expression (16.25 � 0.21%) was higher than in controls
(2.03 � 0.11%); in Group 3, de-PPAR-c expression
(11.73 � 0.20%) was higher than in controls
(3.01 � 0.06%) and in Group 4, de-PPAR-c expression
(2.50 � 0.04%) was higher than in controls
(1.97 � 0.013%); P values were 0.0033, 0.0001, 0.0003
and 0.0032, respectively (P < 0.05, by Dunnett t-test).
ph-PPAR-c (Fig. 6) was also found to be higher in LI-
PUS-treated compared to control cells: in Group 1 ph-
PPAR-c expression (9.56 � 0.34%) was higher than in
controls (3.02 � 0.06%); in Group 2 ph-PPAR-c
expression (3.73 � 0.23%) was higher than in controls

(a)

(b)

(c)

Figure 2. Low-intensity pulsed ultrasound
(LIPUS) promoted PPAR-c1 and APN
transcription after adipogenic induction. (a)
In all groups, PPAR-c1 mRNA was detected
by real-time PCR. Data obtained indicated
that mRNA level of PPAR-c1 Group 1 was
significantly higher than that of other groups,
and there was no statistically significant dif-
ferences between data of Groups 2–4. (b) In
all groups, APN mRNA was detected by real-
time PCR. Data obtained indicated that
mRNA level of APN group 1 was signifi-
cantly higher than that of the other groups,
and there was no statistically significant dif-
ference between data of Groups 2–4. P values
<0.05 were considered statistically significant,
as indicated by * (Dunnett t-test) and # (LSD
t-test), * for comparison between different
groups on the same day, and # for compari-
son between different groups 2 + 5D,
2 + 3D, 5D and 3D. (c) RT-PCR showed
expression of PPAR-c1 and APN.
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(2.19 � 0.32%); in Group 3 ph-PPAR-c expression
(8.22 � 0.57%) was higher than in controls (1.82 �
0.16%) and in Group 4 ph-PPAR-c expression (2.36 �

0.21%) was higher than in controls (1.21 � 0.08%);
P values were 0.0014, 0.0312, 0.0042 and 0.0181,
respectively (P < 0.05, by Dunnett t-test).

Figure 3. Low-intensity pulsed ultrasound
(LIPUS) promoted de-PPAR-c protein
expression. After 2 + 5 days (Group 1),
2 + 3 days (Group 2), 5 days (Group 3),
3 days (Group 4) of adipogenic induction.
Immunofluorescence staining was performed
using anti-de-PPAR-c (green). Cell nuclei
were counterstained with 4, 6-diamidino-2-
phenylindole (blue). (Magnification 9100).
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Discussion

In this study, we assessed transcription levels of PPAR-
c1 (27) and APN in mASCs, by real-time PCR assay.

Adiponectin is a protein hormone that modulates a num-
ber of metabolic processes, including glucose regulation
and fatty acid catabolism (28). It is mainly secreted into
blood from adipose tissue, as well as from the placenta

Figure 4. Low-intensity pulsed ultrasound
(LIPUS) promoted ph-PPAR-c protein
expression. After 2 + 5 days (Group 1),
2 + 3 days (Group 2), 5 days (Group 3),
3 days (Group 4) of adipogenic induction.
Immunofluorescence staining was performed
using anti-ph-PPAR-c (green). Cell nuclei
were counterstained with 4, 6-diamidino-2-
phenylindole (blue). (Magnification 9100).
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during pregnancy (29); it is more abundant in plasma
relative to many other hormones. PPAR-c is the most
important regulator of transcriptional control of adipo-
genesis (30–32). When activated by its ligands, PPAR-c
alone can drive adipogenic differentiation and lipid
deposition. It has been reported that expression of
PPAR-c is initiated in early adipogenesis, and increases
during the process of adipogenesis.

Here we used a 1 MHz sine wave, 100 mW/cm2

spatial-averaged temporal-averaged intensity pulsed for
200 ls with PRF of 1 kHz, providing a 20% duty cycle
and applied for 3 min per day. Our data indicated that
mRNA levels of PPAR-c1 and APN, as well as protein
levels of phospho-PPAR and de-phospho-PPAR, could
be increased by LIPUS in 3D, 5D, 2 + 3D and 2 + 5D
loading patterns. We found that it didn’t matter whether
LIPUS was loaded on to the mASCs five days, three
days or immediately after adipogenic induction, adipo-
genesis of the ASCs was enhanced.

Cell manipulation techniques are important in many
areas of cell biology, molecular genetics, biotechnological

production, clinical diagnostics and therapeutics. Physical
methods of manipulating suspended cells at single-parti-
cle microscopic resolution include by hydrodynamic (33),
optical (34), dielectrophoretic (35), magnetic (36) and
ultrasonic (37–39) cell trapping. Of the above mentioned
methods, ultrasound trapping has up to now been less
extensively exploited. Compared to other methods, ultra-
sound cell manipulation is an inexpensive and non-con-
tact technique that allows simultaneous and synchronous
manipulation of large numbers of cells over a very short
time period. To a certain extent, LIPUS is similar to
mechanical stimuli, as they both apply external force to
cells and there are many recent articles reporting that
mechanical stress on ASCs at certain times can restrain
the adipogenic potential. Mechanical strain applied for
6 h daily inhibits expression of PPAR and adiponectin
mRNA by up to 35% and 50% (40). Hossain’s data have
suggested that SGBS, a human pre-adipocyte cell line,
was inhibited from adipogenesis when subjected to com-
pressive force of 226 Pa for 12 h before adipogenic
induction (41). Yet so far, previous studies have pointed
out that mechanical stimuli inhibit adipogenic differentia-
tion of ASCs. Our data, however, have lead to different
conclusions due to three reasons: first, immortalized cell
lines were used in most of the previous studies, but we
used mouse ASCs. Secondly, characteristics of mechani-
cal forces used were different from LIPUS; mechanical
forces in the above-mentioned studies were uniform
strain, while in ours studies, we used a mechanical waves
and lastly, times of mechanical loading were different –
we used briefer time periods than the others.

In conclusion, we have demonstrated that LIPUS
induced enhanced adipogenesis of ASCs, by increasing
expression of adipogenic genes.
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