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Abstract

Pediatric acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, and the 

second leading cause of pediatric cancer death in developed countries. While the cure rate for 

newly-diagnosed ALL is excellent, the genetic heterogeneity and chemoresistance of leukemia 

cells at relapse makes individualized curative treatment plans difficult. We hypothesize that genetic 

events would coalesce into a finite number of protein signatures that could guide the design of 

individualized therapy. Custom Reverse Phase Protein Arrays were produced from 73 pediatric 

ALL and 10 normal CD34+ samples with 194 validated antibodies. Proteins were allocated into 31 

Protein Functional Groups (PFG) to analyze them in the context of other proteins, based on known 

associations from the literature. The optimal number of protein clusters was determined for each 

PFG. Protein networks showed distinct transition states, revealing “normal-like” and “leukemia-

specific” protein patterns. Block clustering identified strong co-correlation between various 

protein clusters that formed 10 protein constellations. Patients that expressed similar recurrent 

combinations of constellations compiled 7 distinct signatures, correlating with risk stratification, 

cytogenetics and laboratory features. Most constellations and signatures were specific for T-cell 

ALL or pre-B-cell ALL, however some constellations showed significant overlap. Several 

signatures were associated with Hispanic ethnicity, suggesting that ethnic pathophysiological 

differences likely exist. Additionally, some constellations were enriched for “normal-like” protein 

clusters, whereas others had exclusively “leukemia-specific” patterns.
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INTRODUCTION

Pediatric acute lymphoblastic leukemia (ALL) is the most common form of cancer in 

children accounting for approximately 25% of all childhood malignancies. Despite dramatic 

improvements in outcome over the past few decades, with 5-year survival rates approaching 

90%,1,2 relapsed ALL remains one of the leading causes of pediatric cancer mortality and 

morbidity. To improve therapeutic outcome in high-risk patients and relapsed ALL, we need 

an improved understanding of individual molecular pathophysiology. Defining what 

signaling pathways and regulatory network dependencies are crucial to driving the 

underlying malignancy would facilitate the use of targeted therapies on an individualized 

basis.

High-throughput next-generation sequencing has led to an advanced understanding of the 

genetic heterogeneity of pediatric ALL; this in turn has led to a focus on novel therapies that 

target frequently mutated candidate genes.3 This research has revealed multiple recurrent 

genetic alterations, involving genes involved in lymphoid development, cell-cycle regulation, 

tumor-suppression, apoptosis, lymphoid signaling, and transcriptional regulation.3,4 

However, with the exception of the BCR-ABL+ tyrosine kinase inhibitors,3 most recurrent 

genetic events identified to date lack therapeutic agents that specifically target the mutated 

proteins resulting from these genetic mutations. Furthermore, those genetic and epigenetic 

changes occur in a near infinite number of combinations and the physiological consequences 

of combinatorial genetic mutations are largely undefined. This genetic heterogeneity makes 

personalized rational treatment combinations challenging.

Since the molecular consequences of genetic and epigenetic events are predominantly 

mediated by the altered expression and function of proteins, we hypothesize that genetic 

heterogeneity coalesces into a more finite number of protein expression patterns, and that 

these protein expression patterns reveal key protein dependencies that could identify 

therapeutic targets. Gene expression profiling (GEP) has revealed recurrent patterns of gene 

expression, but has the limitation that messenger RNA transcript expression correlates with 

protein abundance for less than 50% of genes.5–11 GEP also does not reflect post-translation 

modifications (PTM) and protein activation states. Since proteins function in networks and 

functionally related pathways, rather than on individual basis, we further hypothesize that 

analyzing proteins using a network-based approach should identify crucial recurrent protein 

expression patterns that define subpopulations of pediatric ALL. We therefore set out to 

define unique protein expression patterns across pediatric ALL patients with the goal of 

informing risk classification and suggesting novel combinational therapy.
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METHODS

Patient population

Peripheral blood (PB) mononuclear cells were collected from 73 ALL patients (67 newly 

diagnosed and 6 relapsed pediatric ALL) that were evaluated at the Texas Children’s 

Hospital (TXCH) between July 2010 and June 2015. Samples were collected prior to 

induction therapy and in accordance with institutional IRB policies. Informed consent was 

obtained in accordance with the Declaration of Helsinki, and applicable local and state laws. 

Demographics are described in Table 1. Sixteen patients were diagnosed with T-cell ALL 

and 57 with pre-B cell ALL. A high percentage were of Hispanic ethnicity (N=45/73, 62%). 

Single-nucleotide polymorphisms (SNP) were determined for 54 patients to verify their 

genetic ancestry. Patients were stratified into risk groups according to the Children’s 

Oncology Group (COG)12 and were treated under a variety of COG protocols 

(Supplementary Table S1). All but six patients achieved complete remission (CR), and only 

four relapsed. Sixteen patients underwent stem cell transplantation and 63 (86%) were alive 

at the end of follow-up (28 to 350 weeks). Mutation analysis was restricted to that performed 

as part of routine clinical care and included analysis of MLL, CDKN2A, IgH, TCF3, ETV6 

and RUNX1. This mutation information was available for all but two patients.

RPPA methodology

The antibody based high-throughput Reverse Phase Protein Arrays (RPPA) methodology 

was performed on 73 samples from pediatric patients with ALL, 10 cryopreserved CD34+ 

normal bone marrow (BM) samples (AllCells, Almeda CA) and 127 leukemic cell lines 

samples. Fresh samples were processed into RPPA lysates on the day of collection and no 

samples were prepared from cryopreserved samples. The methodology and validation of the 

technique are fully described in previous publications.13–15 Briefly, the whole cell lysate 

protein preparations were made from the mononuclear cell fraction of ficolled PB and 

normalized to a concentration of 1×104 cells/μL. Patient samples were printed in five (1:2) 

serial dilutions onto slides along with normalization and expression controls. Slides were 

probed with 194 strictly validated primary antibodies and a secondary antibody to amplify 

the signal, and finally a stable dye to precipitate protein signal.16 This included antibodies 

against 149 different proteins along with 36 antibodies targeting phosphorylation sites, six 

targeting cleaved forms of Caspase, NOTCH1 and PARP1, and three targeting Histone 

methylation sites. A “Rosetta Stone” table of manufacturer, antibody name, and primary and 

secondary antibody dilution can be found in Supplementary Table S2. The stained slides 

were analyzed using Microvigene® software (Vigene Tech, Carlisle, MA) to produce 

quantified data.

Nomenclature protein and antibody names

Since neither the HUGO17, HUPO18 or MiMI19 naming systems account for PTM, we used 

a nomenclature in which the HUGO gene symbol is followed by a period, then the type of 

PTM, “p” for phosphorylated, “cl” for cleaved or “Me” for methylation, followed by the 

letter code for the affected amino acid and its sequence position. For example, AKT1.pT308 

is AKT1 phosphorylated on Threonine at position 308. Placing the PTM after the protein 

name enables alphabetical sorting and inclusion of the affected site.
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Data normalization and processing

SuperCurve algorithms were used to generate a single value from the five serial dilutions.20 

Loading controls21 and topographical normalization22 procedures were performed to 

account for protein concentration and background staining variations. Since all samples had 

replicates, the average expression level of the replicates was used as a single expression 

level. All protein expression levels were shifted relative to the median of the normal CD34+ 

BM samples.

Computational analysis

The computational analysis was done using the “meta-Galaxy” analysis (Supplementary Fig. 

S1), because we had previously seen in adult acute myeloid leukemia (AML) that this 

approach which, analyzes proteins in the context of functionally related proteins, obtained 

more clinically interesting patient groups compared to the traditional approaches.23 In 

contrast to the traditional unsupervised hierarchical clustering that ignores all the known 

relationships between proteins, and has the additional disadvantage of weighing each 

component equally, we first divided the 194 proteins in 31 functionally related protein 

groups, defined as a “Protein Functional Group” (PFG). This allocation into functional 

related groups was done based on their known function or pathway membership from the 

existing literature, or based on strong associations within the dataset (e.g. BRCA2 to the 

“Cell Cycle” PFG and DDX17 to the “Ribosome” PFG). Because proteins could have 

multiple functions, proteins could belong to multiple PFG. The proteins involved in each 

PFG are listed in Supplementary Table S3.

To identify if subsets of cases with similar (correlated) expression of core member proteins 

within each PFG did exist, a combination of Progeny Clustering24 (a bootstrapping and 

stability based method for selecting cluster numbers) in combination with k-means25 

(generation of protein clusters) was used. Subsets of patients were identified based on their 

relative protein expression similarities (i.e. Euclidean distance), which were defined as a 

“protein cluster”. The optimal number of protein clusters for each PFG was determined 

using the clustering solution stability scores. For some PFG an alternative number of clusters 

was chosen or small clusters were merged into the closest group to make more biologically 

relevant clusters. Linear discriminant analysis was performed to determine which of the 

protein clusters was statistically most similar to the normal CD34+ samples.26 This protein 

cluster was then set as cluster 1 and was positioned to the far left. Principal component 

analysis (PCA)27 was used to visualize the distribution of the protein clusters relative to that 

of normal CD34+ BM samples. Associations between protein clusters and clinical/

laboratory features were assessed using the Fisher’s exact test for categorical variables and 

the Kruskal-Wallis test by ranks for continuous variables. Survival curves were generated 

using the Kaplan-Meier method. Protein networks were constructed from known protein 

associations that were obtained from the STRING literature database (combined score > 

0.9)28 in combination with computationally reconstructed interactions from RPPA data using 

graphical lasso29 and StARS30 (for model selection based on stability). Since the STRING 

database does not consider post-translational modifications, the protein names were used to 

query literature-based interactions for PTM sites.
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Next, we rebuilt the overall picture by combining the individual protein clusters into one 

binary matrix to assess whether we could identify patterns of protein clusters from various 

PFG that recurrently co-occurred together. This matrix indicated the protein cluster 

membership for each patient in all PFG; 1 if a patient was a member of protein cluster, 0 if 

not a member. Block clustering31 was performed to search for strong recurrent correlations 

between protein clusters from various PFG that were defined as a “protein constellation”. A 

group of patients that expressed similar patterns of protein constellations was defined as a 

“protein signature”. The optimal number of protein constellations, that formed protein 

signatures, was obtained by selecting the combination that generated the largest sum of the 

squared difference between the expected and observed values, divided by the expected value. 

The expected value was defined as the product of cluster membership within that 

constellation, divided by the frequency of patients that fell within a given signature. 

Correlations between signatures and clinical features/outcomes were assessed similarly as 

for the individual PFG. Lists of proteins that were significantly over or under expressed 

relative to the normal CD34+ cells were generated for each constellation and for each 

signature using the Wilcoxon signed-rank test with a false discovery rate adjusted p-value 

(p<0.01). The most discriminative proteins that allow classification into the signatures were 

selected using Random Forest.32 All the statistical tests and plots were generated in R 

(Version 0.99.484 – © 2009–2015 RStudio, Inc.). Networks were generated in Cytoscape 

(Version 3.3.0).33

RESULTS

Existence of “normal-like” and “leukemia-specific” protein patterns

To characterize heterogeneity in protein expression between pediatric ALL patients we 

started our analysis with evaluating proteins in the context of their own PFG. Therefore, the 

Progeny Clustering algorithm was applied that enabled identification of an optimal number 

of “protein clusters”: a subset of cases with similar (correlated) expression of core protein 

components of a PFG. This number of protein clusters ranged from 3 to 5 clusters for each 

PFG (Fig. 1A). The measure of cluster stability was based on the co-occurrence probability 

matrix (Supplementary Fig. S2). Overall, clusters showed high stability and reproducibility 

with scores of 0.6 to 0.9. No confounding variables that affected the clustering analysis were 

found for the processing time of the samples, or for the date of collection (Supplementary 

Fig. S3). Next, PCA was performed to determine if the protein clusters were similar to the 

normal CD34+ samples, or if it was sufficiently dissimilar to be specific to a leukemic state, 

based on their graphic distribution on the PCA plot in comparison to the normal CD34+ 

samples. Most PFG (N=23) had at least one cluster with expression similar to the normal 

CD34+ samples (Checkered pattern Fig. 1A). In contrast, leukemia-specific clusters, lacking 

overlap with the normal CD34+ cells, were observed for all 31 PFG (Solid fill Fig. 1A) with 

8 PFG (Cell Cycle, Differentiation, MEK, PKC, STP upstream, T-cell, Transcription and 

WNT-signaling) having only leukemia-specific clusters. For 8 of the PFG we could identify 

more than 1 “normal-like” pattern.
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Protein functional groups reveal different protein activity states

To visualize interactions between core member proteins of each PFG and other probed 

proteins in the dataset, protein networks were generated. Networks were built by integrating 

previously known protein interactions from the literature and strong correlations in the 

dataset. The median expression for each protein cluster was then calculated relative to the 

normal CD34+ cells and overlaid onto the networks to reveal the overall differences in 

expression and activation associated with each protein cluster. For instance, for the “Friend 

Leukemia Virus Integration 1” (FLI1) that was formed by 5 core protein members (FLI1, 

NCL, NPM1, STMN1, and WTAP), we were able to recognize 5 distinct protein clusters 

(C1, C2, C3, C4 and C5) (Fig. 2A). By convention, the protein expression levels in C1 were 

statistically the closest to normal and showed most proteins with expression similar to the 

normal CD34+ samples (Fig. 2B). The greatest variation between the protein clusters was 

observed in the expression of key protein STMN1; progressively higher expression in C2 

and C4 and increasingly lower expression in C3 and C5 (Fig. 2C). Another example that 

showed the concept of different transition states was the “Apoptosis Occurring” PFG. Here 

we could recognize 3 different protein clusters (C1, C2 and C3) (Figures available online, 

http://qutublab.rice.edu/pediatric-all/apopoccur/). Increased evidence of apoptosis activation, 

in the form of cleavage of Parp1, Caspase 3 and Caspase 7 was evident in C2 and C3, 

representing two apoptosis “on”-states.

Protein constellations express recurrent patterns of protein expression

Although traditional approaches that cluster patients directly by taking all proteins together 

with unsupervised hierarchical clustering could clearly separate pediatric ALL patients from 

the healthy subjects (Supplementary Fig. S4), we supposed that we would find better, more 

robust patterning within the pediatric ALL samples, if we created smaller subsets of proteins 

based on known functional relationships and then built up the overall picture from these 

individual building blocks (Supplementary Fig. S5). Therefore, we developed a novel 

approach that defined patient signatures by looking for recurrences in expression patterns 

within PFG and from there built higher order structures by performing hierarchical 

clustering of those smaller patterns.

As described, protein clusters were first defined within each PFG, which resulted in a total 

of 114 protein clusters for the 31 PFG. As each patient was represented by one of the protein 

clusters of each individual PFG, each patient was a member of 31 out of the 114 protein 

clusters. Secondly, all protein clusters were compiled into a single binary matrix, which we 

called a “Meta-Galaxy” (Fig. 3A). Block clustering was conducted to search for recurrent 

associations between various protein clusters, which were defined as a “protein 

constellation” (horizontally in Fig. 3A). Patients that showed recurrent patterns of protein 

constellations were together defined as “protein signature” (vertically in Fig. 3A). An 

optimization calculation was performed to determine the optimal number of constellations 

and signatures. This was determined by selecting the matrix where the squared sum of the 

difference between the observed and expected values of each combination of signatures and 

constellations, divided by the expected value, was maximal. This suggested the presence of 

10 protein constellations and 7 protein signatures. For instance, constellation 4 that was 

horizontally formed by 16 protein clusters was strongly associated with patients that formed 
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signature 7. The expected occurrence in this constellation was 9% for each signature, based 

on the presence of 107 single blue points that indicated protein cluster membership out of 

1168 (constellation 4; 107 single blue points vs. a potential of 16 × 73 patients = 1168, 

107/1168 = 0.09). Within this constellation, signature 7 showed an observed occurrence 

significantly above expectation of 94% (64 of the 68 points were blue, vs. an expected 

number of 0.09 × 68 = 6). In contrast, none of the patients in signature 2 had a membership 

for any of the protein clusters within this constellation (0/128 blue points) (p<0.001). 

Likewise, constellation 9 that was formed by 3 protein clusters had an expected presence 

rate of 62% (135 blue points vs. a potential of 219 points (3 × 73 patients)). Within this 

constellation, signature 1 had an observed presence rate above expected of 94% (34 vs. 36 (3 

× 12) blue points) and signature 7 had an observed presence rate below expected of 0% (0 

vs. a potential of 12 (3 × 4) points) (p<0.001). A list of the protein clusters in each 

constellation is shown in Supplementary Table S4. An example of the optimization 

calculation is shown in Supplementary Fig. S6.

Most constellations were associated with a single ALL subtype, with constellations 3 and 5 

only being found in T-cell ALL and constellations 2, 4, 6, 8 and 10 being exclusive to pre-B 

cell ALL. However, constellations 1 and 9 showed some overlap between pre-B cell ALL 

and T-cell ALL, suggesting shared protein deregulation. A clear distinction was observed 

between the T-cell specific signature 1 (N=12/12, 100%), the pre-B ALL dominant 

signatures 2, 3 and 4 (N=19/23, 83%) and pre-B ALL exclusive signatures 5, 6 and 7 

(N=38/38, 100%). Because the majority of T-cell ALL cases were within signature 1, we 

conducted a separate analysis of only T-cell ALL samples. As shown in Fig. 4A, we 

observed three T-cell signatures based on 6 constellations. A list of the protein clusters in 

each constellation is showed in Supplementary Table S5. A similar analysis was performed 

using only B-cell ALL cases, but this was not different from what was seen in signatures 2–8 

(Supplementary Fig. S7/Table S6).

Because we identified protein clusters that showed sufficient overlap with our healthy 

CD34+ cells to be defined as normal-like protein clusters, we were then interested in 

whether constellations were enriched or depleted for those clusters. Interestingly, we found 

constellations that showed enrichment for normal-like patterns (constellation 1, 8, 9, and 10) 

and constellations that had exclusively leukemia-specific patterns (constellation 2, 3, and 5) 

(p=0.011).

Protein patterns correlate with outcomes and clinical and laboratory features

Typical of pediatric ALL, this cohort was characterized by a high CR rate (N=67, 93%) and 

a low therapy resistance rate (N=4, 5%) that in combination with a low relapse rate (N=4, 

5%) resulted in a high survival (N=63, 86%). Given the paucity of events, signatures do not 

show statistically significant correlation with overall survival (OS) (Fig. 3B) or disease-free 

survival (DFS) (Fig. 3C), which was defined as having an event (relapse or death) post 

induction that led to CR. However, 3 out of the 4 relapse cases were within signature 6. 

Univariate Cox Proportional-Hazard analysis showed no other relationships between the 

survival probability and any of the collected patients features (Supplementary Table S7).
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On the other hand, signatures were significantly associated with patient demographics and 

laboratory variables (Table 2). Favorable cytogenetics were overrepresented in signature 5 

and 7, and intermediate cytogenetics were overrepresented in signature 1 and 4 (p=0.017). 

No associations were seen for single cytogenetic abnormalities, such as the frequently 

harbored 11q23 rearrangement. This lack of association with specific cytogenetic types 

again highlights the large heterogeneity among ALL patients and is likely due to various 

combinations of mutations. As expected34 for the T-cell ALL signature, CDKN2A was 

highly mutated (N=9/12, 75%) compared to the overall mutation rate (N=20/64, 31%) 

(p=0.007). A low CDKN2A mutation frequency was observed for signature 2 (N=1/7, 14%), 

signature 4 (N=1/9, 10%) and signature 7 (N=0/2, 0%).

Protein signatures are associated with Hispanic ethnicity

In numerous studies Hispanic patients with pediatric acute leukemia have fared worse than 

Caucasians,35–38 but whether this arises from different underlying biology, or is related to 

socioeconomic factors is currently unknown. Our study population, drawn from an area in 

Southern Texas, was enriched for Hispanic patients. Pre-B cell ALL signatures 3, 5 and 7 

showed a similar proportion of Hispanic patients compared to the overall population 

(N=45/73, 62%). However, both signature 2 (N=6/8, 75%) and signature 6 (N=17/20, 85%) 

were enriched for Hispanic patients, whereas Hispanic patients were underrepresented in 

signature 4 (N=3/9, 33%) (p=0.021, df=2). This imbalance in ethnic compositions was even 

stronger after verification by genetic ancestry mapping using SNP; two of the non-Hispanic 

patients in signature 2 were of African descent, also having inferior disease outcome.39 Two 

of the self-reported non-Hispanics in signature 6 were actually Hispanics by SNP and one 

patient stating Hispanic ancestry was Asian by SNP typing. This brings the total number of 

Hispanics in signature 6 to 18 (N=18/20, 90%). Signature 4 had one additional Hispanic 

patient by SNP determination, making that signature less imbalanced (N=4/9, 44%).

When T-cell ALL cases were considered separately, 3 signatures were present with most of 

the Hispanic cases in signature 1 and 2 (N=6/8, 75%) and only two cases in signature 3 

(N=3/8, 38% following SNP analysis). Constellations 1, 2, 4 and 6 were unassociated with 

ethnicity, while constellation 3 was found in the Hispanic cases and constellation 5 was 

strongly present in the non-Hispanic cases. Notably, both constellations 3 and 5 contained 

protein clusters from the PFG “Cell Cycle”, “FLI1” and “IAP-Apoptosis”. Expression 

summary plots are shown in Fig. 4B. The Hispanic-associated constellation 3 lacked the up-

regulation of CCND3, DUSP6, RB1, RB1.pS807_811 and STMN1 seen in the non-Hispanic 

constellation 5, but had up-regulation of unphosphorylated FKHRL1 (FOXO3). 

Constellation 3 showed higher levels of anti-apoptosis proteins, including XIAP and BIRC5 

and lacked the suppressed expression of BCL2 and DIABLO.

Proteomics to predict potential protein leads for targeted therapy

Because most potential drugs target proteins, we generated lists of potential druggable 

targets for each signature and constellation (Supplementary Fig. S8, figures available online, 

http://qutublab.rice.edu/pediatric-all/global/). These potential target leads were identified as 

being significantly over and under expressed relative to normal CD34+ cells. Fig. 5A shows 

an example of all differentially expressed proteins when compared to the controls in 
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signature 6 that comprised 3 out of the 4 relapse patients. For example, proteins PARP1 and 

cleaved PARP1 together with LEF1, PIK3CA and BRAF were all higher expressed. From 

these lists, we could then reveal proteins that were universally changed in the same direction 

in at least 6 of the 7 signatures (Fig. 5B). Hypothetically, rational combinations of targeted 

therapies directed against signature specific proteins together with targeted therapies 

directed against universally altered expressed proteins could be used therapeutically in 

specific subsets of patients alone, or in addition to, standard therapy to overcome treatment 

resistance. However, this hypothesis needs validation with future experiments.

Selection of discriminative proteins to aid in risk stratification and determine therapy

In order to classify patients into one of the 7 protein signatures based on a limited number of 

proteins, Random Forest was utilized to select the proteins with the highest distinctiveness 

(Supplementary Fig. S9). This resulted in a correct classification rate of 78% (N=57/73), 

whereby variation in protein expression enabled a higher than overall classification accuracy 

for signature 1 (N=12/12, 100%), 5 (N=12/14, 86%), 6 (N=17/20, 85%) and 7 (N=4/4, 

100%). For instance, patients in signature 1 could be separated based on their relatively low 

CDKN1A in combination with their relatively high GATA1 and NOTCH3, and signature 7 

could be discerned based on their low CASP3 levels. Inferior classification capability was 

found for signature 2 (N=4/8, 50%) and 3 (N=1/6, 17%), which may be explained given that 

neither signature 2 nor signature 3 was exclusively associated with any constellation and that 

none of the most discriminative proteins were significantly different compared to the other 

signatures.

Leukemic cell lines only partially mimic protein patterns

Leukemic cell lines are frequently used to investigate the pathobiology of leukemia, but 

immortalization and cryopreservation of those cells likely alter the biology of the cell from 

their leukemic patient cell of origin. To determine if cell lines express differences or 

similarities in protein expression patterns compared to the pediatric ALL patient samples, 

we generated a new RPPA with 127 leukemic cell line samples, including cell lines derived 

from pediatric and adult ALL (e.g. Jurkat, REH), and AML patients (e.g. Kasumi-1, HL-60, 

Molm13, Molm14, OCIAML3). Arrays were probed with 235 antibodies of which 163 

(N=163/194, 84%) overlapped with the antibodies used on the pediatric patient array. 

Because the cell line and the pediatric acute leukemia patient array both had cells from 

healthy donors included, alignment of the control CD34+ samples from both enabled 

comparison of the arrays.

Overall, unsupervised hierarchical clustering and PCA clearly demonstrated completely 

distinct proteomic profiles for pediatric ALL patient samples and leukemic cell lines 

(Supplementary Fig. S10). Individual comparison of protein clusters showed that only 53 out 

of the 114 (46.5%) protein clusters had at least one cell line equivalent (Fig. 1B/ 

Supplementary Table S8). None of the constellations or signatures seen in the ALL patients 

was replicated in the cell lines.
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Pediatric leukemia online portal

In addition to the PFG “FLI1” that is discussed in this paper, results from all PFG analyses 

are published online and can be assessed at: http://qutublab.rice.edu/pediatric-all/.

DISCUSSION

Heterogeneity within the genetic and epigenetic landscape of pediatric ALL makes 

personalized medicine challenging. To assist in the process of both risk stratification and 

medication management, we have demonstrated that pediatric ALL could be characterized 

by the “meta-Galaxy” approach into a finite number of recurrent proteins expression patterns 

that could identify key protein targets based on individual protein expression.

The meta-Galaxy analysis is a two-step approach that starts with the analysis of proteins in 

the context of other proteins that are known to be functionally related or known to interact 

with each other, and then globally searches for protein patterns that frequently co-occur. 

This approach arises from the supposition that traditional unsupervised hierarchical 

clustering ignores known protein interactions and weights each component equally. We 

hypothesized that if we created smaller subsets of proteins with known functional 

relationships (i.e. protein functional groups, PFG) and then built overall interaction networks 

from individual proteins clusters within the PFG as building blocks, that we would build 

more robust protein patterns. Furthermore, this analysis provides insight into which protein 

patterns resemble normal cells, and which represent distinct protein expression patterns and 

activation states between protein clusters.

The existence of recurrent protein patterns led to our hypothesis that overexpressed proteins 

could function as candidate drugable targets for inhibition or deactivation, while 

underexpressed proteins could function as targets for replacement or reactivation. This 

concept of replacement has been successfully demonstrated in acute promyelocytic 

leukemia, where RARα in the fusion gene cannot reach the nucleus, but all-trans retinoid 

acid can replace this loss of function.40 For proteins that are over expressed or significantly 

activated, use of small molecular inhibitors to has proved a viable strategy. The paradigm for 

this is the use of imatinib (Gleevec) and other tyrosine kinase inhibitors (e.g. bosutinib, 

nelotinib and dasatinib) to suppress the constitutively activated ABL kinase activity seen in 

Ph+ leukemia patients.41 By identifying many targets for each signature, possible rational 

combinations of targeted therapy could be identified that could be used alone, or in 

combination with standard chemotherapy. For instance, reactivation of the universally 

suppressed GATA1 may be useful in inducing differentiation during hematopoiesis.42 

Likewise, the universal loss of NR4A1 (Nur77)43,44 and TCF445 expression poses an 

opportunity to restore stem cell regulation by restoring normal expression and/or function. 

To test this hypothesis, we performed proteomic profiling on leukemia cell lines to find 

representative cell lines that resemble with the protein expression patterns seen in pediatric 

ALL patients. However, only half of the protein clusters in patients showed similarities to 

cell lines, calling into question the relevance of leukemia cell lines in testing drug 

combinations in future experiments.
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If aberrantly expressed proteins could aid in determining patient’s risk group, then 

classification based on protein signatures could be performed at diagnosis and implemented 

during risk stratification (i.e. prior to consolidation therapy). This process would first need to 

be tested and validated in larger data sets with more divergence in therapy outcome. If this 

methodology were shown to be predictive, development of an ELISA or forward phase 

protein array kit could potentially classify patients in real time, making routine 

determination of protein signature membership both feasible and potentially useful for post-

induction therapy determination.

A highly important observation was the association of the Hispanic ethnicity with 

signatures. Numerous studies have reported an inferior outcome for patients with Hispanic 

ethnicity. It is uncertain whether this arises from a different pathophysiology or 

socioeconomic factors. We observed a clear skewing of some Hispanic patients to specific 

signatures, suggesting that for many Hispanic patients the difference in outcome arises from 

underlying differences in the pathophysiology of their leukemia. A similar finding was noted 

by Harvey et al. who observed that, within high-risk pediatric ALL, there was a gene 

expression signature associated with the Hispanic ethnicity that had a very poor 4-year 

relapse free survival.46 In our study, this was most pronounced in the differential expression 

of two T-ALL constellations. Protein expression summaries were notable for over expression 

of CCND3, DUSP6, RB1, RB1.pS807_811 and STMN1, and under expression of BCL2 in 

non-Hispanic groups, and over expression of FKHRL1 along with decreased expression of 

XIAP and BIRC5 in the Hispanic enriched signatures. This suggests that leukemia in 

Hispanics is associated with a less proliferative “push” in combination with greater 

resistance to apoptosis due to relatively higher levels of BCL2 and “IAP-proteins” BIRC5 

and XIAP. Since malignancies with higher proliferation rates are more sensitive to cell cycle 

specific chemotherapy agents, and since cells with reduced anti-apoptosis potential are less 

likely to survive chemotherapy, the constellations provide plausible explanations as to why 

some Hispanic ALL patients do worse than their non-Hispanic counterparts. However, this 

observation first needs further validation in a larger patient cohort.

One of the limitations in our study was the small number of patient samples and the 

restricted number of antibodies targeting phosphorylation sites represented in the array. 

Repetition of the analysis in a larger cohort of patients, will enable identification of more 

protein signatures that could more accurately discriminate patients and would likely show 

heterogeneity in outcome. Moreover, it would be interesting to test how additional 

mutational analysis using genomic and gene expression sequencing could provide more 

insight in correlation between mutational events and protein expression. A previous study in 

pediatric ALL observed correlation between the mutational state of NOTCH1 and/or 

FBXW7 with aberrant NOTCH1 protein expression. However, they also observed NOTCH1 

protein activation in some patients without the presence of a NOTCH1 mutation.47 Another 

study showed that although patients with mutations in the PTEN/AKT pathway were found 

to have decreased expression of PTEN compared to wild-type controls, there was no 

difference in phosphorylation of AKT or downstream AKT targets.48

In conclusion, our findings demonstrate the existence of protein signatures and protein 

constellations in a cohort of pediatric ALL patients. Elaboration of this approach could be 
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extended to other diseases as well, to compare protein signatures across diseases and to 

identify disease specific and universal protein expression patterns.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Financial support:

This research was funded by the Hyundai Hope on Wheels research grant to TMH, and the Takeda/Millennium 
R01-CA164024 grant to TMH

DEFINITIONS

Protein Functional Group (PFG)
A group of proteins with related function based on existing knowledge or strong association 

within this dataset.

Protein Cluster
A subset of cases with similar (correlated) expression of core Protein Functional Group 

components

Protein Constellation
A group of Protein clusters from various PFG that are strongly correlated with each other.

Protein Signature
A group of patients with similar patterns of protein constellations.
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Implication:

Recognition of proteins that have universally altered expression, together with proteins 

that are specific for a given signature, suggests targets for directed combinatorial 

inhibition or replacement to enable personalized therapy.
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Figure 1. The optimal number of protein clusters for all protein functional groups.
(A) The optimal number of protein clusters that was identified for each of the 31 PFG is 

illustrated. Protein patterns that showed sufficient overlap with the normal CD34+ samples 

on the PCA plot were assigned as “normal-like” protein clusters and are shown as checkered 

boxes. Protein clusters that were sufficiently dissimilar from the normal CD34+ were 

assigned as “leukemia-specific” and are shown as solid boxes. (B) Representation of 

pediatric ALL protein clusters that were mimicked by at least one of the leukemic cell lines. 

Green ticks indicate that a protein cluster had a cell line with a protein expression pattern 

equivalent. The red crosses indicate that none of the cell lines were found to express a 

comparable protein expression pattern.
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Figure 2. Relative protein expression levels for the proteins involved in “Friend Leukemia Virus 
Integration 1” (FLI1) protein functional group.
(A) This heatmap shows the relative protein expression levels for the 5 core member 

proteins of the “FLI1” PFG: STMN1, FLI1, NPM1.3542, WTAP and NCL. The Progeny 

Clustering algorithm (coupled with k-means) was performed and identified an optimal 

number of 5 protein clusters (C1, C2, C3, C4, C5). The colors reflect the median expression 

levels relative to the normal CD34+ samples. Proteins expressed greatly below normal are 

shown as dark blue, and proteins expressed significantly above normal are shown in dark red 

(maroon). Proteins within the range of the normal cells are colorized in green (extended up 

Hoff et al. Page 17

Mol Cancer Res. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to yellow and down to aqua). Each column represents a single patient. The annotation bar 

shows patient membership for the different ALL subtypes (pre-B cell [yellow] and T-cell 

[pink]) and for the 5 defined protein clusters (C1 [red], C2 [pink], C3 [yellow], C4 [light 

green] and C5 [dark green]). (B) Principal component analysis (PCA) visualized the global 

distribution of the patients in their assigned protein cluster relative to the normal CD34+ 

samples. From the PCA partial similarity between normal CD34+ cells [black ] and C1 

[red ] was observed, while the leukemia specificity of C2 [pink ], C3 [yellow ], C4 

[light green ] and C5 [dark green ] was demonstrated by the lack of overlap with the 

normal CD34+ cells. Each plotted dot represents one patient. (C) Protein networks show 

interactions between the 5 core protein members (large nodes) and associated proteins (small 

nodes). Colors reflect again to the relative median protein expression within that protein 

cluster; ranged from high (maroon) to low (dark blue). Dotted (....) lines indicate known 

associations from the literature, dashed lines (- - -) indicate interactions based on strong 

correlation in the dataset and solid lines (—) indicate interactions both seen in the literature 

and our dataset. Arrows show transition from the most normal state C1 to the more “on”-

states C2 and C4 and the more “off” states in C3 and C5 relative to C1.
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Figure 3. “Meta-Galaxy” analysis identifies strong correlation between protein clusters from 
various protein functional groups.
(A) Block clustering identified the existence of 10 protein constellations (vertically) and 7 

protein signatures (horizontally). Each column represents a single patient and is positive 

(blue) for 31 out of the 114 protein clusters. Each row represents one protein functional 

group cluster. The annotation bar shows a clear division in ALL type (pre-T cell [pink], pre-

B cell [yellow]), and shows the patient characteristics including; gender, age, treatment risk 

group, CNS status, cytogenetics, declared ethnicity, SNP verified ethnicity, CDKN2A 

mutation status, relapse, achievement of complete remission and the vital status of the 

patient. The Kaplan-Meier curves for overall survival (B) and disease-free survival (DFS) 

(C) were generated according to the 7 protein signatures. Line colors match with the colored 

annotation bar on the “meta-Galaxy”.
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Figure 4. “Meta-Galaxy” analysis restricted to the 16 T-cell ALL samples identified protein 
patterns associated with the Hispanic ethnicity.
(A) Block clustering limited to the T-cell ALL samples enabled recognition of 6 protein 

constellations (horizontally) and 3 protein signatures (vertically). The annotation bar shows 

patient characteristics for ethnicity and suggests ethnicity-associated constellations. (B) 

Proteins with significantly higher or significantly lower protein expression levels relative to 

normal CD34+ cells within T-ALL constellation 3 (enriched for Hispanic ethnicity) and 

constellation 5 (enriched for non-Hispanic ethnicity) are shown. Proteins in constellation 3 

were predominantly involved in PFG “Cell Cycle”, “FLI1” and “IAP-Apoptosis” and 

proteins in constellation 5 were involved PFG “BH3 Apoptosis”, “Cell Cycle”, “FLI1”, 

“IAP-Apoptosis” and “MEK”. Colors reflect the relative median expression within that 

specific constellation, ranged from the lowest (dark blue) to relatively normal (cyan-green-

yellow) to the highest (maroon) expression.

Hoff et al. Page 20

Mol Cancer Res. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Significantly higher and lower expressed proteins relative to the normal CD34+ 
samples in signature 6.
(A) An example of all the significantly altered expressed proteins compared to the normal 

CD34+ cells for signature 6 is shown. Higher expressed proteins (up) suggest targets for 

inhibition and lower expressed proteins (down) suggest protein targets for replacement or 

activation. Blue circles denote proteins that were universally altered in similar direction in 

all signatures and red circles point out signature specific protein targets. Colors indicate the 

relative median protein expression for that signature, ranged from the lowest (dark blue) to 

the highest (maroon) expression. (B) Proteins that were universally changed in the same 

direction (in ≥6 out of the 7 signatures) compared to normal CD34+ samples are shown. 

Non-significantly different proteins compared to normal CD34+ samples are shown in white 

(blank).
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Table 1.

Patient characteristics of the 73 pediatric ALL patients.

Characteristics N, %

Number of cases 73

ALL subtype

 Pre-B ALL 57 (78)

 T-ALL 16 (22)

Age, y, median (range) 7.3 (0.2–18.0)

Gender

 Male 40 (55)

 Female 33 (45)

Declared Ethnicity

 Caucasian 61 (84)

  Hispanic 44 (72)

  Non-Hispanic 17 (28)

 Black American 6 (8)

 Asian 4 (5)

 Mixed 2 (3)

  Hispanic 1 (1)

“SNP” Ethnicity

 European 9 (12)

 African 6 (8)

 American Indian 38 (52)

 Asian 1 (1)

 Not done 19 (26)

Cytogenetics

 Favorable 15 (21)

 Intermediate 42 (58)

 Unfavorable 15 (21)

 Unknown 1 (1)

Risk Group

 Low Risk 4 (5)

 Standard/ Intermediate Risk 29 (40)

 High/Very High Risk 40 (55)

CNS status

 CNS-1 46 (63)

 CNS-2 20 (27)

 CNS-3 6 (8)

 Unknown 2 (3)

Response

 Complete remission 67 (92)

 Resistant 4 (5)

Mol Cancer Res. Author manuscript; available in PMC 2019 May 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hoff et al. Page 23

Characteristics N, %

 Fail 2 (3)

Alive 63 (86)

Cytogenetic aberrations were classified into favorable, intermediate and unfavorable cytogenetics. Favorable: hyperdiploid, diploid and t(12:21) 
EVT6/RUNX1 translocation, unfavorable: 11q23 rearrangement, hypodiploid, t(9;22) BCR/ABL1 translocation, 5q deletion. Patients that were not 
classified as favorable or unfavorable were defined as having intermediate cytogenetics. Central nervous system (CNS) involvement was 
categorized into three groups according to the COG standard. CNS-1: no blasts in the cerebrospinal fluid (CSF), CNS-2: <5% blasts in the CSF 
with or without red blood cells, CNS-3: >5% blasts in CFS. Risk group stratification was done according to the AALL protocols.
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Table 2.

Demographics and laboratory features for 7 identified protein expression signatures.

Total Protein Expression Signature

Category Type Count Freq. 1 2 3 4 5 6 7 P-value

Total (%) 73 100 12 27 19 11 16 8 5

ALL type (%)
Pre-B 57 78 0 75 83 89 100 100 100 0.000

T 16 22 100 25 17 11 0 0 0

White blood cell count (x k/μL) Median 30.5 397 59 118 12 21 66 7 0.000

Peripheral blood absolute blast (k/μL) Median 25.1 319 41 99 9 12 56 1 0.000

Peripheral blast (%) Median 73.9 86 70 83 53 57 78 30 0.006

Lactate dehydrogenase (x U/L) Median 2069 9914 4702 3609 2049 1195 1500 965 0.000

Bilirubin (mg/dl) Median 0.3 0.6 0.3 0.2 0.5 0.2 0.2 0.4 0.004

Fibrinogen ( mg/dl) Median 332 191 330 267 495 410 360 398 0.001

Human Leucocyte Antigen - antigen D-
related (%) Median 100 0 98.5 100 100 100 97.5 100 0.000

Cytogenetics (%)
Favorable 15 21 0 14 0 11 50 15 75 0.003

Intermediate 42 58 92 57 67 78 29 55 25 0.021

Risk Group (%) Intermediate 12 16 67 13 17 0 7 0 25 0.000

CDKN2A (%) Yes 20 21 75 14 25 11 33 22 0 0.025

Significant patient characteristics and ALL features are shown for the overall patient cohort as well as for each protein expression signature. Other 
non-significant variables that were checked, but which lacked association with the protein expression signatures included: age at diagnosis, sex, 
race, CNS status, infection, IgH gene rearrangement, TCF3 gene rearrangement, ETV6 mutation, RUNX1 mutation, the percentage of BM blasts, 
BM and PB monocytes or promyelocytes, hemoglobin, platelet count, albumin and creatinine. P-values were generated using the Kruskal-Wallis 
test by ranks for continuous variables and the Fisher’s exact test for categorical variables.
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