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Abstract

Overnight polysomnography (PSG) is the gold standard tool used to characterize sleep and for 

diagnosing sleep disorders. PSG is a non-invasive procedure that collects various physiological 

data which is then scored by sleep specialists who assign a sleep stage to every 30-second window 

of the data according to predefined scoring rules. In this study, we aimed to automate the process 

of sleep stage scoring of overnight PSG data while adhering to expert-based rules. We developed 

an algorithm utilizing a likelihood ratio decision tree classifier and extracted features from EEG, 

EMG and EOG signals based on predefined rules of the American Academy of Sleep Medicine 

Manual. Specifically, features were computed in 30-second epochs in the time and the frequency 

domains of the signals and used as inputs to the classifier which assigned each epoch to one of five 

possible stages: N3, N2, N1, REM or Wake. The algorithm was trained and tested on PSG data 

from 38 healthy individuals with no reported sleep disturbances. The overall scoring accuracy was 

80.70% on the test set, which was comparable to the training set. Our results imply that the 

automatic classification is highly robust, fast, consistent with visual scoring and is highly 

interpretable.

I. INTRODUCTION

Sleep is a basic human need and is strongly related to the quality of life [1]. An estimated 

50–70 million Americans suffer from a chronic sleep disorder adversely affecting daily 
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functioning and overall health. However, the majority of individuals who meet the diagnostic 

criteria for a sleep disorder are underdiagnosed [2], undiagnosed and/or untreated.

One important tool used to characterize sleep and evaluate certain sleep disorders is 

overnight polysomnography (PSG), which involves noninvasively collecting multiple 

physiological recordings. The data is then scored and reviewed in 30-second windows 

(epochs) by a registered sleep technologist who uses guidelines established by the American 

Academy of Sleep Medicine (AASM). Besides being both laborious and extremely time-

consuming, this scoring process is also very subjective. Although accredited labs may vary 

on their degree of “software assisted” staging programs, the current industry standard still 

mandates visual scoring [3].

Numerous research studies have been conducted to establish the reliability of a completely 

automated scoring process. One limitation of many existing methods is that either the exact 

decision procedure is uninterpretable (e.g. as in [4]–[6]), or the features computed are not 

familiar by the visual experts. Additionally, most studies use only a small subset of the PSG 

recordings which may not provide sufficient information to discriminate between certain 

sleep stages [7], [8]. In order to build a more clinically adoptable system we designed an 

algorithm that closely follows the rationale and logic of the expert scorer who collectively 

considers a number of the PSG recordings when determining the appropriate sleep stage. 

Specifically, we developed an automated sleep stage scoring algorithm utilizing a likelihood 

ratio decision tree classifier that uses features extracted in the time and frequency domains 

of EEG, EMG and EOG signals based on predefined rules of the AASM Manual [3]. The 

performance of our classifier was evaluated by measuring the agreement between this 

automated program and a visual scoring expert.

II. Methods

A. Study Population

A total of 38 healthy adults participated in the study (Table I). The data was randomly split 

into a training set and a test set with 19 participants in each group. The training set was used 

to determine the optimal thresholds for each feature as well as the scoring order of sleep 

stages that yielded the maximum classification accuracy. Then, the performance of the 

algorithm was evaluated using the test set.

This study was approved by the Johns Hopkins Medicine Institutional Review Boards and 

all participants provided informed consent prior to enrollment. All participants were 

evaluated by a board-certified sleep specialist who conducted a clinical interview that also 

included a number of validated sleep surveys. Both “good sleepers” (PSQI ≤ 5) and “poor 

sleepers” (PSQI > 5) as defined by the Pittsburgh Sleep Quality Index (PSQI) [9] were 

included in the study. Participants were excluded if they endorsed symptoms consistent with 

Restless Leg Syndrome, circadian rhythm disorder or had evidence of clinically significant 

sleep apnea (Apnea Hypopnea Index > 5) on PSG.
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B. Data Acquisition

The polysomnography was conducted in the Johns Hopkins Clinical Research unit. The 

recordings were performed utilizing the same sleep laboratory software, equipment model 

and procedural protocol [3] for all participants. The collected PSG data included six EEG 

channels, recorded from left and right frontal, central and occipital locations, two EOG 

channels (left and right eye), three EMG channels (chin, right leg and left leg), one ECG 

channel, respiratory flow and effort, oximeter, thermistor and cannula.

C. Data Analysis

1) Human Expert Visual Scoring—All PSG recordings were analyzed by a seasoned 

licensed and registered sleep technician using the Embla RemLogic sleep diagnostic 

software. The recordings were visually scored according to the AASM Manual for Scoring 

Sleep and Associated Events [3] by assigning one of five possible stages (N3, N2, N1, REM 

or Wake) to every 30-second epoch of the data. A board-certified sleep specialist reviewed 

and finalized all recordings.

2) Automated Sleep Stage Scoring Algorithm—The proposed automated sleep 

scoring system consists of five main steps. Prior to analysis, the data were preprocessed in 

accordance with AASM criteria and RemLogic settings (described below). Then, features 

based on the AASM scoring rules were extracted from the PSG signals. The third step 

entailed choosing an optimal threshold for each feature. A likelihood ratio decision tree 

classifier was then utilized to perform the classification and finally a set of temporal 

contextual smoothing rules was applied on the annotated data. All data analysis and scoring 

algorithm implementation was performed using Mathworks MATLAB R2015b.

3) Data Preprocessing—The PSG recordings used include four EEG channels (F3-A2, 

F4-A1, C4-A1 and O1-A2), both EOG channels and all three EMG channels. In fact, the 

EEG features were computed from all six channels, but only the channels giving the best 

separation of sleep stages were used in the final classifier. The signals were preprocessed 

and formatted based on the AASM guidelines [3]. Epochs that contained major movements 

and muscle artifacts obscuring the signals for more than half an epoch were manually 

identified and excluded when estimating the algorithm performance in accordance with 

AASM recommendations.

4) Feature Extraction—The continuous recordings were divided into non-overlapping 

30-second epochs for feature extraction. The foundations for the decision rules were inspired 

by the AASM criteria and the features were extracted based on the corresponding 

characteristics of PSG data in the time and frequency domains. In addition, the algorithm 

included consensus input by an interdisciplinary team of certified sleep experts (Allen RP, 

Gamaldo CE, Salas RME, personal communication 2015–2016) and a biomedical 

engineering expert (Sarma SV, personal communication 2015–2016) with experience in 

neurophysiological signal processing. Thus, the final algorithm represents logic that reflects 

the features that quantify the AASM scoring rules and translate the sleep expert knowledge 

into metrics that can be used for automated processing. Table II lists the complete set of 

features used in the model and their corresponding sleep stages as well as the physiological 
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meaning of each feature. The first feature on the list (EOG1) was used to split the epochs 

into two groups of possible stages (N3/N2/N1/REM/Wake vs. N1/REM/Wake) before 

assigning each epoch a sleep stage using the other features. All features were normalized to 

reduce the effects of individual differences on classifier performance. Features that were not 

inherently normalized by their computation method were normalized using:

zepoch =
xepoch − μ

μ (1)

where zepoch is the normalized value for a particular epoch, xepoch is the feature value at that 

epoch and μ is the average feature value across all epochs over the entire night. μ was 

calculated excluding the highest 5% and lowest 5% of values.

5) Threshold Determination—The decision thresholds were chosen using patient data 

from the training cohort. For each feature, we used the expert annotations to draw five 

probability distributions (one for each stage) and then chose a threshold attempting to 

optimize the number of epochs detected for the conditioned sleep stage with minimum 

decision error. The classification of sleep stages was performed in a hierarchical manner and 

thus the probability distributions were drawn using only the remaining epochs after scoring 

each stage. Two features and their sleep stage probability distributions are shown in Fig. 1.

6) Automatic Sleep Stage Classification—The classification process (Fig. 2) 

comprised five steps. First, epochs were divided into two groups based on the auto- and 

cross-correlations of the EOG signals. If little to no eye movement was present in an epoch, 

the epoch was assigned to group 1, else it was assigned to group 2.

In the second step, all epochs belonging to group 1 were assigned a sleep stage. In this 

group, all five sleep stages were possible and the stages were scored in the following order: 

N3, Wake, N1, N2 and REM. The scoring order was selected based on the discriminating 

ability of the features with stages that were easier to detect scored first. Once an epoch was 

assigned a sleep stage it was excluded from the scoring of the remaining stages. In our 

analysis, no quantitative feature was found to be informative enough to discriminate stage 

REM from the other stages. Consequently, after scoring the first four stages, all remaining 

unscored epochs were assigned to stage REM.

Since sleep is a continuous process, alternating between different sleep stages every 30 

seconds is highly unlikely. The AASM Manual has a number of rules that recommend 

considering the neighboring epochs for the scoring of a current epoch [3]. Therefore, a 

smoothing process utilizing temporal contextual information was applied after scoring the 

epochs in group 1. These smoothing rules refer to the relationship between epochs prior to 

and after the current epoch. Specifically, let A, B and C represent the possible stages. Then 

three consecutive epochs of A, B, A were replaced with A, A, A and four consecutive 

epochs of A, B, B, A or A, B, C, A were replaced with A, A, A, A.
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The fourth step consisted of scoring epochs in group 2. Eye movement activity was high in 

group 2 and thus epochs were only scored as N1, REM or Wake. In this group, stage Wake 

was scored first, followed by N1 and as for group 1, the remaining unscored epochs were set 

as stage REM. Lastly, the same set of contextual smoothing rules were applied to the epochs 

in group 2.

III. Results

The performance of the proposed algorithm was evaluated by comparing the agreement 

between the automatic classification and the human expert scoring which served as the gold 

standard. The overall scoring accuracy, after removing epochs containing major muscle or 

movement artifacts, was 79.87%, with 11,115 epochs out of 13,916 correctly classified. The 

results of the test set were highly comparable to the training set results. The overall scoring 

accuracy of the test set was slightly higher than for the training set. The test set scoring 

accuracy using all the available data was 77.00% and increased to 80.70%, with 11,035 

epochs out of 13,674 correctly classified, after excluding major movement epochs. The 

highest agreement with the human scorer for a single test subject was 91.48% (Fig. 3(a)) and 

the lowest agreement was 67.51% (Fig. 3(b)). As Fig. 4(a) shows, the highest scoring 

accuracy was obtained for stage N3, and the highest percentage of captured epochs was 

obtained for stage N2, followed closely by Wake. N1 turned out to be the hardest stage to 

score with a scoring accuracy below 50% and far less epochs captured compared to the other 

stages. Fig. 4(b) shows the confusion matrix after scoring the test set. For N1, most 

misclassifications occurred between the N1-REM pair, followed by N1-N2 and N1-Wake. 

Other commonly misclassified pairs were N3-N2 and REM-N2. All remaining pairs had 

misclassification rates below 5%.

IV. Discussion

At present, the standard procedure of PSG data analysis is heavily dependent upon human 

visual scoring. Here, a new system for automatic sleep stage scoring of PSG data has been 

proposed, yielding an overall scoring accuracy of 80.70%. The agreement between the 

algorithm and the human expert is highly comparable to reported inter-scorer reliability 

amongst sleep experts which has been found to be around 82% [18]. An important limiting 

factor of visual scoring is the time it takes to score each study, which typically requires 

around 2.5–4 man-hours (Johns Hopkins Center for Sleep, personal communication, April 

28 2016). Not only does it contribute to high operating costs of sleep centers, but is also 

expensive in terms of valuable expert time. In comparison, the average run-time of our 

algorithm was 32.5±1.9 seconds for feature extraction and scoring of a full night’s sleep 

recording.

The results of our algorithm are similar to reported performances of existing sleep stage 

classification systems, with stage N1 recurrently being the most misclassified sleep stage 

[5], [8], [11]–[17], [19]. However, the proposed algorithm represents several desirable and 

superlative features over these methods. Our algorithm was driven by rules established by 

sleep experts, features that they quantify through visual inspection, and decision rules that 

are explicit and interpretable. We conclude that an automatic classification algorithm based 
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on a likelihood ratio classifier, and importantly using features extracted from the AASM 

Manual, can to a large extent reproduce the judgment of a visual scoring expert. Therefore, 

we see this tool as assisting visual scorers to speed up their process and providing a way to 

diagnose sleeping disorders in a more robust, quantitative and ultimately cost-effective 

manner.
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Fig. 1. 
Probability density functions and the corresponding decision thresholds for (a) relative 

Alpha power, a feature for stage Wake, and (b) relative Beta power, a feature for stage N3. 

The decision thresholds are marked with a black dashed line.

Gunnarsdottir et al. Page 8

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A flowchart showing the automatic scoring process of the likelihood ratio decision tree 

classifier.
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Fig. 3. 
Comparison of hypnograms scored by the human expert (top) and by the algorithm (bottom) 

for (a) the subject with the highest scoring accuracy and (b) the subject with the lowest 

scoring accuracy.
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Fig. 4. 
Scoring results of the test set. (a) Scoring accuracy and epochs captured are reported for 

each sleep stage along with the overall scoring accuracy. (b) Confusion matrix for the 

automatic scoring algorithm. The values are the percentage of epochs belonging to the stage 

scored by the expert (indicated by the rows) that were classified by our algorithm as the 

stage indicated by the columns. The diagonal elements represent the percentage of epochs 

where the automatic classifier was in agreement with the human expert for each sleep stage.
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TABLE I.

Population Statistics

Subject statistics Training Set Test Set

Gender (M / F) 7/12 9/10

Age (years) 23.8±3.0 24.6±3.4

Ethnicity (Caucasian / Asian /African American) 9/5/5 8/8/3

PSQI 2.2±1.7 3.7±2.1

Time in bed (hours) 6.2±0.1 6.2±0.1
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TABLE II.

The features used in the classifier

Sleep stage Quantitative feature Signal AASM feature

Group 1 vs. Group 2 EOG1
0.3−35 Right EOG and Left EOG Eye movements present/absent

Wake

EMG Energy EMG Chin, Left Leg, Right Leg Increased EMG activity

Alpha Power O1-A2 EEG Alpha rhythm observed

Theta Power O1-A2 EEG Low theta activity

N1 EOG2
0.1−0.45 Right EOG and Left EOG Eye movements present

N2

Maximum Spindle Duration F3-A2 EEG Spindles present

Number of Spindles C4-A1 EEG Spindles present

Delta Power F3-A2 EEG Moderate to high delta activity

EOG3
0.3−0.45 Right EOG and Left EOG Little to no rapid eye movements

N3
Delta Power F4-A1 EEG High delta activity

Beta Power F3-A2 EEG Low beta activity

Group 1 = N3/N2/N1/REM/Wake, Group 2 = N1/REM/Wake. The EOG features are combinations of the cross- and autocorrelations of the two 
EOG signals, and the EMG energy is strongly linked to muscular activity. Spindles were detected using the Wendt algorithm [10] and the length of 
a single spindle was restricted to 0.5–2 seconds.
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