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Abstract

Objective: Pilot study to assess utility in opioid use disorder (OUD) of a panel of single 

nucleotide polymorphisms in genes previously related to substance use disorder (SUD) and/or 

phenotypes that predispose individuals to OUD/SUD.

Design: Genetic association study.
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Setting: West Virginia University’s Chestnut Ridge Center Comprehensive Opioid Abuse 

Treatment (COAT) clinic for individuals diagnosed with OUD.

Patients: Sixty patients 18 years of age or older with OUD undergoing medication 

(buprenorphine/naloxone)-assisted treatment (MAT); all sixty patients recruited contributed 

samples for genetic analysis.

Outcome Measure(s): Minor allele frequencies for single nucleotide polymorphisms.

Results: Four of the fourteen single nucleotide polymorphisms examined were present at 

frequencies that are statistically significantly different than in a demographically-matched general 

population.

Conclusions: For the purposes of testing WV individuals via genetic means for predisposition 

to OUD, at least four single nucleotide polymorphisms in three genes are likely to have utility in 

predicting susceptibility. Additional studies with larger populations will need to be conducted to 

confirm these results before use in a clinical setting.
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INTRODUCTION

Opioid use disorder (OUD) has reached epidemic proportions in America.1, 2 Non-medical 

use of opioid analgesics and heroin is on the rise.3–5 Opioid overdose is now the leading 

cause of death of people under 50 years old.6 Mindful of these developments, many 

addiction researchers are focusing combatting the epidemic with prevention and treatment.
7–10 A shared aspiration is to obtain an individual’s genetic “fingerprint” and identify 

whether they are at increased risk for developing OUD (e.g., ref. 11). Such testing is likely to 

interrogate several genes, as a multitude of factors12–23 contribute to OUD predisposition. 

Several gene variations are associated with predisposition to OUD and/or OUD treatment 

response12–16. Environmental factors also contribute to OUD19–22, and some environmental 

factors can affect the influence of genetic factors on predisposition to developing 

addiction23. The ability to identify a priori individuals at increased OUD risk would help 

greatly in prevention. For instance, using opioid analgesics with these individuals could be 

avoided or strictly monitored.

West Virginia is the epicenter of this opioid crisis, leading in opioid-related overdose 

deaths26. The state is also demographically homogenous27*, being predominantly whites 

(94%) of European Caucasian ancestry (2010 US Census Data; http://censusviewer.com/

state/WV). These factors make West Virginia ideal for genetic studies aimed at curbing the 

opioid epidemic. West Virginia University’s Chestnut Ridge Center is home to a successful 

*Demographic homogeneity in West Virginia in no way reflects any heightened degree of consanguinity. Tincher 82 examined 140 
years’ worth of marriage records in a remote four-county Appalachian region. While cousin marriage was found to occur in 
Appalachia, it was not conspicuously more prevalent than in other geographical locales: by 1970, the cousin marriage rate was no 
higher than in the general U.S. population.
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medication-assisted treatment program, known as the Comprehensive Opioid Addiction 

Treatment (COAT) clinic7, 28–30. Given access to this WV patient population, we sought to 

address whether there are single nucleotide polymorphisms (SNPs) more or less prevalent in 

WV persons with OUD than in the general population.

METHODS

Recruitment

60 volunteers, diagnosed with OUD using DSM-V criteria31, were recruited from WVU’s 

COAT clinic under IRB 1506733605. All participants were patients of the COAT clinic in 

Morgantown, West Virginia. The COAT clinic’s service area (and hence our research subject 

area) is geographically diverse, as it draws from the entire state.

Tissue Collection

Consenting volunteers provided buccal swabs, which were placed in 15-ml conical 

centrifuge tubes (Corning) and stored at −80ºC.

Genomic DNA Extraction

DNA was extracted using QIAamp DNA Mini Kits according to manufacturer’s protocol. 

Yield was assessed by measuring 260-nm absorbance of DNA extracts on a QIAxpert 

microfluidic reader. Purity was assessed by measuring 260-nm and 280-nm absorbance; all 

samples had a 260-nm/280-nm quotient greater than 1.8 units.

Genotyping

Genotyping was performed using TaqMan (FisherSci #4351379) primer-probe sets for each 

SNP (Table 1) and Type-it Fast SNP Probe PCR Kits (Qiagen) according to manufacturer’s 

protocol. Samples were run on a Rotor-Gene Q (Qiagen) in duplicate, and no-DNA negative 

controls were also performed for each TaqMan primer-probe set.

Statistical Analysis

Allele frequencies were compared to those of 1006 individuals of European descent (1000 

Genomes Project32); if no information was available from the 1000 Genomes Project, allele 

frequencies were compared to ExAc database33 of ~60,000 genomes. Statistical analyses for 

differences of SNP variant frequency between groups were performed using Pearson’s chi-

square statistical test. The null hypothesis was that the allele frequencies from WV COAT 

clinic participants were the same as those from public databases. Therefore, p-value < 0.05 

implies that the allele frequencies from WV COAT clinic participants are significantly 

different from the general public.

RESULTS

A literature search for SNPs associated with OUD/SUD and/or related traits (e.g., anxiety) 

identified fourteen of known or suspected relevance to the biological actions of opioids (i.e., 
variations within genes encoding G protein-coupled receptors [the GPCRs dopamine D2 

receptor34, 35, serotonin 5-HT2B receptor36–38, and μ-opioid receptor39–62]; Regulators of G 
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protein Signaling [RGS2, RGS17]63–70; a nerve growth factor [brain-derived neurotrophic 

factor]71, 72; a voltage-gated potassium channel [KCNC1]73; and, a second messenger-

regulated transcription factor [cyclic-AMP responsive element binding protein-1]74; Table 

1). We isolated buccal swabs from 60 WV COAT clinic participants, prepared genomic 

DNA, and performed genotyping of the following SNPs.

OPRM1 rs9479757 (mu opioid receptor gene variant39–41)

Xu et al.40 identified rs9479757 as linked to heroin addiction severity among Han Chinese 

males; the G-to-A transition facilitates exon 2 skipping, leading to altered OPRM1 splice-

variant mRNAs and encoded mu opioid receptor (MOR) isoforms. All sixty participants 

were heterozygous for OPRM1 rs9479757; in contrast, the minor allele frequency in the 

general European population is only 0.097 (Table 1).

OPRM1 rs1799971 (mu opioid receptor gene variant41–62)

Woodcock et al.46 published that Caucasian male carriers of the non-synonymous OPRM1 
rs1799971 minor allele (G) reported significantly more heroin use-related consequences and 

quit attempts, and were more likely to seek OUD treatment, than individuals homozygous 

for the ancestral A allele. Schwantes-An et al.48, in a meta-analysis of ~28,000 Europeans, 

investigated non-specific risk for SUD and compared cases dependent on any substance to 

controls not dependent on all assessed substances. The rs1799971 G allele showed a modest 

protective effect on general substance dependence48. The rs1799971 G allele was 

significantly less frequent in WV COAT clinic participants than in the population at large, by 

a factor of ~2 (Table 1; 0.083 vs 0.162, p = 0.018).

RGS2 rs4606 (Regulator of G protein Signaling-2 gene variant63–69)

One of us75 previously reported that loss of RGS2 in mice engenders heightened anxiety and 

diminished aggression. Subsequently, Smoller et al.63 found that RGS2 variations, including 

rs4606, were associated with introversion (a core personality trait in social anxiety 

disorder)63. Associations between the RGS2 SNP rs4606 and panic disorder68, suicidal 

ideation64, post-traumatic stress disorder69, and generalized anxiety disorder65 have also 

been reported. We found that rs4606 was more frequent in COAT clinic volunteers than in 

the general population by a factor of ~2 (Table 1; 0.533 vs 0.276, p < 0.001).

HTR2B rs6736017 (serotonin [5-HT] receptor-2B gene36–38 variant)

There are presently no published details on the HTR2B SNP rs6736017. However, HTR2B 
variations likely play a role in drug abuse. Doly et al.36, 37 showed that the serotonin 5-HT2B 

receptor, encoded by the HTR2B gene, is required for 3,4-methylene-

dioxymethamphetamine (MDMA)-induced hyperlocomotion, serotonin and dopamine 

release, and conditioned place preference, the latter a rodent-based metric of reinforcing 

properties. Furthermore, Lin et al.38 conducted a genome-scan identifying the human 

HTR2B gene as a candidate for drug abuse liability. The HTR2B SNP rs6736017 was 

markedly more frequent in COAT clinic participants than in the population at large, when 

comparing to the 60,000 genomes of the ExAc database (Table 1; 0.500 vs 0.0078, p < 

0.01).
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None of the other 10 SNPs investigated exhibited a significantly different frequency in the 

COAT clinic volunteers versus the population at large (Table 1).

DISCUSSION

We identified four SNPs present at different frequencies in persons with OUD compared 

with a demographically-matched general population. It is currently difficult to quantify the 

degree of significance of each of these altered frequencies on OUD in the COAT population. 

One reason for this difficulty is that many gene variants are likely to play an integrated role 

in predisposition to OUD, and these variants may have additive or synergistic effects; here, 

we have only interrogated 14 SNPs in 8 candidate genes. Also, possible gene x environment 

effects were not assessed in the present study.

Two SNPs were in the OPRM1 gene encoding MOR -- the main molecular target for the 

euphoric effects of opioids, as well as for the therapeutic effects of buprenorphine7, 30 and 

methadone in OUD treatment. Therefore, it is not surprising that OPRM1 variations would 

be associated with OUD.

We also identified an RGS2 variant associated with OUD. This finding is novel, but it is also 

not surprising. Opioids like oxycodone and buprenorphine generate neuronal signals by 

activating opioid-binding GPCRs, altering receptor conformation to cause nucleotide 

exchange76 by the associated G protein heterotrimer (Galpha·GDP/Gbeta/Ggamma). GTP-

loaded G-alpha then dissociates from the Gbeta/gamma heterodimer; both subunits become 

free to modulate enzymes that generate intracellular second messengers (e.g., cyclic AMP, 

calcium) or stimulate potassium channels, leading to neuronal membrane hyperpolarization 

and thus action potential inhibition. G-alpha proteins have intrinsic GTPase activity, leading 

to self-inactivation and reassociation with Gbeta/gamma subunits76. RGS proteins like 

RGS2 greatly enhance the GTP hydrolysis rate of G-alpha subunits76–78, thereby inhibiting 

GPCR signaling. Thus, one might indeed expect that a polymorphism in an RGS gene – 

encoding a negative regulator of GPCR signaling -- would be implicated in OUD. Moreover, 

RGS2 function is particularly germane to multiple anxiety disorders63–69 that could 

predispose an individual toward OUD.

HTR2B encodes the serotonin 5-HT2B receptor, implicated in the rewarding actions of 

MDMA36, 37 and cocaine79, and thought to be involved in impulsivity80 and resistance to 

antidepressants81, conditions that could predispose to OUD. Other polymorphisms in 

HTR2B have also been associated with vulnerability to illegal drug use38. Therefore, our 

identification of a HTR2B polymorphism significantly more frequent in persons with OUD 

compared with a demographically-matched general population is not surprising.

There are several goals for identifying SNPs associated with OUD. One of these goals is to 

identify markers that, in genetic screens, could identify people at risk for developing OUD 

(e.g., before prescribing opioid analgesics). Another goal is to identify potential novel 

“druggable” targets for preventing and/or treating OUD. For instance, the published role of 

the 5-HT2B receptor in the actions of illicit drugs, coupled with our finding that rs6736017 is 

so frequent in OUD individuals, suggests that 5-HT2B receptor-active pharmaceuticals (of 
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which many are already approved for human use) might have efficacy in preventing/treating 

OUD. Future studies with larger cohorts are required to validate our findings, both in West 

Virginia and in other, more demographically heterogeneous regions. Such studies should 

identify genes to interrogate in order to predict individuals with susceptibility to OUD/SUD 

and in doing so provide an opportunity for the prevention of the disease.
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Table 1.

Genetic markers and minor allele frequency (MAF) data obtained from public databases (1000 Genomes 

Project and/or ExAc) and WV COAT clinic patients (N = 60).

Gene dbSNP ID Minor Allele TaqMan Probe MAF via 1000Genomes* MAF via ExAc† MAF from COAT 
clinic‡

OPRM1 rs9479757 A C_25472011_10 0.097 0.082 0.500 p < 0.001

OPRM1 rs1799971 G C_8950074_1 0.162 0.185 0.083 p = 0.018

RGS2 rs4606 G C_2498717_10 0.276 n.a. 0.533 p < 0.001

HTR2B rs6736017 C C_25614588_20 n.a. 0.0078 0.500 p < 0.001

OPRM1 rs2075572 G C_1691815_1 0.413 n.a. 0.483 p = 0.12

RGS17 rs596359 T C_7830523_10 0.517 n.a. 0.467 p = 0.27

DRD2 / ANKK1 rs1800497 A C_7486676_10 0.188 0.256 0.217 p = 0.41

DRD2 rs1799978 C C_7486599_20 0.060 n.a. 0.075 p = 0.44

BDNF rs6265 T C_11592758_10 0.197 0.194 0.167 p = 0.49

KCNC1 rs60349741 C C_89088414_10 0.001 n.a. 0.000

HTR2B rs77982984 A C_99996051_10 0.003 0.0012 0.000

HTR2B rs78484969 C C_99996081_10 0.001 (N = 1030 Finns) n.a. 0.000

HTR2B rs77570025 G C_99996068_10 0.006 0.002 0.000

CREB1 rs35349697 A C_25636228_10 n.a. 0.000008 0.000

*
Minor allele frequency reported on N = 1006 Europeans via 1000 Genomes (except as otherwise noted); n.a. = not available.

†
Minor allele frequence reported on N ~ 60,000 people via ExAc database of the Broad Institute; n.a. = not available.

‡
p-value, denoting significance of difference between MAFs, is derived by comparison between WV COAT clinic and European (if not, then 

ExAc) MAF using binomial test (null hypothesis is “no difference between WV COAT patients and Europeans”; alternative is “there is difference 
between WV COAT patients and Europeans”)
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