Skip to main content
. Author manuscript; available in PMC: 2019 May 2.
Published in final edited form as: J Am Chem Soc. 2019 Feb 8;141(7):2867–2871. doi: 10.1021/jacs.8b12566

Table 1.

Enantioselective chloroetherification optimization

graphic file with name nihms-1025784-t0005.jpg
entrya conditions yield (%) ee (%)
1 A, t-BuOCI, DCM 29 10
2 B, t-BuOCI, DCM 39 7
3 B, t-BuOCI, hexanes 11 <1
4 B, t-BuOCI, PhMe 38 16
5 B, t-BuOCI, Et20 36 14
6 B, t-BuOCI, t-BuOMe 25 16
7 B, t-BuOCI, THF 18 22
8 B, t-BuOCI, 2-Me-THF 33 57
9 B, NCS, 2-Me-THF <5 -
10 B, DCDMH, 2-Me-THF 42 33
11 B, Palau’Chlor, 2-Me-THF 28 29
12 B, t-BuOCI, 2-Me-THF, pyridine 20 78
13 B, t-BuOCI, 2-Me-THF, quinoline 24 81
14b B, t-BuOCI, 2-Me-THF, quinoline 68 84
15c B, t-BuOCI, 2-Me-THF, quinoline 45 79
16c,d B, t-BuOCI, 2-Me-THF, quinoline 40e 84

graphic file with name nihms-1025784-t0006.jpg
a.

Reactions were conducted on 0.035–0.176 mmol scale, and 1H-NMR yields are reported based on 1,4-dinitrobenzene as internal standard;

b.

100 mol % ClTi(Oi-Pr)3, 100 mol % B

c.

1.3 equiv t-BuOCl

d.

reaction conducted on 4.0 grams 11

e.

isolated yield.