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Abstract

Indoor wayfinding is a major challenge for people with visual impairments, who are often unable 

to see visual cues such as informational signs, land-marks and structural features that people with 

normal vision rely on for wayfinding. We describe a novel indoor localization approach to 

facilitate wayfinding that uses a smartphone to combine computer vision and a dead reckoning 

technique known as visual-inertial odometry (VIO). The approach uses sign recognition to 

estimate the user’s location on the map whenever a known sign is recognized, and VIO to track the 

user’s movements when no sign is visible. The ad-vantages of our approach are (a) that it runs on a 

standard smartphone and re-quires no new physical infrastructure, just a digital 2D map of the 

indoor environment that includes the locations of signs in it; and (b) it allows the user to walk 

freely without having to actively search for signs with the smartphone (which is challenging for 

people with severe visual impairments). We report a formative study with four blind users 

demonstrating the feasibility of the approach and suggesting areas for future improvement.
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1 State of the Art and Related Technology

The key to any wayfinding aid is localization – a means of estimating and tracking a 

person’s location as they travel in an environment. The most widespread localization 

approach is GPS, which enables a variety of wayfinding tools such as Google Maps, Seeing 

Eye GPS1 and BlindSquare, but it is only accurate outdoors. There are a range of indoor 

localization approaches, including Bluetooth beacons [1], Wi-Fi triangulation2, infrared light 

beacons [2] and RFIDs [3]. However, all of these approaches incur the cost of installing and 

maintaining physical infrastructure, or of updating the system as the existing infrastructure 

changes (e.g., whenever Wi-Fi access points change). Dead reckoning approaches such as 

step counting using inertial navigation [4] can estimate relative movements without any 

physical infrastructure, but this tracking estimate drifts over time unless it is augmented by 

absolute location estimates.

1https://itunes.apple.com/us/app/seeing-eye-gps/id668624446?mt=8
2https://techcrunch.com/2017/12/14/apple-maps-gets-indoor-mapping-for-more-than-30-air-ports/
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Computer vision is a promising localization approach, but most past work in this area has 

either required special hardware [5] or the use of detailed 3D models of the environment [6] 

that are time-consuming to generate and make the approach vulnerable to superficial 

environmental changes (e.g., new carpeting, moved tables and chairs). To overcome this 

limitation in past work we developed an indoor localization system [7] that combines step 

counting with computer vision-based sign recognition. However, while the step counting 

algorithm works well for participants who walk with a regular gait, it is unreliable when the 

gait becomes irregular and halting – which is not unusual when visually impaired people 

explore unfamiliar surroundings. Accordingly, in our new approach we replaced step 

counting with visual-inertial odometry (VIO) [8], which functions well even if the user is 

walking with an irregular gait.

2 Overall Approach

Our localization approach uses a smartphone, held by the user or worn on the chest, to 

acquire several video frames per second. A 2D digital map of the indoor environment 

specifies the location, orientation (i.e., flush against the wall or perpendicular to it) and 

appearance of each sign in the environment. In each video frame, whenever a sign is 

recognized, the apparent size and perspective of the sign in the image determine the 

camera’s pose relative to the sign and therefore the user’s approximate location on the map 

(Fig. 1a). Our current prototype recognizes only barcode-like signs [9] printed on paper (Fig. 

1b), but in the future we will extend the approach to recognize arbitrary flat signs, such as 

the standard Exit signs that our previous system [7] recognized.

In our experience with blind users exploring an environment, signs are only visible and 

recognizable in a small fraction of video frames, so it is crucial that we estimate the user’s 

movements in between sign recognitions. We accomplish this using VIO [8], which 

combines the tracking of visual features in the environment with data from the smartphone’s 

inertial measurement unit (IMU) to estimate changes in the smartphone’s (X,Y,Z) location 

and 3D orientation (roll, pitch and yaw) over time. These movement estimates are projected 

to the 2D map domain, so that the user’s trajectory on the map is estimated continuously 

over time.

We have implemented a prototype system on the iPhone 8 smartphone, using OpenCV3 to 

perform sign recognition and pose estimation, and Apple’s ARKit4 iOS software to perform 

VIO. (ARKit is compatible with the iPhone 6s and newer iPhone models; a similar tool, 

ARCore, is available to perform VIO on newer Android de-vices.) Currently the system runs 

as a logging app that captures video in real time, and saves the video and VIO data to the 

smartphone’s memory, which is analyzed on a computer offline. To maximize the chances of 

capturing images of signs, real-time audio feedback alerts the user whenever the line of sight 

deviates too far above or below the horizon. In the future we will implement the system as a 

standalone wayfinding app that issues directional real-time audio feedback, including turn-

by-turn directions and identification of nearby points of interest.

3https://opencv.org/
4https://developer.apple.com/arkit/
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3 Evaluating Localization Accuracy

Both the sign recognition and VIO algorithms contribute significant noise to the location 

estimates, so we devised a simple procedure to evaluate the localization accuracy. The 

procedure establishes an approximate ground truth location at selected reference points in 

the path taken by the user. This is accomplished by having an experimenter follow a few 

meters behind the traveler and take a video of his/her footsteps. This video is reviewed 

offline, with the experimenter noting each frame when the traveler passes by a reference 

point (such as a door) and using visual context (e.g., nearby doors and other features) to 

determine the corresponding ground truth location on the map. The ground truth location for 

each reference point is then entered by clicking on the corresponding location on the map. 

We estimate that the ground truth location is accurate to about 1 m, which implies that errors 

can be estimated to approximately 1 m accuracy.

In our experiments we used about 15–25 selected reference points to evaluate each route, 

depending on the length of the route and the visibility of landmarks. The data logged by the 

traveler’s app is time-synched with the video so that any reference point in the video is 

associated with the corresponding logging data. In this way, the ground truth location of 

each reference point may be directly compared with the corresponding location estimated 

from the logging data.

Finally, we estimated the participant’s average walking speed in each trial simply by 

dividing the route length by the time it took to traverse the route. We note that in some trials 

in which the participant used a guide dog, the dog paused at certain points along the path – 

thus in these cases the average walking speed estimate is an underestimate of the typical 

walking speed.

4 Formative Study

We conducted a formative study that took place on one floor of the main Smith-Kettlewell 

office building, with dimensions 39 m × 21 m (Fig. 1c). A total of 41 barcode signs (Fig. 1b) 

were posted on the walls. In all the experimental trials the experimenter followed the 

participant from a few meters behind, recorded video of the participant’s movements, and 

issued verbal directions (e.g., “turn left in 5 feet”) to guide the participant in real time along 

the desired route; he also acted as a safety monitor, ready to intervene if necessary to avoid a 

collision or tripping hazard. Each route (Fig. 1c) was a closed circuit, R1 (77 m long) and 

R2 (58 m long). Participants were instructed to walk with whatever travel aid they wished to 

use (white cane or guide dog), and in each trial they either held the smartphone in one hand 

or else attached it to the strap of a satchel (small shoulder bag) that they wore. Before 

participants used the system, we explained how it worked, including the audio feedback to 

help them maintain a horizontal line of sight and the need to avoid moving the camera 

quickly (which causes motion blur and thereby degrades the image quality) or covering the 

camera lens with the hands.

The study began with a brief evaluation of the system by one blind participant (P0), which 

allowed us to test the system, our training procedure and experimental protocol and then 

Fusco and Coughlan Page 3

Comput Help People Spec Needs. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



refine it before testing with three additional participants (P1-P3). In all, the four participants 

included two females and two males, with ages ranging from 24–40 years; two of them had 

no form or light perception, and the other two had very limited form and light perception 

(e.g., allowing them to perceive large objects and shadows).

Participant P0 used a white cane, but was unable to handle the cane while holding the phone, 

so we only tested him using the satchel. He completed route R1 in both directions 

(clockwise and counterclockwise), for a total of two trials.

Next, three blind participants participated in the evaluation phase of the study. Each 

participant completed eight trials: both routes R1 and R2, traversed in both directions, and in 

the handheld and satchel conditions. Participant P1 used a white cane, while participants P2 

and P3 used a guide dog. The performance evaluation for all participants P1-P3 includes the 

median localization error, maximum localization error and average walking speed for each 

participant under each combination of route (R1 and R2) and carrying condition (hand and 

satchel), aggregated over both walking directions (i.e., two consecutive trials). The results 

are tabulated in Table 1 and shown graphically in Fig. 2. The system’s performance was 

satisfactory for P1 and P2, with median errors around 1 m, but very poor for P3, with errors 

from a few meters to tens of meters. We note that reference points for which no localization 

was available were not included in the performance evaluations; such missing points were 

rare for P1 and P2 but very common for P3.

The poor results for P3 resulted from her very rapid walking speed, which caused motion 

blur and also severely limited the number of frames in which signs were recognized. Since 

each sign is visible from only a limited region defined by a certain range of distances and 

viewing angles, a faster speed implies less time spent traversing this region, and thus fewer 

chances to glimpse the sign; this resulted in very few sign recognitions in each trial for P3 

(in fact, none in one trial). In the future we will explore ways of improving the sign 

recognition to accommodate faster walking speeds. We also note that we will use signs such 

as Exit signs in the future, which are visible from a wider range of locations than the signs 

we used.

All participants expressed interest in an effective indoor wayfinding system, and they 

commented on possible ways of holding or wearing the smartphone for our approach. P0 

suggested many possible ways of wearing the smartphone, including attaching it to a broach 

or tie clip, or wearing an eyeglass-mounted camera; P1 suggested using a holster to clip the 

smartphone to the satchel strap, and pointed out the possibility that holding the smartphone 

while walking might invite theft; P2 felt it should be straightforward to attach the 

smartphone to the strap of the purse she usually carries with her, but was also pleasantly 

surprised that it was easy to hold the smartphone while walking; and P3 explained that she 

would choose to hold the smartphone while walking, since she is already in the habit of 

doing so (e.g., to text message or use Google Maps). These comments suggest that different 

users will seek various ways of holding or wearing the smartphone, depending on individual 

preferences and circumstances. Thus in the future we will explore multiple options to meet 

diverse needs, including the option of using an external wearable camera, rather than 

attempting to find a single approach for all users.
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5 Conclusions and Future Work

We have demonstrated the feasibility of a novel indoor localization approach that is usable 

by visually impaired travelers under a range of normal operating conditions. The approach 

has the advantage of requiring no added physical infrastructure, and exploits the localization 

information conveyed by standard informational signs without forcing a visually impaired 

user to explicitly search for them. We also stress that the approach is applicable to people 

with normal or impaired vision, who may use a cane or guide dog, and it should also 

function for people traveling in a wheelchair.

Future work will proceed in several directions. The first will entail enlarging the range of 

conditions under which our approach functions, such as a rapid walking pace, which may 

require improved sign recognition and/or a faster frame rate. We will extend the sign 

recognition algorithms to accommodate arbitrary planar signs, and will focus on maximizing 

their ability to recognize signs from a wide range of viewing angles and distances.

In addition, we will incorporate more information in the localization algorithm, including (a) 

sign visibility, enforcing the fact that a sign cannot be seen through an intervening wall or 

other opaque barrier, and (b) traversability constraints, reflecting the impossibility of 

walking through walls. A natural way to incorporate this additional information is to 

maintain and evolve a distribution of multiple location hypotheses over time using a 

framework such as particle filtering [10], which is standard in robotics applications. The 

particle filtering framework will be useful for explicitly representing uncertainty about the 

user’s location, which may result from detections of signs at long distances (camera pose 

estimation is noisy when the sign appears small in the image), ambiguity about which sign 

has been detected (e.g., multiple Exit signs in a building may have identical appearance), or 

when no sign has been recognized for some length of time. Another source of absolute 

localization information that we will incorporate, when available, is the signals from Wi-Fi 

and from Bluetooth beacons.

This paper has focused on our development of a localization algorithm, but a considerable 

amount of work will also be required to transform this into a full wayfinding system that 

runs as a standalone app, with a fully accessible user interface that provides turn-by-turn 

directions and/or information about nearby points of interest. We will develop a streamlined 

approach for creating digital maps (which in some cases will have to be scanned in from 

paper maps) and annotating them with sign information, including photos of non-standard 

signs to train the sign recognition algorithms. While we envision that the mapping process 

will be accomplished primarily by sighted assistants (perhaps using crowdsourcing), we will 

explore the possibility of making some annotation features accessible to visually impaired 

users, for example, enabling them to add their own points of interest to an existing map. 

Finally, ongoing testing of the system with both blind and low vision users will guide the 

entire development process to ensure that the wayfinding system is maximally effective and 

easy to use.
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Fig. 1. 
Overall approach. (a) Signs provide absolute location estimates. Images of an Exit sign 

(cropped for visibility) taken from three locations are shown on the right, with dashed 

arrows to corresponding red dots showing approximate location of camera inferred from 

each image. (b) Prototype system tested in this work uses barcode-like marker patterns, 

shown here, affixed to the corridor walls instead of Exit signs; we will use Exit signs and 

other existing signs in place of markers in the future. (c) Map of indoor environment used in 

our experiments shows sample trajectories estimated along routes R1 (green) and R2 (red).
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Fig. 2. 
Graphs of performance evaluation data from Table 1. Data from participants P1, P2 and P3 

are shown in red, green and blue, respectively. Left: median and maximum error (meters), 

indicated by data points connected by vertical lines. Median errors are mostly under 1.5 

meters, with the exception of P3, whose rapid walking speed led to severe localization errors 

(see text). Right: average walking speed (meters/second).
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