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Abstract

Latent growth curve mediation models are increasingly used to assess mechanisms of behavior 

change. For latent growth mediation model, like any another mediation model, even with random 

treatment assignment, a critical but untestable assumption for valid and unbiased estimates of the 

indirect effects is that there should be no omitted variable that confounds indirect effects. One way 

to address this untestable assumption is to conduct sensitivity analysis to assess whether the 

inference about an indirect effect would change under varying degrees of confounding bias. We 

developed a sensitivity analysis technique for a latent growth curve mediation model. We compute 

the biasing effect of confounding on point and confidence interval estimates of the indirect effects 

in a structural equation modeling framework. We illustrate sensitivity plots to visualize the effects 

of confounding on each indirect effect and present an empirical example to illustrate the 

application of the sensitivity analysis.
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Mediation analysis assesses the effect of a treatment (independent) variable on an outcome 

variable via one or more mediators measured sequentially over time (MacKinnon, 2008). 

Complex multiple mediation models have become more common (e.g., Alvarez & Juang, 

2010; Z. Chen & Wang, 2017; Demiray & Janssen, 2015; Kershaw, Mezuk, Abdou, Rafferty, 

& Jackson, 2010; Ma, Cheng, Ribbens, & Zhou, 2013; Priesemuth, Schminke, Ambrose, & 

Folger, 2014; Strelan, Karremans, & Krieg, 2017; Villegas-Gold & Yoo, 2014). In the 

current paper we focus on a mediation model with two covarying (parallel) mediators where 

the term “parallel” indicates that there is no direct causal path between the two mediators. 

One important application of a multiple mediator model with two covarying mediators is the 

latent growth curve mediation model (LGCMM) with repeated measures/multilevel data, 

whereby some treatment variable is expected to affect an outcome via the change in some 

mediating process (Selig & Preacher, 2009; von Soest & Hagtvet, 2011). LGCMM is 
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increasingly used to test hypothesized mechanisms of behavior change following treatments 

for psychological disorders (Hallgren, Wilson, & Witkiewitz, 2018). For example, as shown 

in Figure 1, in alcohol treatment one might hypothesize that an anti-craving medication (e.g., 

naltrexone) affects reductions in alcohol use via changes in craving over time. Such a model 

would require estimation of two separate indirect effects: the indirect effect of treatment on 

alcohol use through the intercept of craving and the indirect effect of treatment on alcohol 

use through the slope of craving. In addition, LGCMM accounts for inter-dependencies of 

repeated measures data for the same individuals over time for the mediator and outcome 

variables1.

Like any statistical model, a mediation model must meet certain assumptions to produce 

valid and unbiased estimates (James & Brett, 1984; Judd & Kenny, 1981; MacKinnon, 2008; 

Robins & Greenland, 1992). We focus on a widely acknowledged limitation of the mediation 

model, the assumption of no omitted confounders, which is necessary to produce unbiased, 

causally interpretable estimates of the indirect effect (Imai, Keele, & Tingley, 2010; Judd & 

Kenny, 1981; MacKinnon & Pirlott, 2015; Pearl, 2014; Robins & Greenland, 1992; Valente, 

Pelham, Smyth, & MacKinnon, 2017). When the independent variable is a random treatment 

assignment, this assumption states that there should be no omitted confounder variable that 

influences any pair of endogenous variables, that is, the mediator(s) and outcome(s). 

Unfortunately, this assumption is not testable (Holland, 1988). When designing a study, 

researchers usually include all the relevant variables that are hypothesized to influence the 

mediator(s) and the outcome variable(s). However, there are cases when the substantive 

theory is incomplete, it is unrealistic or impossible to measure all relevant variables, or a 

researcher analyzes an archival data set that does not include all theoretically relevant 

variables. Because it is typically impossible to randomize levels of the mediators to different 

participants, it is typically impossible to rule out the potential impact of omitted confounders 

on the relationships between the mediator(s) and outcome variables. It is thus recommended 

that one conduct a sensitivity analysis to ascertain the biasing effects of potential omitted 

confounders on the model estimates, including point and interval estimates of the indirect 

affect (Cox, Kisbu-Sakarya, Miočević, & MacKinnon, 2013; Imai, Keele, & Yamamoto, 

2010; MacKinnon & Pirlott, 2015; Tofighi & Kelley, 2016; VanderWeele, 2010).

For single level data (data that is not grouped or repeated measures), previous studies 

addressed sensitivity analysis for a) single mediator model, an example of which is depicted 

in Figure 2 (Cox et al., 2013; Imai, Keele, & Tingley, 2010; Valente et al., 2017; 

VanderWeele, 2010); b) multiple mediator model with two mediators that were assumed to 

be independent, which makes a strong causal assumption about independence of the two 

mediators (Imai & Yamamoto, 2013); and c) multiple mediator model with the mediators 

assumed to be sequentially related (Daniel, De Stavola, Cousens, & Vansteelandt, 2015; 

Harring, McNeish, & Hancock, 2017). To our knowledge, no study has extended sensitivity 

analysis to a longitudinal mediation model with two covarying mediators. The existence of 

two covarying mediators adds an additional complexity in computing indirect effects and 

1Like latent growth curve model, linear mixed (multilevel) model is used to analyze multilevel data (Raudenbush & Bryk, 2002; 
Snijders & Bosker, 2011). For similarities and differences between the two techniques, please see these references (Curran, 2003; 
Willett & Bub, 2005).
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conducting sensitivity analysis compared to a single mediator model. Analyzing each 

mediator one at a time would lead to biased estimates of indirect effects even when the two 

mediators are assumed to be independent (VanderWeele, 2015). A confounder may affect 

two relationships between each of the mediators and the outcome variable as opposed to one 

effect of the mediator on the outcome variable in a single mediator model. The effect of a 

potential confounder on the two relationships between the mediators and the outcome 

variable across two parallel mediation processes is likely to be differential, thus making 

modeling potential confounding bias more challenging. Thus, techniques developed for a 

single mediator model cannot directly be applied to a multiple mediator model.

For the LGCMM in Figure 1, we are interested in the two Between indirect effects through 

two covarying latent intercept and slope. None of the previous studies have extended 

sensitivity analysis to a longitudinal model with two covarying latent mediators. As 

mentioned before, applying single-mediator sensitivity techniques to a two-mediator model 

is likely to produce biased results and thus is not recommended (VanderWeele, 2015). Using 

multilevel structural equation modeling (SEM) framework, Tofighi and Kelly (2016) 

proposed a post-hoc method to compute the omitted confounder effect on the point estimate 

of the indirect effect but did not offer a method to compute standard errors and CIs for 

adjusted indirect effects. Using the potential outcomes framework (Rubin, 1974, 1978), 

Talloen et al.(2016) used fixed effect techniques (Allison, 2005) to remove the confounding 

bias at the Between level and thus relax the assumption of no omitted confounder at the 

Between level. The fixed effect technique cannot be applied to LGCMM in our study 

because the fixed-effect technique removes all the Between variability (McNeish & Kelley, 

2018), which is the focus of our study. In related work, Bind et al. (2016) extended the 

potential outcomes framework to define indirect effects for a single mediator with 

longitudinal data; however, they did not propose a method to conduct sensitivity analysis. 

Moreover, techniques developed for single level data where the observations are assumed to 

be independent cannot directly be applied in a longitudinal growth context without 

additional analytic work to account for correlated observations (Tofighi & Kelley, 2016). 

Multilevel data poses additional challenges in determining whether mediation occurs at 

Between, Within, or cross levels (Bind et al., 2016; Tofighi & Kelley, 2016; Tofighi, West, & 

MacKinnon, 2013).

Our manuscript provides tools to help applied users conduct sensitivity analysis for an 

LGCMM with commonly used measures of effect sizes. We extend sensitivity analysis to 

LGCMM with two covarying latent growth factors in an SEM framework. We propose a 

technique termed correlated augmented model sensitivity analysis (CAMSA) to conduct 

sensitivity analysis. This technique, which is based on an SEM framework, uses a correlated 

augmented model. We proposed the correlated augmented model to prevent the negative 

residual variance problem of using latent proxy (phantom) variable techniques (Harring et 

al., 2017; Tofighi & Kelley, 2016), in which we reparametrized the model with a latent 

proxy variable technique when conducting sensitivity analysis. Reparameterization of an 

SEM has been suggested as a method to prevent negative residual variance, although not in 

the sensitivity analysis context (Rindskopf, 1983). The proposed CAMSA augments the 

mediation model with additional covariances between residuals associated with endogenous 

variables, termed confounder covariances, to model the effect of the potential confounders. 
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We offer analytic results to use confounder covariances to compute correlation between the 

residuals, termed sensitivity parameters (Imai, Keele, & Tingley, 2010). Because sensitivity 

parameters are confounder correlations, they offer an intuitive way to quantify the 

magnitude of confounding bias in terms of effect sizes. We also compute effect sizes for 

confounding effects in terms of the squared (semi-) partial correlations, which determine 

unique effect sizes due to the confounder. We present analytic results showing how the 

confounder correlations (sensitivity parameters) are used to estimate confounding biases, 

thereby modeling confounding effects. We also discuss strengths and weaknesses of 

CAMSA. We then use an empirical example to show how CAMSA can be conducted in 

Mplus (L. K. Muthén & Muthén, 2017). We also present two sets of graphs to visualize the 

results of the sensitivity analysis for each mediation process.

Causal Assumptions in Latent Growth Curve Mediation Modeling

In this section, we examine the causal inference assumptions necessary to produce an 

interpretable causal estimate of the indirect effect in an LGCMM. First, to clarify the no 

omitted confounder assumption, we consider a randomized experiment single mediation 

model in which X denotes a properly executed random assignment to two levels of a 

treatment. Because X denotes random assignment, we can rule out the following 

confounding effects: C → X and X → C, given the relationships between X and the 

confounders (C) can be assumed to be zero because proper randomization balances out 

potential pre-treatment differences on the pre-treatment variables measured in C. Finally, 

when X is randomized, the X → M effect is not confounded by omitted variables (Holland, 

1988). However, randomized assignment cannot rule out the following confounding effects. 

First, X → U effect, the confounder can be caused by X and cannot automatically be 

assumed zero because U is a post-treatment variable. Second, the effect of U on the M → Y 
relationship may not be ruled out. Thus, when the no-omitted confounder assumption is 

violated, the M → Y and X → Y effects in Figure 2 are potentially confounded by an 

unmeasured variable (Imai, Keele, & Tingley, 2010; Judd & Kenny, 1981; MacKinnon, 

2008; Pearl, 2011, 2014; Robins & Greenland, 1992; VanderWeele, 2010).

Extension of the no-confounder assumption to a multilevel single mediator model has been 

discussed in the literature (Bind et al., 2016; Talloen et al., 2016; Tofighi & Kelley, 2016) 

We discuss extension of the no omitted confounder assumption to the LGCMM in Figure 1. 

Given that the hypothesized LGCMM has a randomized intervention (X), the no omitted 

confounder assumption is satisfied if the following two assumptions hold. 1- For each 

person, there should not be an omitted confounder that influences a pair of variables that 

include the two mediators as well as the outcome variable. 2- An omitted confounder should 

not be influenced by X. As mentioned previously, even for randomized intervention X, we 

cannot be certain the Assumption 1 holds, thus we should conduct sensitivity analysis. For 

the LGCMM model in the empirical example, however, we can assume that the randomized 

trial does not affect an omitted confounder that, in turn, affects the mediators and outcome 

variables. This is because in our substantive example, the intervention was specifically 

designed to manipulate alcohol craving. However, existence of a confounder U that is 

affected by X would imply that U is another mediator that is missing from the model. Given 

that X was randomized, and the treatment was specifically designed to reduce craving, we 
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can rule out that X does not impact any additional intermediate variable. Finally, given X is 

randomized, we can rule out the effect of an omitted confounder on the mediators. Taken 

together, multiple mediators (intercept and slope of the LGCMM) adds more complexity for 

conceptualizing potential confounders because there can be more patterns of confounding 

relationships compared to the single mediator model.

Proposed Sensitivity Analysis Method for LGCMM

In the next section, we specify two equivalent augmented models to compute the effect of 

omitted confounders. The analytic results will be used to conduct sensitivity analysis for a 

mediation model with two covarying mediators and one outcome variable. We use LGCMM 

to derive the results. Later, we discuss strengths and limitations of the results in terms of 

their application to different mediation models with two covarying mediators that are either 

latent or observed. The first model is termed the latent augmented model. This technique, 

which is based on SEM framework, is an extension of a sensitivity analysis method for a 

single mediator model in multilevel SEM (Tofighi & Kelley, 2016), as well as phantom 

variable sensitivity analysis in single level SEM (Harring et al., 2017). The second model is 

termed the correlated augmented model that uses correlations between residuals of the 

endogenous variables, termed confounder correlations (sensitivity parameters), to model the 

effect of the omitted confounder. As will be discussed later, the correlated augmented model 

has an advantage of not using a phantom variable, a latent variable without indicators, which 

could cause a negative residual variance.

Latent Augmented Model

In the latent augmented model, which is an extension of the sensitivity analysis proposed by 

Tofighi and Kelley (2016) and Harring et al. (2017), we first introduce a latent proxy 

(phantom) variable ϖ (a latent variable with no indicators), which represents all potential 

confounders into the model. This model is termed the latent augmented model. This latent 

proxy variable may represent one or more omitted confounders that are assumed to be 

linearly related to all endogenous variables in the model. Figure 3 shows the augmented 

LGCMM model. The dashed circle shows the latent proxy (phantom) variable ϖ and dashed 

arrows show unknown confounding effects on the mediators (latent intercept and slope) and 

the outcome variable. We term these coefficients as the confounder parameters. For 

identification purposes, the latent proxy variable is assumed to have a standard normal 

distribution (Tofighi & Kelley, 2016). The confounder parameters are set to values 

determining the degrees of confounding between the latent proxy variable and the 

endogenous variables (two latent variables and the outcome variable) in the model.

The following equations specify the latent augmented model. We use subscript “*” to denote 

the model parameters and residuals in the augmented model.

mi j = ηi0 + ηi1 ti j +  ei j* (1)
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ηi0 = α0* + γ01*  xi + γ02*  ϖi +  ζ0i* (2)

ηi1 = α1* + γ11*  xi +  γ12*  ϖi +  ζ1i* (3)

yi = ν* + κ* xi + λ1*ηi0 + λ2*   ηi1 +  λ3* ϖi + εi* (4)

where the subscript i denotes a person i =1, … , N, subscript j denotes an occasion, j=1,…, 

p. The variables mi j and ti j denote the mediator (e.g., craving) and time score (e.g., week) for 

person i at occasion j, respectively; yi and xi denote the distal (ultimate) outcome (alcohol 

use) and random treatment assignment, respectively. The growth factors for the augmented 

LGCMM are denoted by ηi0 for the intercept, describing person’s latent score at the time 

score of 0 (e.g., mean craving in week 4), and ηi1 for the latent slope, describing a person’s 

latent rate of change in the mediator (e.g., weekly change in craving) over time; α0* and α1*

denote the intercepts for the latent growth factors and ν denotes the intercept for the distal 

outcome;γ01* , γ11* , and κ* quantify direct treatment effects on the latent intercept and slope 

and the distal outcome variable, respectively; λ1* and λ2* quantify the effect of the latent 

intercept and slope on the distal outcome variable, respectively. Confounder coefficients are 

the effects of ϖ on the latent intercept, slope, and the outcome variable, denoted by γ02* , γ12* , 

and λ3*, respectively. The confounder parameters, γ02* , γ12* , and λ3*, must be fixed to make the 

model identified for estimation purposes.

For the augmented model, the vector of residuals is denoted by ε* =   e*,   εi*,   ζ0i* ,   ζ1i* T, 

where e* = ei1* , …, eip*
T
 is the vector of residuals for mijs, and T denotes vector transpose 

operator. It should be noted that ϖ is an exogenous latent variable without a residual term 

(i.e., residual term equals zero) and thus is not included in the residual vector. Given ϖ and 

x, the vector of residuals has a multivariate normal distribution with mean vector of zeros, 

εi* ∼ 𝒩 0,   Ψ*  and the following covariance matrix:

Ψ* = cov(εi* |ϖ, x) =

Ψe* 0 0 0

0 σε*
2 0 0

0 0 σζ0*
2 σζ0*, ζ1*

0 0 σζ0*, ζ1*
σζ1*

2
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where Ψ
e∗ is the covariance matrix of e*. When all confounders are included in the model, it 

can be shown that the residuals associated with mediators and outcome variables are 

uncorrelated under certain additional assumptions (Tofighi & Kelley, 2016; Tofighi et al., 

2013). This means that residuals associated with the outcome variable εi* are not correlated 

with the residuals associated with latent factors, ζ*s. It should be noted that, however, ζ*s, 

are usually assumed to covary in multilevel and longitudinal analysis literature (Grimm, 

Ram, & Estabrook, 2017; Singer & Willett, 2003; Snijders & Bosker, 2011). This covariance 

can be of substantive interest because the status for an individual at time zero (intercept) can 

be related to the person’s rate of growth (slope). However, we should emphasize that in the 

augmented model this covariance may not be solely due to an omitted confounder. In other 

words, if this covariance is a result of an omitted confounder, then this covariance is already 

modeled by ϖ, which is assumed to represent all the omitted confounders. As shown below, 

given x the covariance between the growth factors is decomposed into two parts:

cov ηi0, ηi1  x =  γ02* γ12* σϖ
2 + σζ0*, ζ1*

, (5)

where σζ0*, ζ1*
= cov(ζi1* , ζi2* | x). In the above equation, the first term σϖ

2   γ02* γ12*  quantifies the 

confounding part of the covariance between the growth factors due to ϖ and the term σζ0*, ζ1*

specifies the non-confounding part of the covariance. Similarly, we can derive the covariance 

between ηi0 and ηi1 and ϖ:

cov ηi0 , ϖi   x = γ02*  σϖ
2 , (6)

cov ηi1 , ϖi   x = γ12*  σϖ
2 , (7)

More succinctly, the conditional covariance matrix between the vector latent variables, 

ηi* = η01,   ηi1,   ϖi
T, is as follows:

cov(ηi* | x) = σϖ
2

γ02* 2 + σζ0*
2 γ02*  γ12* + σζ0*, ζ1*

γ02*

γ02*  γ12* + σζ0*, ζ1*
γ12* 2 + σζ1*

2  γ12*

γ02*  γ12* 1

(8)

To compute the indirect effect in the augmented model, we introduce different levels of 

confounding bias by manipulating values of the confounding parameters. The confounding 

parameters take on various values influencing the latent intercept and slope and the outcome 
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variable. We need to identify different values for the confounder parameters that are of 

substantive interest for two reasons. First, note that because the mediators and outcome 

variables are not standardized, the parameter values depend on the metric of the variables. 

Second, we need computational formulas that would translate a researcher’s knowledge 

about the range of correlation values to confounder parameters. To make the choice of the 

values for the parameters more intuitive, we compute the confounder parameter values as a 

function of the correlation values which are more understandable. The correlation values, 

termed confounder correlations (sensitivity parameters), can be used to compute effect sizes 

of confounding effects in terms of the squared (semi-)partial correlations, which determine 

unique effect sizes due to the confounder. That is, we first determine a set of plausible values 

(e.g., correlation values based on prior research if any exists or other information) for 

confounder correlations and then compute the confounder parameter values. Given that ϖ
and x are not correlated and variance of ϖ is one, we have

γ02* = ση0
 ρη0, ϖ (9)

γ12* = ση1
    ρη1, ϖ (10)

λ3* = σy ρy, ϖ −  λ1* γ02* −  λ2* γ12* (11)

where ρη0, ϖ, ρη1, ϖ, and ρy, ϖ denote confounder correlations between the latent proxy 

variable and latent intercept and slope and the outcome variable, respectively. These 

correlations take on a combination of the values set by the researcher. The parameters, ση0
, 

ση1
, and σy are the population standard deviations for the latent intercept, latent slope and 

outcome variable, respectively. We can estimate the variance of the growth factors (ση0
2  and 

ση1
2 ) from the latent growth model where there are no predictors (i.e., x and C) or the 

outcome variable (y) in the model; σy is estimated by calculating the sample standard 

deviation.

Unfortunately, the latent augmented model (as specified in Figure 3) can result in a negative 

residual variance (i.e., Heywood cases; Dillon, Kumar, & Mulani, 1987; Kolenikov & 

Bollen, 2012; Rindskopf, 1984). For our empirical example, the latent augmented LGCMM 

produced a negative variance estimate regardless of the values of sensitivity parameters. The 

Heywood case for an augmented LGCMM is likely to occur because fitting a phantom 

variable that is not supported by data is likely to cause negative residual variance. As 

Bartholomew, Knott, and Moustaki points out (2011),
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“ One of the commonest cause of Heywood cases is the attempt to extract more 

factors than are present. This is readily demonstrated by simulation but might have 

been anticipated on the grounds that artificially inflating the communality forces 

the residuals towards zero.” (p. 67)

Correlated Augmented Model Sensitivity Analysis

To prevent the Heywood case associated with estimation of the latent augmented model, we 

propose the correlated augmented model sensitivity analysis (CAMSA). CAMSA uses the 

correlated augmented model2 shown in Figure 4, which is equivalent (i.e., has the same 

likelihood function; Kreft, de Leeuw, & Aiken, 1995) to the latent augmented model in 

Figure 3. That is, we reparametrize the latent augmented model to create the correlated 

augmented model that does not use a latent proxy (phantom) variable and thus avoids a 

potential Heywood case (i.e., negative residual variance). Although not in the context of 

sensitivity analysis, previous research suggested using reparameterization to prevent 

Heywood cases (Rindskopf, 1983). Because the two models, the reparametrized model and 

the original model, are equivalent, the reparametrized model parameters are a function of the 

parameters in the original model. The corresponding parameters in the equivalent models are 

not necessarily equal, but there must be a one-to-one transformation between the 

corresponding parameters in the equivalent models (Kreft et al., 1995). As a result, we can 

use the parameter estimates of the reparametrized model to compute the parameter estimates 

of interest in the original model and vice versa.

We next present the equations for the correlated augmented model shown in Figure 4. We 

use superscript “**” to denote the parameters in the correlated augmented model.

mi j = η0i + η1i t j +  ei j** (12)

η0i = α0** + γ01** xi +  ζ0i** (13)

η1i = α1** + γ11** xi +  ζ1i** (14)

yi = ν** + κ** xi +  λ1** η0i + λ2** η1i +  εy** (15)

2Correlating residuals as a place holder to model an effect has been suggested in SEM literature. For example, Cole, Ciesla, and 
Steiger (2007) argue for using correlated residuals in a latent variable model to estimate common method (common method variance) 
effect. We used the same concept to account for the omitted confounder effect in CAMSA except that we fix the confounder 
covariances between the residuals to specific values.
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Similar to the latent augmented model in (1)–(4), mi j and ti j denote the mediator and time 

score for person i at occasion j, respectively; yi and xi denote the distal outcome and random 

treatment assignment, respectively. In the equations for the latent growth factors ηi0 and η10, 

α**s and ζ**s are the intercepts and residuals while γ**s are the treatment effects on the 

growth factors. In the equation for yi, κ**, λ1**, and λ2** quantify the partial regression effects 

of xi, ηi0 and η10 on yi, respectively; ν** and εy** are the intercept and residual, respectively.

It is important to note that there are subtle differences in interpreting the covariances 

(correlations) between the residuals in the correlated augmented model. The two covariances 

between the residuals associated with latent intercept and slope and the outcome variable, 

σεy* *, ζ0* * and σεy* *, ζ1* *, respectively, model the confounding effects of the omitted 

confounders, and thus are termed confounder covariances. We show analytically that the 

following relationships between the confounder covariances in the correlated augmented 

model and the confounder parameters in the latent augmented model hold:

σεy**, ζ0**  =  γ02*  λ3* σϖ
2 , (16)

σεy**, ζ1**  =  γ12*  λ3* σϖ
2 , (17)

ρεy**, ζ0** =
γ02*  λ3*    σϖ

2

  λ3*
2   σϖ

2 + σεy*
2     γ02* 2   σϖ

2 + σζ0*
2  

, (18)

ρεy**, ζ1** =
γ12*  λ3*    σϖ

2

  λ3*
2   σϖ

2 + σεy*
2     γ12* 2   σϖ

2 + σζ1*
2  

, (19)

where the confounder parameters   γ02* , γ12* , and   λ3* denote the effect of latent proxy variable 

in (2)–(4) for the latent augmented model; term σϖ
2  denotes the latent proxy variance, which 

is assumed to be one. The product terms   γ02*  λ3* and   γ12*  λ3* quantify the confounding effects 

of the omitting the latent proxy variable ϖ on the covariances (correlations) between latent 

intercept and outcome variable and between the latent slope and outcome variable, 

respectively. In summary, in the correlated augmented model, the σεy* *, ζ0* * and σεy* *, ζ1* *

are confounder covariances quantifying the effects of omitted confounders, which, in the 
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latent augmented model, equal to the confounding effects of the latent proxy variable on two 

relationships: latent intercept to outcome variable and latent slope to outcome variable.

The residual covariance between the growth factor residuals, σζ0* *, ζ1* *, in the correlated 

augmented model has a different interpretation from the corresponding covariance, σζ0*, ζ1*
, in 

the latent augmented model. As shown in Equation (5) for the latent augmented model, the 

term σζ0*, ζ1*
 quantifies the covariance between the growth factor residuals that is not due to 

the latent proxy variable, and thus is not due to the omitted confounders. However, as shown 

below, in the correlated augmented model, the covariance between the growth factor 

residuals is the sum of two terms that capture both confounding and non-confounding 

effects:

σζ0**, ζ1**  =  σϖ
2  γ02* γ12* + σζ0*, ζ1*

. (20)

The first part in (20), the term σϖ
2  γ02* γ12*  quantifies the confounding covariance that is 

modeled by the latent proxy variable in the latent augmented model; the confounder 

parameters γ02*  and γ12*  quantify the effects of the latent proxy variable on the growth factors 

as shown in (2) and (3). The second part in (20), the term σζ0*, ζ1*
 is the covariance between 

the growth factor residuals that is not due to the confounders.

Problematic Values of Confounder Correlation

One issue concerning estimating both the latent augmented model and correlated augmented 

model is empirical under-identification, which would result in unstable parameter estimates 

with extremely large standard errors (Kenny & Milan, 2012; Rindskopf, 1984). As Kenny 

(2004, p. 51) noted, “[e]mpirical under-identification is defined by zero or near-zero 

denominators in the estimates of structural parameters”. Empirical under-identification 

would likely result in a negative residual variance (F. Chen, Bollen, Paxton, Curran, & 

Kirby, 2001), which can occur with CAMSA and latent augmented model. In addition, it 

might problematic when certain combination of the confounder correlation values is selected 

without any restriction, and thus one or more correlation values can take on non-admissible 

(out of bound) values. For instance, for correlations between X, M, and Y, each correlation 

is bounded as follows (Leung & Lam, 1975):

ρMXρXY −   1 − ρMX
2 1 − ρXY

2 ≤ ρMY ≤   ρMXρXY +   1 − ρMX
2 1 − ρXY

2

When encountering four or more variables, as is the case for a two-mediator model such as 

LGCMM, restrictions between the correlation values become more complex. A correlation 

matrix has a special property that defines the restrictions between correlations: a correlation 

matrix must be positive semi-definite (PSD) (Rousseeuw & Molenberghs, 1994). A matrix is 

said to be PSD if and only if its determinant is greater than or equal to zero. Not all 
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combinations of the confounder correlation values picked by a researcher would result in 

PSD correlation matrices implied by the model. One advantage of CAMSA as well as the 

latent augmented model is that SEM software, such as Mplus (L. K. Muthén & Muthén, 

2017), would generate an error for inadmissible confounder correlation values that would 

result in a non-PDS covariance matrix. The corresponding confounder correlation values can 

then be excluded from the sensitivity analysis.

Application of Sensitivity Analysis to Motivating Example

In this section, we first estimate LGCMM using an empirical example. Next, we describe 

conducting CAMSA for the empirical example.

Empirical Example

We used data collected from the COMBINE study [“Combined Pharmacotherapies and 

Behavioral Interventions for Alcohol Dependence” (The COMBINE Study Research Group, 

2003)]. In the COMBINE trial, eligible participants were randomly assigned to one of nine 

treatment conditions that included a combination of prescription medications (acamprosate, 

naltrexone, or placebo equivalents) and behavioral interventions (medication management 

[MM] or combined behavioral intervention [CBI]): 1) MM + naltrexone, 2) MM + 

acamprosate, 3) MM + naltrexone + acamprosate, and 4) MM + placebo. Five additional 

conditions included CBI: 5) CBI + naltrexone, 6) CBI+ acamprosate, 7) CBI+ naltrexone + 

acamprosate, 8) CBI+ placebo, and 9) CBI only. For this study, we were interested in the 

effect of the treatment conditions that included active naltrexone verses the treatment 

conditions that administered placebo naltrexone.

The goal of the empirical example was to evaluate the effect of naltrexone on alcohol use 

(outcome) via changes in craving (mediator). Self-reported craving was assessed by the Penn 

Alcohol Craving Scale (PACS; Cronbach’s α ≥.85). The PACS consists of 5 items that 

assess frequency, intensity and duration of alcohol craving and an overall rating of craving 

for the prior week (Flannery, Volpicelli, & Pettinati, 1999). For this study, we used PACS 

craving scores measured in weeks 1, 2, 4, 6, 8, 10, 12. The outcome variable was the percent 

drinking days of any alcohol during the prior month at week 16, assessed by the Form 90 

(Miller, 1996). To increase numerical stability during estimation, the percent drinking days 

was divided by 10 to make its dispersion smaller and more comparable to the rest of the 

data.

We estimated the LGCMM in Mplus 8.0 (L. K. Muthén & Muthén, 2017). As seen in Figure 

1, naltrexone significantly reduced alcohol craving B(SE) = −1.154 (0.362), p =.001, 95% 

CI [−1.864; −0.445], but did not influence the linear change in alcohol craving over time B 

(SE) =0.004 (0.039), p = .915, 95% CI: [−0.071; 0.080]. Controlling for the naltrexone 

treatment, the effect of the mean alcohol craving at week 4 and the weekly growth rate of 

alcohol craving on percentage drinking days were both significant, B (SE) = 0.197 (0.015), p 
<.001, 95% CI: [0.167, 0.226] and B (SE) =2.451 (0.205), p <.001, 95% CI: [2.048, 2.853], 

respectively. Assuming the correct specification assumptions, including the no-omitted-

confounder assumption holds, we use Bonferroni adjusted α/2 = .025 and the distribution of 

the product of coefficients approach to compute a CI (Tofighi & MacKinnon, 2011), for the 
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indirect effect involving latent intercept, B (SE) = −0.227 (0.073), 97.5% CI [−0.398 

−0.067]; for the indirect effect involving latent slope, B (SE) = 0.01 (0.094), 97.5% CI 

[−0.206 0.227]. Thus, naltrexone was effective in reducing percent drinking days in the last 

month of treatment (assessed at week 16) via the reduction in the mean craving observed 

during the first month of treatment (intercept; week 4), but there was no indirect effect of 

naltrexone on percent drinking days via change in craving over time.

Correlated Augmented Model Sensitivity Analysis (CAMSA)

We conduct CAMSA for the empirical example to assess if the indirect effects are robust to 

varying degrees of omitted confounder bias because the values of the mediators, latent 

intercept and slope, are not randomized. Thus, there could be other confounders that would 

influence the latent intercept and slope as well as the outcome variable. For example, 

genotype (Kranzler, Armeli, Covault, & Tennen, 2013), type of drinker (i.e., reward verses 

relief drinker; Mann et al., 2018), or smoking status (Schacht et al., 2017) could impact the 

effect of naltrexone on craving intercept/slope, as well as drinking outcomes. Code scripts 

and accompanying instructions to run the sensitivity analysis are available in the 

supplemental materials.

To calculate the values of the coefficients in the correlated augmented model, we first choose 

a set of plausible values for confounder correlation parameters, ρεy* *, ζ0* * and ρεy* *, ζ1* *. 

For each set of values, the correlated augmented model is estimated, and adjusted values of 

model parameters as well as the indirect effect and its 97.5% CI are calculated. In our 

example, we choose the values for the confounder correlations within the range of −.5 and .

5, which also covers the correlation values ± .1, ± .3, and ± .5, corresponding to Cohen’s 

(1988) guideline on small, medium, and large effect sizes. One may choose a different set of 

values based on prior research and/or knowledge of the magnitude and direction of potential 

omitted confounders.

Results

CAMSA produces point and interval estimates of the coefficients showing potential impact 

of varying degrees of confounding on all model parameters. We focus on the results of the 

sensitivity analysis on two indirect effect estimates and respective 97.5% CIs. As mentioned 

before, for each admissible set of confounder correlations values, sensitivity analysis would 

compute two indirect effects estimates and CIs in the correlated augmented model, resulting 

in hundreds of point and interval estimates. Non-admissible correlations are identified 

through the errors (e.g., “negative psi matrix”) produced by Mplus and thus are excluded.

We present two sets of graphs to visually summarize varying degrees of confounding effects 

on the point and interval estimates for each indirect effect: sensitivity contour plot and 

sensitivity confidence band plot. The sensitivity contour plots, shown in Figure 5, display the 

magnitude of the indirect effect as a function of the confounder correlations. For example, 

panel-a in Figure 5 shows the contour plot for the indirect effect estimate through the 

mediator latent intercept. The x-axis and y-axis represent the range of values for the 

confounder correlations between the latent intercept and Y(ρ1) and latent slope and Y(ρ2), 

respectively. Each contour line illustrates all the combinations of the values for the two 
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confounder correlations that result in the same indirect effect estimate. A value for the 

indirect effect corresponding to each contour line is displayed adjacent to the line. For the 

indirect effect through the intercept, the estimates range roughly from −0.5 to −0.1 for ρ1 ≤ .

2 and ρ2 ≤ .5. Given the original estimate for the indirect effect is B (SE) = −0.227 (0.073), 

97.5% CI [−0.398, −0.067], the point estimate of the adjusted indirect effect does not appear 

to change dramatically for the range of confounder correlations. However, as ρ2 >.2, the sign 

of the indirect effect estimates changes. For indirect effect estimate through the slope, panel-

b in Figure 5 shows that indirect effect estimate roughly ranges from −0.005 to 0.025 for −.5 

≤ρ1 and ρ2 ≤ .5. Given the original estimate of the indirect effect is B (SE) = 0.01 (0.094), 

97.5% CI [−0.206, 0.227], the indirect effect estimate did not fall outside of the original CI. 

In sum, it appears that the values of confounder correlations have considerable impact on the 

indirect effect through intercept in that sign of the indirect effect changes; on the other hand, 

the values of confounder correlation appear to have a minimal impact on the indirect effect 

through slope.

A second way to summarize the effect of omitted confounders is to present sensitivity 

confidence band plots to examine changes in the CIs. This is advantageous because one can 

examine the effect of the omitted confounders on the uncertainty about the indirect effects as 

well as the point estimate. Because there are many combinations of the confounder 

correlation we use the information from sensitivity contour plots to focus on the range of the 

confounder correlation values for which the inference about the indirect effect changes. That 

is, we look at the ranges where the status of a CI containing zero changes to not containing 

zero and vice versa. Figure 6 shows four panels of 97.5% confidence bands for the indirect 

effect through intercept; each panel corresponds to a fixed value of ρ2 where the x-axis 

shows a more restricted range of values, 0 ≤ ρ1 ≤ .5, and y-axis shows indirect effect values. 

We chose positive values for ρ2 because the results were identical to the corresponding 

negative values. For example, the confidence band plots were identical for ρ2 = ± 1. Of 

course, one may choose different positive or negative values for ρ2 in a different context. As 

the value of ρ2 increases from small (.1) to medium (.3) and then to large (.5), the regions of 

non-significance corresponding to ρ1 were roughly (.35, .40), (.30, .42), and (.25, .37), 

respectively. Below the lower limit of ρ1 for each non-significance region, the CIs contain 

negative indirect effect estimates while above the upper limit of ρ1 for the non-significance 

region, the CIs contain the positive indirect effect estimates. Figure 7 illustrates the panel 

plots of confidence bands for the indirect effect estimate through the slope for four values of 

ρ1. The x-axis shows the values for ρ2 between 0 and .5. In each panel, as ρ2 becomes larger 

the confidence band becomes narrower and then widens. For all values of ρ2, however, all 

the confidence bands contain zero. This shows the inference about the indirect effect through 

the slope is robust in that the CIs contain zero as the confounder correlation ρ2 increases 

from zero to large.
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Conclusion and Summary

Latent growth curve mediation models (LGCMM) have become more common in applied 

contexts to study whether some treatment variable is expected to affect an outcome via 

changes in some mediating process. Given the growing popularity of this model in the field 

(see Hallgren et al., 2018), it is critically important to check underlying assumptions to 

ensure valid results. One of these assumptions is an untestable assumption that there are not 

omitted confounders from the model. For LGCMM, the no omitted confounder assumption 

implies that there should be no omitted variable that influences the two mediators as well as 

the outcome variable. Furthermore, there should be no omitted variable that is influenced by 

the independent variable X that in turn would influence the mediator and outcome variables.

The current study provides an extension of other recent work (e.g., Bind et al., 2016; Harring 

et al., 2017; Imai et al., 2010; Tofighi & Kelley, 2016), by developing and testing a method 

for sensitivity analysis in LGCMM. We proposed a technique termed correlated augmented 

model sensitivity analysis (CAMSA) for models with two mediators, with an application to 

LGCMM. CAMSA uses a correlated augmented model to represent cumulative and linear 

effects of one or more potential confounders. We presented analytic results showing that the 

confounder covariances between residuals associated with the mediators (latent intercept and 

slope) and the outcome variable account for confounding effects. We presented formulas to 

compute the model parameters from the confounder correlations (sensitivity parameters) as 

the correlation values are more convenient to quantify confounding bias. For multiple 

combinations of the values for the confounder correlations, CAMSA estimates the correlated 

augmented model and generates point and interval estimates for the indirect effects, 

iteratively.

One advantage of the correlated augmented model is using confounder correlations 

(sensitivity parameters) to quantify confounder bias. Using confounder correlation is more 

convenient in that one can directly quantify the confounder effects in terms of confounder 

correlations given analytic formulas. In addition, the correlated augmented model is suitable 

for mediation models where the endogenous variables are latent. A second advantage of 

CAMSA is that it can be implemented within the SEM framework and estimated using 

available software, such as Mplus (L. K. Muthén & Muthén, 2017). We provided an 

application of CAMSA using an empirical example. An R (R Development Core Team, 

2017) script to conduct sensitivity analysis using Mplus along with the instruction on how to 

use R and Mplus to conduct sensitivity analysis is provided in the Supplemental Materials.

Another noteworthy aspect of conducting sensitivity analysis is the summary and 

interpretation of point and interval estimates as a function of many combinations of the 

confounder correlation values. We presented sensitivity contour plots that visually illustrate 

point estimates of the two indirect effects as a function of confounder correlations, as well as 

a second visual summary of the results that is the sensitivity confidence band plot. For each 

indirect effect, the sensitivity confidence band plot illustrates the effect of confounder bias 

on the confidence intervals of the indirect effect estimates. We recommend researchers try 

several ranges of the values for both confounder correlations shown on the x-axis and the 
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panel to capture important features of the effects confounding on the interval estimates for 

an indirect effect.

As mentioned previously, the no-omitted confounder assumption is one of the several 

specification assumptions underlying a mediation model. Additional assumptions include 

correct functional form of the relationships between the variables, correct distributional 

assumptions of the residuals, no outliers, no non-random missing data due to attrition, and 

no measurement error (Baraldi & Enders, 2010; Fritz, Kenny, & MacKinnon, 2016; Fritz & 

MacKinnon, 2007; James & Brett, 1984; Judd & Kenny, 1981; MacKinnon, 2008). In 

addition, within the SEM framework, there are additional statistical distributional 

assumptions and sample size requirements that need to be satisfied when SEM is used to 

estimate a mediation model (Hoyle, 2012; Kline, 2016; West, Finch, & Curran, 1995). One 

must be prudent in examining the combined effect of violation of one or more of these 

assumptions along with violation of the no omitted confounder assumption. For example, a 

study showed that combined measurement error and omitted confounder effect can have 

either a heightened or mitigated combined biasing effect on the indirect effect (Fritz et al., 

2016). It is recommended that one would account for the effect of the measurement error by 

using latent variables.

We also note CAMSA is not suitable for a mediation model with observed endogenous 

variables because the model would not be identified even though correlations between the 

residuals are fixed (B. Muthén & Asparouhov, 2015). For such models, we recommend one 

conduct sensitivity analysis using the latent (phantom variable) augmented model (Harring 

et al., 2017; Tofighi & Kelley, 2016). It is also possible to extend CAMSA to mediation 

models with three or more covarying as well as sequential related latent mediators. However, 

the extension requires additional consideration about confounder correlations and analytic 

derivation to model confounding effects on all the mediators and outcome variable. The 

extension remains a topic of future study. Much prior research on sensitivity analysis has 

focused on the randomized case. With nonrandomized X, there are confounders of the X to 

M relation. Consequently, equations for calculating sensitivity to confounding would be 

applied to the X and M relation, and then these equations would need to be developed to 

include sensitivity to confounding of both the X to M and M to Y relations. The analytical 

techniques in this paper could be extended to this case and represent a topic for future 

development.

One should be prudent in interpreting the results of the sensitivity analysis. Statistical 

sensitivity analysis results should be further justified by the researcher as to why the 

conclusion is consistent with substantive theory and previous research. When the results 

about the significance of the indirect effects change qualitatively based on values of 

confounder correlations then a researcher might need to further probe the model and its 

underlying theory, design of the study, and implementation of the proposed study, as well as 

check for additional statistical specification assumptions of the mediation model 

(MacKinnon, 2008; MacKinnon, Fairchild, & Fritz, 2007; MacKinnon & Pirlott, 2015; 

Preacher, 2015).
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Appendix

Analytic Results for the Latent Augmented Model

In deriving the above expression, we use the following relations.

a. cov ϖ,xi = 0 because xi is randomized, it neither influences nor is influenced by 

ϖ. That is, we assume ϖ and xi to be orthogonal (independent)

b. cov ϖ,ζ0i* = cov ϖ, ζ1i* = 0 and cov ϖ,ζ0i* | x = cov ϖ, ζ1i* | x = 0. These 

expressions hold because we assume that ϖ models all the omitted confounders 

that influence η0 and η1, and ϖ and xi are independent.

c. cov xi, ζ0i* = cov xi, ζ1i* = 0 and cov xi, ζ0i* |ϖ = cov xi, ζ1i* |ϖ = 0. These 

expressions hold because we assume that ϖ models all the omitted confounders 

that influence η0 and η1, and ϖ and xi are independent.

d. We also assume constant variance: var ζ0i* |   xi, ϖ = σζ0*
2 , var ζ1i* |   xi, ϖ = σζ1*

2 , 

and var εi* |   xi, ϖ,    ηi0,  η10 = σε*
2 .

Now, we derive the following expressions. The expression for cov ηi0,ηi1 |  x  in (5) is derived 

as follows:

cov ηi0, ηi1  x = cov(   α0* + γ01*   xi + γ02* ϖ +   ζ0i* ,   α1* + γ11*   xi +   γ12* ϖ +   ζ1i*   | x)

= cov(   γ02* ϖ +   ζ0i* ,   γ12* ϖ +   ζ1i*   | x) = αϖ
2  γ02* γ12* + σζ0*, ζ1*

The expressions in (6) and (7) are obtained as follows:

σ
η0, ϖ x

=  cov(α0* + γ01*   xi + γ02* ϖ +   ζ0i* , ϖ   |   x) =    cov(γ02* ϖ +   ζ0i*   , ϖ x)

=   γ02*   σϖ
2

(A1)
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σ
η1, ϖ x

= cov η1, ϖ     x = cov(   α1* + γ11*   xi + γ12* ϖ +   ζ1i* , ϖ   |   x)

= cov   γ12* ϖ +   ζ1i* , ϖ x =   γ12*   σϖ
2

(A2)

To derive the expressions in (9)–(11), we first need to obtain expressions for ση0, ϖ | x and 

ση1, ϖ | x, given in (A1) and (A2), ση0, ϖ, ση1, ϖ, ση0
2  ση0 | x

2 , ση1
2 , ση1 | x

2 , ρη0, ϖ, ρη0, ϖ | x, ρη1, ϖ, 

ρη1, ϖ | x, σy, ϖ and ρy, ϖ. We first obtain the conditional and unconditional variance of the 

growth factors. Given (2), the unconditional variance of the latent intercept is as follows:

ση0
2 = var α0* + γ01*  xi + γ02*  ϖ +  ζ0i*

= γ01* 2   σx
2 +   γ02* 2σϖ

2 +   σζ0*
2 + γ01*  γ02*  cov xi, ϖ

+ γ01* cov xi, ζ0i* + γ02*  cov ϖ, ζ0i*

=   γ01* 2   σx
2 +   γ02* 2   σϖ

2 +   σζ0*
2

(A3)

The conditional variance of the latent intercept is:

σ
η0 x
2 = var α0* + γ01*  xi + γ02*  ϖ +  ζ0i* x = var γ02*  ϖ +  ζ0i* x  

=   γ02* 2σϖ
2 +   σζ0*

2

(A4)

Given (3), the unconditional variance of the latent slope is:

ση1
2 = var α1* + γ11*  xi +  γ12*  ϖ +  ζ1i*

=   γ11* 2   σx
2 + σϖ

2   γ12* 2 +   σζ1*
2 + γ11*   γ12* cov xi, ϖ

+ γ11* cov xi, ζ1i* + γ12* cov ϖ, ζ1i*

=   γ11* 2   σx
2 +   γ12* 2σϖ

2 +   σζ1*
2

(A5)

The conditional variance of latent slope is:

σ
η1 x
2 = var α1* + γ11*  xi +  γ12*  ϖ +  ζ1i*   xi

= γ12* 2var ϖ   xi + var ζ1i*   xi =   γ12* 2σϖ
2 +   σζ1*

2

(A6)

Next, we compute the unconditional covariance between the latent growth factors and ϖ.
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ση0, ϖ = cov α0* + γ01*  xi + γ02*  ϖ +  ζ0i*   , ϖ

=   γ01* cov xi, ϖ + γ02*  σϖ
2 + cov ζ0i* ,   ϖ = γ02*  σϖ

2  

(A7)

ση1, ϖ = cov α1* + γ11*  xi +  γ12*  ϖ +  ζ1i* , ϖ

=   γ11* cov xi, ϖ + γ12*  σϖ
2 + cov ζ1i* , ϖ = γ12*  σϖ

2  

(A8)

Next, we compute the conditional and unconditional correlation between the latent growth 

factors and ϖ. Given (A3) and (A7), the unconditional correlation between the latent 

intercept and ϖ is:

ρη0, ϖ =
ση0, ϖ

ση0
  σϖ

=
γ02*   σϖ

γ01* 2   σx
2 + σϖ

2 γ02* 2 +   σζ0*
2 =

γ02*   σϖ
ση0

(A9)

Given (A1) and (A4), the conditional correlation between the latent intercept and ϖ is:

ρ
η0, ϖ x

=
σ

η0, ϖ x

σ
η0 x

  σϖ
=

γ02*   σϖ

σϖ
2   γ02* 2 +   σζ0*

2
=

γ02*   σϖ
σ

η0 x

Given (A5) and (A8), the unconditional correlation between the latent slope and ϖ is:

ρη1, ϖ =  
ση1, ϖ

ση1
  σϖ

=
γ12*   σϖ

γ11* 2   σx
2 + σϖ

2 γ12* 2 +   σζ1*
2 =

γ12*   σϖ
ση1

(A10)

Given (A2) and (A6), the conditional correlation between the latent slope and ϖ is:

ρ
η1, ϖ x

=
σ

η1, ϖ x

σ
η1 x

  σϖ
=

γ12*   σϖ

σϖ
2   γ12* 2 +   σζ1*

2 =
γ12*   σϖ

σ
η1 x

Next, we derive σy, ϖ and ρy, ϖ.
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σy, ϖ = cov ν* + κ*   xi +   λ1*   ηi0 + λ2*   ηi1 +   λ3*ϖ +   εi*, ϖ = λ1*cov   ηi0, ϖ

+   λ2*cov   ηi1, ϖ +   λ3*   σϖ
2 =   λ1*   γ02* +   λ2*   γ12* +   λ3* σϖ

2

ρy, ϖ =
σyi, ϖ

σy   σϖ
  =

σϖ
σy

  λ1*   γ02* +   λ2*   γ12* +   λ3*

(A11)

Finally, isolating γ02
∗  in (A9), we arrive at the expression in (9). Isolating γ12

∗  in (A10), we 

arrive at the expression in (10). Isolating λ3
∗ in (A11) would result in (11).

In addition, we compute the expected valued for the latent growth factors and yi. We use the 

expected values to compare the respective residuals with the ones from the correlated 

augmented model in the next section.

E η0i     xi = E E η0i     xi, ϖ = E E α0* + γ01*  xi + γ02*  ϖ +  ζ0i*   xi, ϖ = α0*
+ γ01*  xi + E γ02*  ϖ + E  ζ0i*   xi, ϖ = α0* + γ01*  xi

(A12)

E η1i     xi = E E η1i     xi, ϖ
= E E α1* + γ11*  xi + γ12*  ϖ +  ζ1i*   xi, ϖ
=   α1* + γ11*  xi + E γ12*  ϖ + E  ζ1i*   xi, ϖ =   α1* + γ11*  xi

(A13)

E yi xi = E ν* + κ* xi +  λ1* ηi0 + λ2* ηi1 +  λ3* ϖ +  εi*     xi,   η0i, η1i
=     ν* + κ* xi +  λ1* ηi0 + λ2* ηi1

(A14)

Correlated Augmented Model

First, we derive the mean and variance of the mediators (growth factors) for the correlated 

augmented model and then compare them with the corresponding expected values from the 

latent augmented model. To show equivalency, the parameters from the correlated 

augmented model must to be a function of the corresponding parameters from the latent 

augmented model.

E η0i     xi = E E η0i     xi, ϖ = E E α0** + γ01** xi +  ζ0i**   xi, ϖ = α0**
+ γ01** xi + E E  ζ0i**   xi, ϖ = α0** + γ01** xi + E(ζ0i**|ϖ)
= α0** + γ01** xi

(A15)
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E η1i     xi = E E η1i     xi, ϖ
= E E α1** + γ11** xi +  ζ1i**   xi, ϖ
=   α1** + γ11** xi + E E  ζ1i**   xi, ϖ =   α1** + γ11** xi

(A16)

E yi xi = E ν** + κ** xi +  λ1** η0i + λ2** η1i +  εy**     xi,   η0i, η1i
=     ν** + κ** xi +  λ1** η0i + λ2** η1i

(A17)

Comparing the expected values of the correlated augmented model with the corresponding 

expected values from the latent augmented model, one can see that there is a one-to-one 

relationship between the two model parameters. Further, we can use the expected values to 

isolate the residuals for latent growth factors and yi in each model. Then, comparing the 

corresponding residuals from the two models, the following holds:

ζ0i* * =   γ02* ϖ +   ζ0i*

ζ1i* * =   γ12* ϖ +   ζ1i*

εi* * =   λ3*ϖ +   εi*

We use the relationships between the residuals to compute the covariance and ultimately 

correlation between residuals in the correlated augmented shown (16)–(19) in terms of the 

parameters from the latent augmented model:

σεy* *, ζ0* * = cov   εi* *,   ζ0* * = cov(εi* *,   ζ0* *|   ηi0,     η10, x) = cov λ3*ϖ +   εi*, γ02* ϖ +   ζ0i*

=   γ02*   λ3*     σϖ
2

σεy* *, ζ1* * = cov εi* *, ζ1* * = cov(εi* *,   ζ1* *|   ηi0,     η10, x) = cov λ3*ϖ +   εi*,   γ12* ϖ +   ζ1i*

=   γ12*   λ3*   σϖ
2

Next, we derive the following variances:

σεy* *
2 = λ3*

2   σϖ
2 + σεy*

2
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σζ0* *
2 = γ02* 2   σϖ

2 + σζ0*
2

σζ1* *
2 =   γ12* 2   σϖ

2 + σζ1*
2

Finally, the derive the following correlations shown in (18) and (19):

ρεy**, ζ0** =
σεy* *, ζ0* *
σεy* *   σζ0**

=
γ02*  λ3*    σϖ

2

  λ3*
2   σϖ

2 + σεy*
2     γ02* 2   σϖ

2 + σζ0*
2  

ρεy**, ζ1** =
σεy* *, ζ1* *
σεy* *   σζ1**

=
γ12*  λ3*    σϖ

2

  λ3*
2   σϖ

2 + σεy*
2     γ12* 2   σϖ

2 + σζ1*
2  

Below we derive the relationships between the covariance between residuals of the growth 

factors in the correlated augmented model and the corresponding covariance in the latent 

augmented model.

σζ1* *, ζ0* * = cov(ζ1* *,   ζ0* *   |   ηi0,     η10, x) = cov γ12* ϖ +   ζ1i* ,   γ02* ϖ + ζ0i*

=     γ02*   γ12*   σϖ
2 + σζ0*, ζ1*

This the expression shown in Equation (5).
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Figure 1. 
Latent growth mediation model. Indirect effect of intervention (naltrexone vs non-

naltrexone) treatment on percent drinking days at week 16 is assumed to be mediated via 

latent intercept (mean alcohol craving in week 4) and weekly growth rate of alcohol craving. 

The percent drinking days is divided by 10 to make its dispersion smaller and more 

comparable to rest of the data. For the indirect effect involving latent intercept, B (SE) = 

−0.227 (0.073), 97.5% CI [−0.398, −0.067]; for the indirect effect involving latent slope, B 

(SE) = 0.01 (0.094), 97.5% CI [−0.206, 0.227]. A solid straight arrow shows the effect of a 

variable at the origin on the variable at the end of the arrow. A solid double-headed curved 

arrow shows covariance between two variables. Observed variables associated with the 

latent intercept and slopes are excluded for simplicity.
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Figure 2. 
A general single mediator model. All the variables can be observed or latent. X, M, and Y 
denotes antecedent, mediator, and outcome variable, respectively. U denotes one or more 

omitted confounders. C denotes one or covariates (e.g., background variables) included in 

the model. We assume that C is measured before X, which is measured before M, and which 

is measured before Y. A solid arrow shows the effect of a variable at the origin on the 

variable at the end of the arrow. A dashed double headed curved arrow illustrates a 

confounder correlation (covariance) between U and another variable in the model.
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Figure 3. 
Latent augmented model. Indirect effect of intervention (naltrexone vs placebo) treatment on 

percent drinking days at week 16 is assumed to be mediated via latent intercept (mean 

alcohol craving at week 4) and weekly growth rate of alcohol craving from weeks 6 through 

12.
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Figure 4. 
Correlated augmented model. Indirect effect of intervention (naltrexone vs placebo) 

treatment on percent drinking days at week 16 is assumed to be mediated via latent intercept 

(mean alcohol craving at week 4) and weekly growth rate of alcohol craving from weeks 6 

through 12.

Tofighi et al. Page 29

Struct Equ Modeling. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Sensitivity contour plots for the indirect effects. Numbers adjacent to each contour line 

indicate indirect effect estimates. For the graph on the right, the independent variable, the 

mediator, and outcome variables are intervention, latent intercept, and heavy drinking as 

shown in Figure 4. For the graph on the left, the independent variable, the mediator, and 

outcome variables are intervention, latent slope, and drinking outcome. The confounder 

parameter ρ1 is the correlation between the residuals associated with the latent intercept and 

outcome variable and the confounder parameter ρ2 is the correlation between the residuals 

associated with latent slope and the outcome variable.
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Figure 6. 
Sensitivity confidence band graphs of 97.5% CIs for indirect effect through the mediator 

latent intercept. The x-axis on each panel graph shows the confounder parameter ρ1, which 

is the correlation between the residuals associated with the latent intercept and outcome 

variable for the correlated augmented model in Figure 4. The confounder parameter, ρ2, on 

top of each panel graph is the correlation between the residuals associated with latent slope 

and the outcome variable in Figure 4. The y-axis shows indirect effect estimate as a function 

of the confounder correlation parameters. The ribbon in each graph shows the 97.5% CI 

bands.
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Figure 7. 
Sensitivity confidence band graphs of 97.5% CIs for the indirect effect through the mediator 

latent slope. The x-axis on each panel graph shows the confounder parameter ρ2, which is 

the correlation between the residuals associated with the latent slope and outcome variable 

for the correlated augmented model in Figure 4. The confounder parameter, ρ1, on top of 

each panel graph is the correlation between the residuals associated with latent intercept and 

the outcome variable in Figure 4. The y-axis shows indirect effect estimate as a function of 

the confounder correlation parameters. The ribbon in each graph shows the 97.5% CI bands.
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Table 1.

Summary of Mediation Models and Sensitivity Analysis

Type of Mediation Model Used in Analysis

Study Sensitivity analysis Effect 
sizes for 
sensitivity 
perameter

One mediator Two parallel mediators Sequential mediators Statistical moduling

Single level (independent) data

Cox et al.(2013) Yes Yes X→M→Y SEM

Daniel et al. 
(2015)

Yes X→M1→M2→M3→Y

Harring et al. 
(2017)

Yes No X→M→Y X→M1→M2→Y SEM

Imai, Keele, & 
Tingley (2010) Yes Yes X→M→Y GLM

Imai and 
Yamamato 
(2013)

Yes Yes X→(M1⊥M2)→Y X→M1→M2→Y GLM

Velante et al. 
(2017)

Yes Yes X→M→Y SEM

Multilevel (correlated) data

Bind et al. 
(2016) No Within X→M→Y Generalized mixed model

Talloen et al. 
(2016) Yes

a Yes Within X→M→Y Fixed effects and Linear 
mixed model

Tofighi and 
Kelly (2016) Yes Yes Both Between and 

Within X→M→Y SEM

Current study Yes Yes BetweenX→(M1↔M2)→Y SEM

Note. GLM= generalized linear model; SEM=structural equation model. X, M, and Y denote independent, mediator, and outcome variables. The 
parentheses around the mediators identify parallel mediators. Symbol ⊥ indicates that the parallel mediators are independent and symbol ↔ 
indicates the parallel mediators are correlated.

a
Used sensitivity analysis by Imai et al. (2010).
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