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Abstract
Mesial temporal lobe epilepsy (TLE) is a common neurological disorder affecting the hippocampus and

surrounding medial temporal lobe (MTL). Although prior studies have analyzed whole-brain network

distortions in TLE patients, the functional network architecture of the MTL at the subregion level has

not been examined. In this study, we utilized high-resolution 7T T2-weighted magnetic resonance imag-

ing (MRI) and resting-state BOLD-fMRI to characterize volumetric asymmetry and functional network

asymmetry of MTL subregions in unilateral medically refractory TLE patients and healthy controls. We

subdivided the TLE group into mesial temporal sclerosis patients (TLE-MTS) and MRI-negative nonle-

sional patients (TLE-NL). Using an automated multi-atlas segmentation pipeline, we delineated 10 MTL

subregions per hemisphere for each subject. We found significantly different patterns of volumetric

asymmetry between the two groups, with TLE-MTS exhibiting volumetric asymmetry corresponding to

decreased volumes ipsilaterally in all hippocampal subfields, and TLE-NL exhibiting no significant volu-

metric asymmetries other than a mild decrease in whole-hippocampal volume ipsilaterally. We also

found significantly different patterns of functional network asymmetry in the CA1 subfield and whole

hippocampus, with TLE-NL patients exhibiting asymmetry corresponding to increased connectivity ipsi-

laterally and TLE-MTS patients exhibiting asymmetry corresponding to decreased connectivity ipsilater-

ally. Our findings provide initial evidence that functional neuroimaging-based network properties within

the MTL can distinguish between TLE subtypes. High-resolution MRI has potential to improve localiza-

tion of underlying brain network disruptions in TLE patients who are candidates for surgical resection.
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1 | INTRODUCTION

Mesial temporal lobe epilepsy (TLE) is the most common type of

localization-related epilepsy, affecting approximately one in 1,000

people worldwide (Engel, 2001; Kwan, Schachter, & Brodie, 2011;

Wieser, 2004). Approximately 30% of TLE patients do not respond to

medical therapy and are candidates for surgical removal of the

seizure-generating area (Engel, 1996). Accurate seizure localization

prior to surgery is crucial in order to maximize chances of seizure free-

dom and minimize post-surgical cognitive deficits. While approxi-

mately two-thirds of TLE patients have mesial temporal sclerosis

(MTS) identified on structural MRI (TLE-MTS), the remaining one-third

have normal-appearing (“nonlesional”) clinical MRI scans (TLE-NL).

Lateralization and localization of seizure onset zone in these patients

can be difficult, since other neuroimaging and electrophysiology-

based tests are often inconclusive, precluding surgical resection. In

nonlesional patients who do undergo surgery following invasive locali-

zation procedures such as intracranial EEG, post-surgical outcomes

are still substantially worse than in patients with well-defined lesions

on MRI (Siegel et al., 2001; Téllez-Zenteno, Ronquillo, Moien-

Afshari, & Wiebe, 2010). Thus, there remains a pressing clinical need

to establish noninvasive neuroimaging biomarkers for nonlesional

TLE. Furthermore, with the recent emergence of highly targeted ther-

apeutic options such as laser ablation (Willie et al., 2014) and neurosti-

mulation (Fisher & Velasco, 2014), precise localization of the seizure

onset zone will become increasingly valuable for guiding therapy.

It has become widely accepted that the pathophysiology of

localization-related epilepsy extends beyond focal lesions to alter the

properties of brain networks (Bernhardt, Hong, Bernasconi, & Bernas-

coni, 2013; Chu et al., 2012; Khambhati, Davis, Lucas, Litt, & Bassett,

2016). As a result, researchers have begun to employ graph theoreti-

cal methods to characterize network aberrations in neuroimaging data

from TLE patients (Chiang & Haneef, 2014; Haneef & Chiang, 2014).

Many of these studies focus only on TLE-MTS (Liao et al., 2010;

Pereira et al., 2010) or consider TLE as a single entity without distin-

guishing between TLE-MTS and TLE-NL groups (Barron et al., 2015;

Bettus et al., 2009; Haneef, Lenartowicz, Yeh, Engel, & Stern, 2014;

He, Doucet, Sperling, Sharan, & Tracy, 2015; James, Tripathi, Ojemann,

Gross, & Drane, 2013; Morgan, Sonmezturk, Gore, & Abou-Khalil,

2012; Pittau, Grova, Moeller, Dubeau, & Gotman, 2012). However,

there is growing evidence that TLE-MTS and TLE-NL may be distinct

disorders with distinct underlying pathophysiology and with different

network manifestations (Bernhardt et al., 2016a; Liu, Concha, Lebel,

Beaulieu, & Gross, 2012; Muhlhofer, Tan, Mueller, & Knowlton, 2017;

Reyes et al., 2016; Vaughan, Rayner, Tailby, & Jackson, 2016). These

findings suggest that the TLE-MTS and TLE-NL subtypes should be

studied separately, to better understand their differences and to pro-

mote the discovery of biomarkers specific to TLE-NL.

Most prior work using neuroimaging methods to examine changes

in network topology in TLE have focused on whole-brain networks.

However, findings from a range of investigative approaches provide

initial evidence that network distortions within the MTL itself play a

fundamental role in TLE. For example, rodent models of TLE reveal

aberrant mossy fiber connections from the granule cell layer to the

stratum moleculare of the dentate gyrus (DG); according to the recur-

rent excitation hypothesis, the resulting DG hyperexcitability may

cause seizures (Sharma et al., 2007). Another example is that histopa-

thology of resected tissue in TLE-MTS patients reveals heterogeneous

patterns of atrophy and astrogliosis in the hippocampus and surround-

ing medial temporal regions (Sharma et al., 2007; Wieser, 2004). From

a clinical management standpoint, the extent of resection of various

MTL subregions is directly related to seizure control (Bonilha, Martz,

Glazier, & Edwards, 2012). In fact, 20% of TLE patients with hippo-

campal resection still experience seizures originating from remaining

MTL structures (Wennberg, Arruda, Quesney, & Olivier, 2002). These

findings suggest that the entire MTL subregional network may be

implicated in seizure activity, and that understanding this network

could improve diagnosis and treatment.

In this study, we used 7 Tesla (7T) MRI to probe fine-grained

structure and function within the MTL. Compared to standard clinical

MRI, 7T MRI can produce higher resolution images with higher signal-

to-noise and contrast-to-noise ratios, facilitating visualization and seg-

mentation of small brain structures with exquisite anatomical detail

(Balchandani & Naidich, 2015; van der Kolk, Hendrikse, Zwanenburg,

Visser, & Luijten, 2013). Moreover, since the first 7T MRI scanner was

approved by the U.S. Food and Drug Administration in late 2017,

there is a need to develop tools maximizing the clinical utility of 7T

data as they become more readily available. Building on our previous

analyses of intra-MTL subregional connectivity in healthy adults (Shah

et al., 2018), we employed an automated multi-atlas pipeline on sub-

millimeter 7T T2-weighted MRI to segment MTL subregions in TLE

patients and healthy controls. In addition to subject-specific subre-

gional volumetric analyses, we applied graph theoretical methods to

7T resting-state BOLD-fMRI data to characterize subject-specific

functional MTL subregional networks. We focused on asymmetry-

based metrics, as structural and functional asymmetry indices have

previously been used to aid in seizure lateralization (Cook, Fish,

Shorvon, Straughan, & Stevens, 1992; Davis et al., 2015; Goffin et al.,

2010; Jokeit, Okujava, & Woermann, 2001; Pereira et al., 2010; Ver

Hoef et al., 2013; Ver Hoef, Williams, Kennedy, Szaflarski, & Knowlton,

2013), and are robust to confounds such as age and gender (Farid

et al., 2012; Li, Ga, Huo, Li, & Gao, 2007). We hypothesized that

asymmetry-based metrics would reveal distinct patterns of abnormali-

ties in the TLE-NL and TLE-MTS patients. Our preliminary findings pro-

vide insight into MTL functional connectivity in TLE, particularly

in cases in which standard clinical MRI is unremarkable.

2 | METHODS

2.1 | Subjects

We recruited 29 medically refractory patients with suspected TLE

undergoing pre-surgical evaluation. To minimize heterogeneity in this

diverse patient population, we excluded subjects with the following

characteristics: neocortical rather than mesial temporal onset, dual

pathology, extra-temporal lesions, bilateral disease or ambiguous

laterality, neoplasms, and other neurological co-morbidities. Seizure

laterality, mesial temporal origin, and lesional status were determined
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via a combination of MRI and positron emission tomography (PET)

imaging, scalp EEG, intracranial EEG, seizure semiology, and epileptol-

ogists' clinical notes, and confirmed by an epileptologist for this study

(author K.D.). Our final data set consisted of 13 patients with unilat-

eral drug-resistant TLE, including nine TLE-NL and four TLE-MTS

(Table 1), along with 24 healthy control subjects (Shah et al., 2018). All

studies were conducted under an approved Institutional Review

Board protocol of the University of Pennsylvania.

2.2 | Image acquisition

Whole-brain images were acquired using a 7T Siemens whole-

body MRI scanner with a 32-channel phased-array head coil (Nova

Medical, Wilmington, MA, USA). For all subjects, we obtained

0.4 × 0.4 × 1.0 mm3 MTL-tailored 7T T2-weighted structural variable-

flip angle turbo spin-echo MRI (0.4 × 0.4 mm in plane resolution, 1 mm

slice thickness, 224 coronal slices, TR = 3,000 ms, TE = 388 ms, 6.16 ms

echo spacing) with oblique coronal slices oriented perpendicular to the

long axis of the hippocampus and 0.8 × 0.8 × 0.8 mm3 T1-weighted

MPRAGE (176 axial slices, TR = 2,800 ms, TE = 4.4 ms, TI = 1,500 ms,

flip angle = 7�). We also obtained 2 mm3 isotropic resting-state BOLD-

fMRI using a multiband, gradient-echo echoplanar (EPI) sequence (64 axial

slices, TR = 1 s; TE = 23.6 ms, MB factor = 4,420 volumes; 7 min) and a

B0 field-map sequence (TR1 = 1 s, TR2 = 100 ms, TE1 = 3.24 ms,

TE2 = 5.37 ms).

2.3 | MTL segmentation

To generate MTL segmentations for our data set, we utilized a multi-

atlas automated segmentation pipeline derived from the automated

segmentation of hippocampal subfields algorithm (Yushkevich et al.,

2015) as described and validated in our previous work (Shah et al.,

2018). The atlas data set included structural MRI acquired with the

protocol described in Section 2.2, and manual expert segmentations

of 10 subregions per hemisphere as follows: hippocampal subfields

(CA1, CA2, CA3, and DG), hippocampal tail, subiculum, and cortical

regions of the parahippocampal gyrus (entorhinal cortex, parahippo-

campal cortex, and perirhinal cortex divided into BA35 and BA36)

(Figure 1). The hippocampal tail was defined as the most posterior

aspect of the hippocampus in which individual subfields could not be

discriminated; given the heterogeneity of this region across subjects

in terms of size and composition, we excluded it from statistical ana-

lyses. We assessed all subjects' images and automated segmentations

via rigorous visual inspection to ensure segmentation quality

(by authors P.S., L.W.). Representative segmentations from three

subjects—one healthy control, one TLE-NL patient, and one TLE-MTS

patient—are shown in Figure 2. As illustrated, we observed grossly

normal MTL architecture in healthy controls and TLE-NL patients

including clearly visible hippocampal digitations (Henry et al., 2011;

Oppenheim et al., 1998), and distortion of hippocampal architecture

in TLE-MTS.

2.4 | MTL volumetric asymmetry from
structural MRI

For TLE-MTS and TLE-NL, we computed volumetric asymmetry indi-

ces for each MTL subregion. We also computed an asymmetry index

for the hippocampus proper (CA1 + CA2 + CA3 + DG) to facilitate

comparison of our findings to prior literature on whole-hippocampal

volumetry in TLE-MTS, and since this is the region of interest in the

ILAE classification scheme for TLE-MTS (Blümcke et al., 2013). Volu-

metric asymmetry indices were defined as [(Contralateral – Ipsilateral)/

(Contralateral + Ipsilateral)]. To account for the presence of inter-

hemispheric asymmetries in healthy controls, these indices were sub-

sequently normalized via a z-score transformation with respect to the

corresponding distribution of asymmetries in healthy controls

(Bernhardt et al., 2016).

2.5 | MTL functional network asymmetry

We describe our preprocessing pipeline for the resting-state BOLD-

fMRI data in detail in our previous work (Shah et al., 2018). Briefly, we

TABLE 1 Demographic and clinical information for TLE patients included in this study

Laterality Lesional status Gender Age (years) Age at onset (years) Drug trials

Right MTS F 41 5 OXC, PB, PHT, TPX, LTG

Right MTS F 55 13 CBZ, GBP, LEV, TPX

Left NL M 48 5 GBP, LTG, LEV, PB, PHT, PRE, ZNS

Left MTS F 61 1 CBZ, LTG, LCM, LEV, PB, PHT, PRM, TPM, ZNS

Left NL F 47 41 CBZ, CLB, CNZ, LTG, LCS, LEV, OXC, PHT, PRE, TPX, ZNS

Left MTS F 47 Unknown CLB, GBP, LCM, LEV, OXC, PB, PHT, TIG

Left NL F 46 0 PB, OXC, LCM, LTG, LEV, TPX, ZNS

Left NL F 56 25 LEV, OXC, LTG, TPX, ZNS, LCM

Left NL M 39 36 LEV, LTG, LZP, ZNS

Right NL M 36 5 PB, CBZ, VPA, CZP, LTG, LEV

Left NL F 32 29 LTG, TPX, ZNS, LEV, OXC

Left NL F 37 15 GBP, TPX, LEV, LCM

Left NL F 45 24 LTG, ZNS

Legend: VPA = valproic acid, ZNS = zonisamide, OXC = oxcarbazepine, CBZ = carbamazepine, CLZ = clonezepam, CZP = clorezepate, LTG = lamotrigine, TPX =
topiramate, LEV = leviteracetam, GBP = gabapentin, PB = phenobarbital, PHT = phenytoin, LZP = lorazepam, LCM = lacosamide, PRE = pregabalin.
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applied EPI distortion correction using B0 maps, six-parameter rigid

body motion correction (Friston, Frith, Frackowiak, & Turner, 1995),

coregistration and resampling of the fMRI data to the high-resolution

structural MRI space (Kang, Yund, Herron, & Woods, 2007), band-pass

filtering to 0.008–0.08 Hz, linear regression to factor out effects of

global, mean white matter and mean cerebrospinal fluid signals (Van

Dijk et al., 2010), as well as 12-parameter motion regression (Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012; Van Dijk, Sabuncu, &

Buckner, 2012). All subjects experienced minimal head motion

(<1 mm translation and <0.5� rotation in any direction) at all times

during acquisition. To construct functional connectivity matrices for

each subject, we calculated the Pearson correlation coefficient

between the average residual time-series signals for all pairs of MTL

subregions (Zalesky, Fornito, & Bullmore, 2012). We subsequently

thresholded these matrices to remove negative weights (Rubinov &

Sporns, 2010) and applied a Fisher r-z transform for variance stabiliza-

tion (Fisher, 1921). In these networks, the MTL subregions served as

network nodes, while the strength of correlation between subregions

served as network edges.

Next, we computed three local network metrics that have proven

particularly useful in describing important dimensions of variation in

brain networks—connectivity strength (ki), clustering coefficient (ci),

and efficiency (ei)—largely due to their sensitivity to the markers of

small-world architecture (Achard & Bullmore, 2007; Bassett &

Bullmore, 2016; Bullmore & Sporns, 2009; Lynall et al., 2010; Onnela,

Saramäki, Kertész, & Kaski, 2005; van den Heuvel & Sporns, 2013).

FIGURE 1 MTL segmentation from randomly chosen healthy adult

rendered in 3D: (a) superior and (b) anterior 3D views. DG = dentate

gyrus, SUB = subiculum, ERC = entorhinal cortex,
BA35 + BA36 = Brodmann areas 35 & 36 (perirhinal cortex), and
PHC = parahippocampal cortex

FIGURE 2 T2-weighted MRI coronal slices and corresponding automated segmentations overlaid onto left MTL in a representative (a) healthy

control subject, (b) left-sided TLE-NL subject, and (c) left-sided TLE-MTS subject. High-resolution 7T MRI reveals grossly normal MTL architecture
in controls and TLE-NL patients including clearly visible hippocampal digitations, and distortion of hippocampal architecture in TLE-MTS
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Moreover, these metrics represent different ways of measuring any

given node's level of centrality, or “hubness,” within the network.

Although there is no one agreed upon definition of a network hub

(Zuo et al., 2012), it has been suggested that aggregating multiple net-

work metrics can robustly characterize node hubness (van den

Heuvel & Sporns, 2013). Modifying our previously described global

network asymmetry metric (Shah et al., 2017) to allow for subregion-

level analysis and to account for directionality in asymmetry, we

defined a lateralized functional network asymmetry index, li, as

the mean of the asymmetry indices for each subregion i across the

three chosen network metrics. Formally,

l ið Þ =
1
3

ki + N=2 − ki
ki + N=2 + ki

� �
+

ci + N=2 − ci
ci + N=2 + ci

� �
+

ei + N=2 − ei
ei + N=2 + ei

� �� �
, ð1Þ

where the first N/2 nodes correspond to the MTL subregions contra-

lateral to seizure onset and the last N/2 nodes correspond to the anal-

ogous MTL subregions ipsilateral to seizure onset. Like a standard

asymmetry index, li can range from −1 to 1. Intuitively, the variable li

served as a simple summary metric of local intra-MTL functional net-

work asymmetry. In addition to computing this summary metric of

functional network asymmetry, we also computed subregional asym-

metries for each individual functional network metric (strength, clus-

tering coefficiency, and local efficiency) to ensure robustness of our

findings.

To assess network asymmetry across the entire hippocampus, we

also computed the hippocampal functional network asymmetry as the

weighted average of li over all subregions in the hippocampus proper

(CA1, CA2, CA3, and DG), weighed by each region's bilateral volume.

As in the volumetric asymmetry analysis, we normalized these indices

via a z-score transformation with respect to the corresponding distri-

bution of asymmetries in healthy controls.

2.6 | Statistical analysis

Statistical analyses were performed using nonparametric permutation-

based tests (10,000 iterations) to avoid assumptions about the under-

lying distributions of the data. Analyses were performed separately

for each asymmetry modality (volumetric and functional) and were

applied to the z-transformed asymmetry indices which were normal-

ized to the healthy control group. To characterize the difference in

MTL subregional asymmetry between TLE-MTS and TLE-NL, we per-

formed two-sample, two-tailed permutation tests for each subregion,

using difference in group means as the test statistic. Additionally,

within the regions for which there was a difference between TLE-

MTS and TLE-NL, we performed one-sample two-tailed permutation

tests to determine if the subregional asymmetries were significantly

different from zero.

2.7 | Software

Image processing, network analyses, and statistical analyses were

implemented using SPM (Friston et al., 1994), FSL (Smith et al., 2004),

ANTs (Avants et al., 2011), the Brain Connectivity Toolbox (Rubinov &

Sporns, 2010), and custom python scripts available publicly at https://

github.com/shahpreya/MTLnet.

3 | RESULTS

3.1 | MTL volumetric asymmetry

At the group level, we observed significant differences in volumetric

asymmetries between TLE-MTS and TLE-NL in CA1, CA2, CA3, DG,

and subiculum, as well as the whole hippocampus (p < .05, two-tailed

two-sample permutation test) (Figure 3(a), Supporting Information

Table 1). Laterality analysis indicated that there was significant posi-

tive asymmetry (contralateral volume > ipsilateral volume) within all

of these regions in TLE-MTS and within the whole hippocampus in

TLE-NL (two-tailed one-sample permutation test) (Figure 3(a)).

At the individual patient level, we found that four of four TLE-

MTS patients presented with positive volumetric asymmetries (contra-

lateral > ipsilateral) in all hippocampal subfields (CA1, CA2, CA3, and

DG), subiculum, and BA35; three of those four patients also had posi-

tive volumetric asymmetries in the entorhinal cortex. The patterns of

subregional asymmetry in individual TLE-NL patients were much more

heterogeneous, with only two of nine patients exhibiting positive

asymmetries (contralateral > ipsilateral) across all hippocampal sub-

fields, though seven of nine patients exhibited whole-hippocampal

positive asymmetry. Subject-level volumetric asymmetry heat maps

(Supporting Information Figure S1a) and group-averaged volumetric

asymmetries mapped onto MTL segmentations (Figure 3(b)) illustrate

these patterns.

3.2 | MTL functional network asymmetry

At the group level, we found significant differences in functional net-

work asymmetries between TLE-MTS and TLE-NL in CA1 and the

whole hippocampus (p < .05, two-tailed two-sample permutation test)

(Figure 4(a), Supporting Information Table S1). The directionality and

significance of this finding persisted using the metrics of strength

asymmetry, clustering coefficient asymmetry, and local efficiency

asymmetry (Supporting Information Figure S2). Laterality analysis indi-

cated that within the CA1 and the whole hippocampus, there was sig-

nificant positive asymmetry (contralateral > ipsilateral) in TLE-MTS

and significant negative asymmetry (ipsilateral > contralateral) in TLE-

NL (p < .05, two-tailed one-sample permutation test) (Figure 4(a)).

The directionality and trends of these findings also persisted using the

metrics of strength asymmetry, clustering coefficient asymmetry, and

local efficiency asymmetry (Supporting Information Figure S2).

At the individual patient level, we found that four of four TLE-

MTS patients presented with positive functional network asymmetry

values (contralateral > ipsilateral) in the CA1 and BA35 subregions,

whereas patterns of functional network asymmetry in the remaining

MTL subregions were heterogeneous. In contrast, we found that eight

of nine TLE-NL patients exhibited negative functional network asym-

metry values (ipsilateral > contralateral) in the whole hippocampus,

with the majority of TLE-NL patients also having negative functional

network asymmetry in individual subfields CA1 (7/9), CA2 (8/9), CA3

(8/9), and DG (7/9). Subject-level functional asymmetry heat maps

(Supporting Information Figure S1b) and group-averaged functional

network asymmetries mapped onto MTL segmentations (Figure 4(b))

illustrate these patterns.
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4 | DISCUSSION

The goal of this study was to develop an approach to explore MTL

subregional asymmetry-based metrics in TLE, and characterize differ-

ences between TLE-NL and TLE-MTS. First, we performed automated

segmentation of MTL subregions on 7T MRI data from TLE-MTS

and TLE-NL patients as well as healthy controls. Next, we computed

subregional volumetric asymmetries from T2-weighted MRI and

functional network asymmetries from resting-state BOLD-fMRI.

We found that patterns of volumetric and functional asymmetry

were different between the two TLE subtypes. Notably, we found

distinct patterns of functional asymmetry in the CA1 subfield and

whole hippocampus, with TLE-NL patients exhibiting negative

(ipsilateral > contralateral) functional network asymmetry, and TLE-

MTS patients exhibiting positive (contralateral > ipsilateral) func-

tional network asymmetry.

4.1 | Asymmetry-based findings

We found that TLE-MTS patients exhibited positive volumetric asym-

metry (i.e., contralateral volume was greater than ipsilateral) in

the whole hippocampus and multiple hippocampal subfields. These

findings are consistent with our knowledge that MTS is associated

with histological patterns of neuronal loss and gliosis which can be

limited to Ammon's horn (CA subfields of the hippocampus) or extend

to the DG and extra-hippocampal MTL subregions (Thom, 2014;

Wieser, 2004). Additionally, our findings corroborate a hippocampal

subfield neuroimaging study at 4T that revealed ipsilateral atrophy in

CA1, CA2, and combined CA3&DG subfields in TLE-MTS, but did not

reveal significant atrophy in TLE-NL (Mueller et al., 2009). Our findings

are also consistent with another recent study at 3T that revealed vol-

ume reduction in multiple hippocampal subfields in TLE-MTS but not

TLE-NL (Sone et al., 2016). Consistency with prior studies validates our

approach of applying automated segmentation algorithms to 7T struc-

tural MRI to characterize expected patterns of asymmetry in TLE-MTS.

We also observed that TLE-MTS patients exhibited statistically

significant positive functional network asymmetry in the CA1 subre-

gion. This observation corroborates prior resting-state fMRI findings

of reduced ipsilateral functional connectivity within the MTL in TLE

studies in which all (Pereira et al., 2010) or most (Bettus et al., 2008;

Bettus et al., 2010) patients had MTS. In contrast, TLE-NL patients

exhibited significant negative functional network asymmetry

(i.e., ipsilateral connectivity was greater than contralateral) in the

whole hippocampus and in CA1, and this trend was present for all hip-

pocampal subfields. Although further work is necessary to provide a

mechanistic explanation for this observation, studies using intracranial

recordings indicate that epilepsy is characterized by increased

FIGURE 3 MTL volumetric asymmetry analyses. (a) Normalized volumetric asymmetries in TLE-NL and TLE-MTS patients (*p < .05) in

hippocampal ROIs. (b) Visualization of mean volumetric asymmetries overlaid onto MTL segmentation for each TLE group

FIGURE 4 MTL functional asymmetry analyses. (a) Normalized functional asymmetries in TLE-NL and TLE-MTS patients (*p < .05) in

hippocampal ROIs. (b) Visualization of mean functional asymmetries overlaid onto MTL segmentation for each TLE group
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synchronization in the epileptic zone both ictally (Bartolomei et al.,

2004; Bragin, Engel, Wilson, Fried, & Buzsáki, 1999; Engel, 2001;

Uhlhaas & Singer, 2006) and interictally (Bettus et al., 2008; Schevon

et al., 2007). Therefore, an increase in ipsilateral functional network

connectivity relative to the contralateral side could indicate greater

synchronization of the seizure onset region with the remaining MTL

network, even during the interictal state. The localization of functional

network asymmetry to CA1, along with our previous finding that CA1

is a functional hub within the MTL network (Shah et al., 2018), sup-

port the hypothesis that CA1 is a key player in the TLE-NL network

and could be a target for ablation or stimulation.

The different patterns of asymmetry in TLE-MTS and TLE-NL

indicate that these two TLE subtypes have distinct phenotypes. Our

findings add to a growing body of literature suggesting that MRI-

negative TLE may have a different pathophysiology than TLE-MTS

and is not simply an early variant (Bernhardt et al., 2016a; Liu et al.,

2012; Muhlhofer et al., 2017; Reyes et al., 2016; Vaughan et al.,

2016). These differences suggest that future studies would do well to

separate these subtypes in group-level analyses to further character-

ize their differences and avoid confounding effects.

4.2 | Methodological considerations and limitations

Our findings in TLE-MTS patients should be interpreted with caveats. First,

since MTS is associated with loss of normal internal hippocampal architec-

ture due to neuronal cell loss and gliosis (Elkommos et al., 2016; Jackson,

Berkovic, Duncan, & Connelly, 1993), as well as hyperintensity on

T2-weighted images (Engel, 2001; Kuzniecky & Jackson, 2005), segmenta-

tion boundaries in TLE-MTS patients are inherently less reliable than in

subjects with normal MTLs. These observations suggest that the volumes

computed from these patients have an intrinsically higher degree of uncer-

tainty. A related consequence is that segmented subregions include gliotic

and sclerotic tissue, which may be functionally inactive. Such altered tissue

functionality could explain decreased ipsilateral functional hippocampal

connectivity in MTS patients. Since the presence of distorted MTL archi-

tecture is a fundamental property of MTS, it cannot be avoided. However,

we did visually inspect all subjects' segmentations to confirm that they

were consistent with our knowledge of MTL architecture. Moreover, since

our segmentations are automated, they are free from human bias.

It is important to note that the differences in functional connectiv-

ity between TLE groups and controls were subtle, and that our sample

size was modest. Therefore, our findings should be corroborated on

larger data sets across multiple institutions, scanners, and protocols.

We also note that there is considerable heterogeneity inherent to epi-

lepsy patient data, including potential confounding factors such as dura-

tion of epilepsy, number of drug trials, cause of epilepsy, laterality,

etiology, and seizure frequency. Although we attempted to minimize

confounds by limiting our data set to subjects with clearly defined

mesial temporal origin and no extra-mesial abnormalities, we emphasize

that our study is exploratory. Nonetheless, our approach paves the way

for future studies in larger cohorts and in combination with other

modalities. Additionally, our methodology can be applied to other disor-

ders in which hippocampal asymmetry has been implicated, such as

schizophrenia (Fukuzako et al., 1997), Alzheimer's disease (Shi, Liu,

Zhou, Yu, & Jiang, 2009), and semantic dementia (La Joie et al., 2013).

4.3 | Conclusions

This study presents preliminary data characterizing intra-MTL struc-

tural and functional asymmetry in TLE and has important implications

for our understanding of MTL topology in both normal and pathologi-

cal human brains. We hope these results will encourage further

research on the utility of MTL subregional asymmetry features for

precise localization of abnormalities in TLE, allowing for more targeted

therapies. Although further validation in larger data sets is needed

along with comparison to other modalities, our study highlights the

promise of combining high-resolution imaging, automated segmenta-

tion techniques, and network analytical approaches in order to

uncover brain network abnormalities that were previously invisible.
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