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Abstract

Diagnosis of prostate cancer is based on histological evaluation of tumor architecture using a 

system known as the ‘Gleason score’. This diagnostic paradigm, while the standard of care, is 

time-consuming, shows intra-observer variability and provides no information about the altered 

metabolic pathways, which result in altered tissue architecture. Characterization of the molecular 

composition of prostate cancer and how it changes with respect to the Gleason score (GS) could 

enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset 

and progression. In this work, we present mass spectrometry imaging for identification and 

mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with 

GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which 

correlated with increasing GS. Interestingly, these changes were identified in both regions of high 

tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive 

of pre-cancerous metabolomic changes. A total of 31 lipids, including several 

phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols and 

cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting 

they may be markers of prostate cancer aggression. Results obtained through mass spectrometry 

imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for 

potential use as a clinical tool to support image-guided prostate biopsy.
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Introduction

Prostate cancer is the second most commonly diagnosed cancer in men worldwide (1,2). The 

standard of care for diagnosis of suspected prostate cancer involves systematic biopsy and 

histopathological evaluation. Systematic biopsy, however, misses 21–28% of prostate 

cancers and under-grades cancers in 14–17% of cases (3). Multiparametric MR (mpMR) can 

detect suspicious lesions and clinically significant cancers [i.e. GS pattern 4 and/or tumors 

>0.5 cm3 (4,5)]. Image-guided biopsy methods such as in bore magnetic resonance imaging 

(MRI) guided transperineal (6) or MRI/ultrasound fusion have led to improved sensitivity of 

diagnosis by biopsy (7). All biopsy cores are labelled individually and taken to pathology for 

histopathology-based diagnosis. There is currently no rapid diagnostic tool available, such as 

the “frozen section” often used during surgery. All prostate biopsy cores are processed and 

analyzed after the biopsy session, with final results typically available within several days to 

one week after the procedure, by which time there is little opportunity to re-sample. The 

microscopic examination of tissue is time-consuming and the GS scoring system used to 

classify prostate cancer has received much discussion and revision (1,8–11). GS comprises 

two numbers, the most common followed by the second most common architectural pattern. 

For example, a GS 7 could comprise (3+4) or (4+3). The former is known to be associated 

with indolent disease as most of the pattern is of GS 3, whereas the latter is likely to be more 

aggressive as most of the pattern is of the more aggressive GS 4 (1). The new GS grade 

grouping classification introduced in 2016, attempts to alleviate confusion with the 

traditional scoring system, however, shortcomings in GS classification remain. A less 

subjective method would improve diagnosis and risk stratification, and could identify 

features contributing to aggressive prostate cancer.

There is a growing body of literature suggesting that metabolic changes occur in prostate 

cancer development and could be used as a measure of disease aggression and grade (12–

18). Metabolic reprogramming is a hallmark of prostate cancer (11). Changes in genetic 

regulators of lipid metabolism result in upregulation of de novo lipid biosynthesis and fatty 

acid β-oxidation (12). Such changes are thought to facilitate tumor development by helping 

to meet the energy demand for increased cell proliferation and growth. Prostate cancer cells 

are dependent on fatty acid oxidation (FAO) for ATP production and subsequent 

proliferation and survival (19). The carnitine cycle regulates fatty acid mitochondrial import 

and export, and several components of the carnitine system are upregulated in prostate 

cancer and ensure mitochondrial fatty acid supply (20). It has been suggested that an 

increased capacity for de novo lipid synthesis and fatty acid oxidation provides a permissive 

growth environment within the peripheral zone of the prostate, within which ~70% of 

prostate cancers occur (12,21). Spatially resolved measurement of metabolomic signatures 

from prostate tissue could therefore enable a better understanding of how these processes 

occur in situ, how tumor cells interact with surrounding apparently non-neoplastic tissue, 
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and how differences in molecular content of different regions of tissue might support tumor 

proliferation.

Mass spectrometry imaging (MSI) is a particularly attractive tool for the investigation of 

spatial differences in molecular tissue content. MSI can be applied as an untargeted 

technique which is capable of detecting large numbers of molecules simultaneously, without 

labelling or a priori knowledge. In addition, MSI preserves the spatial distribution of 

molecules in tissue, and numerous methods have been developed for metabolomic/lipidomic 

tissue imaging (22,23). A number of MSI and metabolomic studies have proposed 

biomarkers of prostate cancer. Higher levels of linolenic acid and α-linolenic acid in ex vivo 

tissue were found to be correlated with aggressive disease (24). Lysophosphatidylcholine 

was found with decreased intensity in cancer compared with benign tissue by matrix assisted 

laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) and lower 

levels seem to correlate with disease recurrence post radical prostatectomy (25). Recently, 

the ratio of glucose to citrate was reported as a biomarker of cancer; lower levels of citrate 

were observed in prostate cancer possibly due to higher levels of citrate oxidation as a result 

of downregulation of zinc uptake transporters (26). Whilst these studies focused on markers 

for the discrimination of tumor and normal tissues, little is known about metabolic changes 

that may be associated with different grades of prostate cancer. As a heterogeneous and 

multi-focal cancer, prostate cancer stands to particularly benefit from analysis by a spatially 

resolved technique; MSI has the potential to discriminate between tumor regions of different 

grade within the same tissue specimen, and characterize histologically benign tissue adjacent 

to the tumor to assess field cancerization (27–29).

In this report we demonstrate how a high resolution mass spectrometry imaging method can 

be used to characterize metabolic signatures associated with different GS, and a second, 

lower resolution technique could be used as a rapid diagnostic tool. We demonstrate that a 

gradient of metabolic changes, which increase with respect to cancer grade, can be detected 

in prostate tissue. Comparable data were acquired using two different faster mass 

spectrometry methods, MALDI time-of-flight (TOF) MSI and liquid extraction surface 

analysis (LESA) MS, which could enable clinical translation of this method, for use 

alongside histopathological analysis in interventional radiology pipelines to improve speed 

and accuracy of prostate cancer diagnosis.

Materials and Methods

Human tissue specimens from radical prostatectomy

Human prostate tissue specimens were obtained from the DF/HCC (Gelb Center) repository 

at the Dana-Farber Cancer Institute and analyzed under Institutional Review Board-approved 

research protocol. The study was performed on tissue-banked, OCT-embedded frozen tissue 

specimens from patients undergoing radical prostatectomy. Specimens (n = 10) were used 

for detailed MSI including: 2 × GS 6, 3 × GS (3+4) = 7, 3 × GS (4+3) = 7, and 2 × GS 9. 

Three specimens were used for MALDI TOF MSI, including 1 × GS 6, 1 × GS (4+3) = 7 

and 1 × GS (4+5) = 9. Analysis using ambient liquid extraction surface analysis (LESA) 

mass spectrometry was performed on an additional 4 samples including: 2 × GS (3+3) = 7, 1 
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× GS (3+4) and 1 × GS (4+3) = 7. Full staging information for each of these specimens is 

included in Supplementary Table 1.

Matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance 
mass spectrometry imaging (MALDI FT ICR MSI)

MALDI FT ICR MSI was performed on 12 μm thick sections of fresh frozen tissue mounted 

on microscopy glass slides. Sections were coated with α-CHCA (5 mg/mL in 70/30 

methanol/water with 0.1% trifluoroacetic acid V/V) matrix using a TM-Sprayer (HTX 

Imaging, Carrboro, NC), with 4 passes of matrix at a flow rate of 0.17 mL/min, a track speed 

of 1200 mm/min, a track spacing of 2 mm and a nebulizing gas temperature of 75°C. MSI 

was performed on a 9.4 Tesla SolariX XR FT ICR MS (Bruker Daltonics, Billerica, MA), 

externally calibrated in electrospray ionization (ESI) positive ion mode using a tuning mix 

solution (Agilent Technologies, Santa Clara, CA). Images were acquired in positive ion 

mode (m/z 50 – 3000) at a lateral spatial resolution (i.e. pixel size) of 120 μm. The transient 

length was 0.4194 seconds and the resulting mass resolving power was ~80,000 at m/z 798. 

Online calibration was used to internally calibrate mass spectra from every location using 

the signal from heme (m/z 616.1776).

MALDI time-of-flight (TOF) MSI

MALDI TOF MSI was performed using a Rapiflex MALDI Tissuetyper (Bruker Daltonics, 

Bremen, Germany). Tissue specimens were prepared under the same conditions as for 

MALDI FT ICR MSI. Spectra were acquired in positive ion mode, calibrated with a peptide 

standard mixture, in the m/z range 100 – 1500. The pixel size was 120 μm to match images 

acquired by MALDI FT ICR MSI. The laser frequency used was 1000 Hz, and a total of 100 

shots was acquired per pixel.

MALDI MSI data analysis

MALDI FT ICR MSI data were analyzed using SCiLS Lab software (Bruker Daltonics, 

Bremen, Germany). Data from each tissue section were combined into a single SCiLS file. 

Data were reduced and binned to a peak list of 481 discrete m/z values. Bisecting k-means 

clustering was used to provide segmented images showing regions of spectral similarity. 

Regions of interest were defined based on the resulting segmentation map and receiver 

operating characteristic (ROC) analysis was performed to find ions which discriminated 

between GS 7 and GS 9 tumor and normal tissue. m/z values with an AUC > 0.75 were 

searched against publicly available databases (Lipid Maps and the Human Metabolome 

Database (HMDB)) (30,31). Ions were preliminarily identified if assignments were 

associated with Δppm <2. MALDI TOF MSI data were also analyzed using SCiLS lab 

software.

H&E staining and histopathological annotation

After MALDI MSI, samples were washed to remove the matrix (70/30 ethanol/water for 2 

minutes, then 95/5 ethanol/water for 1 minute) and stained with H&E, as described in (32). 

H&E stained sections (both those analyzed by MALDI and un-sampled serial sections) were 

examined by 3 expert pathologists to obtain a consensus GS and to delineate 
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histopathologically relevant regions. H&E microscopy images and MALDI ion images were 

co-registered using SCiLS Lab software to transfer delineated tumor regions onto the 

MALDI MSI data.

LESA MS data acquisition

A further set of samples was analyzed by LESA (Advion, Ithaca, NY) coupled to an amaZon 

Speed ion trap mass spectrometer (Bruker Daltonics, Billerica, MA). Sampling locations 

were selected with spacing of 1 mm in x and y dimensions to ensure there was no overlap 

between points. The maximum number of sampling locations was selected per sample 

region (between 4 and 13). Tumor/normal regions were determined by an expert pathologist 

on a serial H&E section. In this work, we used an extraction/ESI solvent system previously 

reported for lipid analysis (15/35/50 chloroform/methanol/isopropanol, with 7.5 mM 

ammonium acetate) (33). Solvent (1 μL) was aspirated from a reservoir into a conductive 

pipette tip. The tip relocated to a pre-defined position above the sample and dispensed 0.7 

μL solvent onto the surface. The liquid microjunction was maintained for 5 seconds to allow 

soluble analytes to dissolve before 1 μL was re-aspirated and injected into the mass 

spectrometer via a nano-electrospray ionization source, with a gas pressure of 0.3 psi and a 

tip voltage of 1.4 kV. Mass spectra were acquired for 1 minute, in the positive ion mode, 

with an m/z range of 100 – 1100 and the ion trap target tuned to m/z 700.

LESA MS data analysis

MS data were analyzed in DataAnalysis (ver. 4.0) (Bruker Daltonics, Billerica, MA). Partial 

least squares discriminant analysis (PLSDA) was performed using Metaboanalyst (34). MS 

data were normalized to the mean and autoscaling was implemented.

Results

Comparison of histopathology and MSI of prostate cancer tissue

MALDI MSI was performed on a specimen of human prostate obtained from a radical 

prostatectomy. The tissue section comprised one quadrant of the whole prostate and 

measured ~2.2 × 1.5 cm. MALDI 9.4 Tesla FT ICR MSI was performed with a pixel size of 

120×120 μm, resulting in an imaging dataset containing 17,466 pixels, where each pixel 

contained a full mass spectrum with a mass range from m/z 50–3000. After MALDI MSI 

analysis, the matrix was washed from the slide and the tissue was H&E stained. This slide, 

alongside an H&E stained (non-MALDI sampled) serial section, was evaluated by an expert 

pathologist and assigned as a GS (5+4) = 9 and further annotated to delineate histological 

regions, Fig. 1. Segmentation via bisecting k-means clustering (k = 16) was performed on 

the MALDI MSI dataset and a segmentation map produced whereby pixels are color 

labelled depending on spectral similarity. This segmentation map was compared to the H&E 

image and different histological features were compared and correlated with different color 

clusters within the segmented image, Fig. 1. Pixels from the tumor region were assigned to 

yellow and light green clusters. The red cluster correlated with regions of atrophic glandular 

prostate (atrophy). Regions of normal prostate correlated with the bright green cluster. The 

dark blue/dark green cluster correlated with the capsule. The purple/pink clusters correlated 

with extraprostatic adipose tissue. The region marked with an outline in purple should be 
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noted because it was assigned the yellow/green clusters but did not contain any tumor cells. 

One histology-based feature noted in this region was the presence of siderophages and 

foamy cells, which indicate resolving inflammation.

MALDI MSI of various Gleason scores of prostate cancer

MALDI MSI was performed on 5 human prostate tissue specimens from radical 

prostatectomy. Tissue specimens with various GS were included in the study in order to 

investigate how metabolites/lipids might change with respect to disease state, see (Fig. 2). 

Microscopic images of the H&E stained sections were examined by a pathologist and 

regions of high tumor cell content were outlined, (Fig. 3a). Microscopic images were 

registered with the MALDI MSI dataset and regions of interest (ROIs) corresponding to the 

tumor were superimposed upon the ion images. A data processing workflow was applied to 

the whole MS dataset; this generated a segmentation map (with k=8) whereby each pixel is 

assigned to a different color cluster which allowed regions of spectral difference and 

similarity to be assessed, see (Fig. 2b). Of note, the color assignment to a given cluster is 

arbitrary and therefore not comparable from one analysis to the other, even though the 

underlying spectral signature of a given cluster might compare. Overall, different clusters or 

groups of clusters seem to be specific to tissue with different GS; the GS 6 tissue section is 

assigned to the light blue cluster, the GS (3+4) = 7 samples are mostly yellow and dark blue, 

the GS (4+3) = 7 is mostly orange and yellow, and the GS 9 sample, which contains regions 

of (5+4) and (3+4), is assigned a combination of orange, yellow and dark blue. The region of 

GS (3+4) in the overall GS 9 sample is assigned to the yellow and dark blue clusters in 

agreement with the GS (3+4) samples above, and the GS (5+4) region is assigned to the 

orange cluster. This suggests that there are MALDI MS features which change with respect 

to the GS score of the tissue, not only in tumor regions but also in normal tissue surrounding 

the tumor. The pale orange cluster correlates well with tumor ROIs in the GS (4+3) = 7 and 

GS 9 samples (Fig. 2b), shown in black). This suggests that there are metabolomic 

differences between (3+4) and (4+3) tissues that can be detected by MALDI MS. The red 

cluster, which describes the outer edge of each sample, is likely due to contamination with 

the embedding medium (OCT); this cluster correlates well with synthetic polymer ions that 

were detected near the tissue’s edge.

Discriminative m/z between GS (3+4) = 7 and GS (4+3) = 7 prostate cancer

Further analysis was performed on the data to investigate which species were contributing to 

mass spectral differences between tumor, normal and different GS of tissue. Receiver 

operating characteristic (ROC) analysis was applied to the peak list of 481 m/z values, to 

rank them in order of how well they classified between GS (3+4) = 7 and GS (4+3) = 7. 

ROC analysis provides a measure of the sensitivity and specificity of the intensity of an ion 

to distinguish or classify between groups. Ions with area under the curve (AUC) > 0.75 by 

ROC analysis were considered good classifiers which were detected with increased intensity 

in the higher GS. The AUC threshold of 0.75 produced a list of 56 m/z values which were 

considered potential markers of higher grade disease. The 56 ions were searched against the 

Lipid Maps database and identities were proposed. Assignments were accepted if Δppm < 2, 

resulting in a list of 31 lipids, (Table 1). A number of lipid species from the same lipid class 

were detected: four phosphatidylcholines (PC), four phosphatidic acids (PA), eight 
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phosphatidylserines (PS), four cardiolipins (CL) and five phosphatidylinositols (PI) were 

identified in this list. An example ion image of one of each of these lipid classes is displayed 

in (Fig. 4). None of these ions was completely specific to tumor tissue with all of them 

detected to some degree in the histologically normal tissue. CL were detected with higher 

intensity in tumor regions of GS (3+4) = 7 (with cribriform cell pattern a presumed marker 

of aggressive disease) and higher GS, and with increased intensity in the normal tissue in GS 

(4+3) = 7 and GS 9 (Fig. 4a). PC were detected with increased intensity in all tumor regions 

regardless of GS (Fig. 4b). PS, PA and ceramide 1-phosphates (CerP) were not specifically 

increased in tumor regions, but had higher intensity over the whole tissue section in GS 

(4+3) = 7 and higher (Fig. 4c-e). PIs were detected with good specificity in the tumor 

regions of higher GS (Fig. 4f).

MALDI MSI of validation set of prostate cancer specimens

A further series of 5 prostate tissue specimens was analyzed by MALDI FT ICR MSI as a 

validation set, in order to establish whether similar trends were detected in a separate 

dataset. The same range of GS was included in both MALDI MSI analyses, see (Fig. 5). 

MALDI ion images of selected m/z based on the previous analysis demonstrate that broadly 

similar distributions were observed in the second dataset, (Fig. 5c-f). Segmentation of the 

data demonstrated that the GS 9 sample was assigned different clusters than all the other 

specimens of GS 7 and lower. More variation between specimens was observed in 

comparison to the previous dataset, with no single cluster apparent for all tumor regions. 

Little differentiation between GS 4+3 and lower was observed via segmentation of the entire 

dataset, possibly due to the large degree of variation between the GS 9 tumor regions and all 

other tissue regions/specimens. Segmentation of a smaller subset of one GS 6 and one GS 

(4+3) specimen demonstrated different clusters for the two different grade tumors and 

differences between normal tissue, (Supplementary Fig. S1).

Long chain acylcarnitines are detected with high intensity in GS 9 prostate cancer tissue

Two different long chain acylcarnitines, palmitoylcarnitine and stearoylcarnitine, were 

detected with high intensity in GS 9 tumors, in one specimen of GS (4+3) = 7 and one small 

region of one specimen of GS (3+4), (Supplementary Fig. S2). Acylcarnitines are involved 

in the mitochondrial import of long chain fatty acids for β-oxidation. Fatty acid oxidation is 

known to be upregulated in prostate cancer, a process which requires the activation of 

acylcarnitines. The accumulation of long chain acylcarnitines in high GS prostate cancer 

tissue has not, to our knowledge, been previously reported. This finding is further supported 

by previous observations of increased plasma concentrations of acylcarnitine in prostate 

cancer patients (11,35).

MALDI TOF MSI of prostate cancer specimens

A rapid MALDI TOF MSI method was used to acquire data from a further three prostate 

specimens, comprising GS 6, GS (4+3) = 7 (90% Gleason 4) and GS (4+5) = 9, see Figure 6. 

H&E images and corresponding segmentation maps of MALDI TOF data are displayed in 

Figure 6a &b. The segmentation map demonstrated that spectral differences between tumor 

and non-tumor prostate tissue were detected as well as differences between the GS. The 

yellow/orange cluster correlates well with tumor regions in the GS 7 and GS 9 specimens, 
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but the cluster was not found in the GS 6 specimen. Palmitoylcarnitine was detected with 

highest intensity in the GS (4+3) specimen, see Figure 6c. This specimen contained a large 

tumor and 90% of the tumor was described by Gleason 4 type tissue architectures. This 

observation correlates well with MALDI FT ICR data. Other example ion images are 

displayed in Figure 6d-f, and generally correlate with high resolution data. Ions with m/z 
782.7 and 749.1 were tentatively assigned as PC(34:1) and PS(32:2) based on the higher 

resolution FT ICR data, and demonstrate the same trends. Overall the data agree well, and 

although the differences observed between GS in the MALDI TOF MSI data are less 

obvious and there are fewer ions which discriminate between these specimens, this is to be 

expected of data which is lower in spectral resolution. Data were acquired with the same 

pixel dimensions as the FT ICR MSI data acquired in Figures 1, 3, 4 and 5, however, the 

shorter analysis time would enable higher spatial resolution data to be acquired in a more 

feasible time-frame. To acquire FT ICR data from a single tissue specimen took between 2–

6 hours, depending on the specimen size, and the resulting data was on the order of 100s of 

Gigabytes. By contrast, MALDI TOF MSI data acquired by the method described here took 

~30 minutes to acquire per section, and the resulting data was <10 Gigabytes. In a clinical 

setting it may not be necessary to acquire imaging data from a full tissue specimen, or at 

high spatial resolution. It is also possible that our MALDI TOF MSI method could be 

further optimized to increase speed and translational capability.

LESA MS analysis of various GS prostate cancer

A LESA MS method was developed to investigate whether a faster technique could be used 

to acquire similar information to MALDI MSI, but with minimal sample preparation and 

increased speed/throughput for potential in situ diagnosis of prostate cancer. Such a method 

could be used alongside traditional histopathology to guide clinical decision making, in 

workflows similar to those reported by this group previously (36–39). Four tissue specimens 

(2 × GS 6, 1 × GS (3+4) and 1 × GS (4+3)) were used for LESA MS. Regions of high tumor 

cell content and normal prostate tissue were marked on an H&E stained serial section and 

these locations were transferred to the frozen section, (Supplementary Fig. S3). The slide 

was scanned and sampling locations were selected within tumor and normal regions of each 

sample (a total of 54 locations were analyzed over 4 tissue specimens). Spectra from normal 

and tumor tissue of all GS were qualitatively similar, with most ions detected in the 

phospholipid mass range being detected with similar intensity across all samples. As such, 

multivariate analysis (PLSDA) was applied to see whether subtle differences in spectra 

could be used to classify samples as tumor or normal (Supplementary Fig. S4). A scores plot 

of components 1 and 2 show separate clusters corresponding to data points from normal and 

tumor samples, suggesting that metabolomic changes in tissue are detected by the LESA MS 

method and there is potential for the method as a classification tool.

Discussion

A high spectral resolution MALDI FT ICR MSI method for the analysis of lipids and 

metabolites in prostate tissue was developed. This method was applied to a small number of 

human prostate samples to facilitate an in-depth investigation of lipidomic changes with 

respect to prostate cancer disease grade. A total of 31 ions were identified as good classifiers 
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(AUC > 0.75) of GS (4+3) and higher. When plotted as ion images, few of these ions were 

found to be specific to tumorous tissue, with most being detected to some extent in the 

histologically benign tissue. A gradient of changes in lipid intensity were associated with 

GS, occurring in both tumor and normal tissue. Whether these changes in histologically 

benign cells occurred before the tumor grew, or as a result of tumor cells changing the local 

chemical microenvironment will be a question for further study. The term ‘field 

cancerization’, describes molecular alterations occurring in histologically normal tissue 

adjacent to tumors and has been previously described in prostate cancer and others (27–

29,40–42). A number of proteins including MIC-1 and PDGF-A have been found with 

elevated expression in tumor-adjacent tissues and it has been proposed that these secreted 

factors could promote tumorigenesis leading to tumor multifocality (40,43). Our observation 

of increasing lipid intensity in normal prostate tissue adjacent to tumor may indicate that 

metabolic alterations occur not just in tumor cells, but in surrounding tissue as well. The 

non-tumor specific nature of these molecules requires a multivariate statistical classification 

approach, which could enable classification based on spectral ‘fingerprints’ and subtle 

differences in the proportions of different species.

Several phospholipids were increased in the tumor regions, consistent with increased cellular 

membrane content, and previously published findings (12). Four cardiolipins were detected 

and identified as classifiers of high GS. Cardiolipins are an important component of the 

mitochondrial membrane, and play roles in oxidative phosphorylation and apoptosis (44,45). 

Cardiolipins were also detected in a recent metabolomics study of cancerous prostate tissue 

using MALDI FT ICR MSI, and regions of high intensity were found to correlate well with 

tumor regions of tissue (45). This previous report did not include the GS of the 3 tissue 

specimens analyzed, so we cannot compare whether similar intensity trends were observed, 

however, it is interesting that the same lipid class was identified by two independent studies. 

Phosphatidylserines, phosphatidic acids and ceramide 1-phosphates (8, 3 and 4 species of 

each respectively) were also found to be good classifiers of tumor grade, however less 

contrast between tumor and normal was observed. This suggests that non tumor-specific 

metabolic changes occur in the cells of tissues containing tumors of higher GS. Cardiolipins 

were detected with higher intensity in the tumor regions of GS (3+4) = 7 with cribriform cell 

pattern and higher grade tumors. The highest intensity was detected from tumor regions of 

GS 9 tissue, and raises the possibility that these molecules may be indicative of aggressive 

disease. Phosphatidylinositols were detected with high intensity in GS (4+3) and 9. High 

intensity of phosphatidylinositols in prostate tumor tissue was also observed by Wang et 
al(45), providing supporting evidence that our results are consistent with previous findings, 

but extend the scope of such findings to take into account the GS. Overall we find that our 

study was in agreement with other studies seeking to characterize lipid metabolism in 

prostate cancer, however, we now extend these findings to consider the Gleason score, and 

suggest that lipidomic changes may be associated with the cancer grade. This demonstrates a 

significant step towards using mass spectrometry to not only distinguish between tumor and 

normal tissue, but to differentiating between different histopathological features to provide 

clinically relevant information.

Our results suggest that metabolic profiles of prostate tissue can be linked to their GS, not 

only through analysis of tumor regions but also due to differences in normal tissue. This has 
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implications for in situ diagnosis of prostate biopsy tissue. Sampling error during systematic 

prostate biopsy, the standard of care for prostate cancer diagnosis, results in missed or 

inaccurate diagnoses. Our results warrant further study to fully characterize metabolic and 

lipidomic signatures of prostate tissue, both healthy and diseased, to assess the utility of 

mass spectrometry analysis as an in situ diagnostic tool.

Our rapid MSI and ambient MS methods were performed on seven further prostate tissue 

specimens. MALDI TOF MSI data were acquired in a shorter time-frame and demonstrated 

similarities with MALDI FT ICR MSI data. We investigated the use of an ambient method in 

which we were able to obtain mass spectra from tissue without any chemical sample 

preparation and the entire sampling and data acquisition process was performed in less than 

2 minutes. Further method optimization may be required to fully distinguish between 

different GS and different tumor architecture, however, it was possible to classify tissue as 

normal or tumor based on PLSDA of LESA MS data. These more rapid mass spectrometry 

based analyses demonstrate the feasibility of clinical translation of the method. This study 

therefore provides a proof-of-concept that changes in cell metabolism occur in prostate 

cancer which can be correlated with GS and that MALDI TOF MSI or LESA MS could be 

used to provide fast tissue classification for in situ diagnosis. Validation of these results on a 

larger set of samples, as well as a comparison between fresh and frozen specimens will be 

performed in future work.

Conclusions

In this small but novel pilot study, we developed a high resolution MALDI MSI method for 

metabolomic/lipidomic analysis and imaging of prostate tissue. We have identified several 

classes of lipids which can discriminate between low and high GS. The strength of this study 

lies in the detailed analysis of a small number of carefully curated and highly annotated 

specimens which provide evidence that metabolic changes occur in prostate tissue during 

prostate cancer progression. These findings are supported by other metabolic studies which 

have found many of the same classes of lipid to be detected with higher intensity in tumor 

vs. normal tissue. Here, we extend those findings to demonstrate that these metabolites also 

increase in abundance with respect to GS. The gradient of metabolic changes detected from 

prostate tissue suggests that it will be possible to classify and diagnose prostate cancer based 

on mass spectral signatures. The changes detected in histologically normal prostate tissue 

are of particular relevance for in situ diagnosis of prostate cancer by needle biopsy, where 

foci of disease are often missed. Data obtained via rapid MALDI TOF MSI and ambient 

LESA MS demonstrate promise for clinical translation. Future validation in a larger set of 

patient specimens in conjunction with development of computational data analyses for 

classification purposes will next assess the clinical utility of the proposed method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implication Statement: In this study we suggest that metabolomic differences between 

prostate cancers with different Gleason scores can be detected by mass spectrometry 

imaging.
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Fig. 1. 
Comparison of histopathology and segmentation map produced by clustering of MALDI 

MSI data (k=16) from a section of prostate tissue with Gleason score 9. The tumor region is 

delineated in black, different colored clusters correlate with different histopathological 

features in the tissue, as indicated by the key inset.
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Fig. 2. 
Schematic description of experimental design and specimens used for each study; MALDI 

FT ICR MSI tissue imaging was used to characterize lipids and metabolites in tumor and 

normal tissues and assess differences between different Gleason scores (GS) in a test set of 

five specimens. MALDI FT ICR MSI was performed on a second set of five specimens 

consisting of the same range of GS for validation. The method was translated using two 

faster MS based techniques, MALDI TOF MSI and LESA MS. These were performed on a 

further three and four specimens respectively, to validate the findings by MALDI FT ICR 
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MSI and demonstrate the feasibility of a more rapid, MS method to characterize normal and 

tumor tissue in situ.

Randall et al. Page 18

Mol Cancer Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
H&E and segmented MALDI FT ICR MS images of prostate cancer tissue, a) H&E images 

of tissue post-MALDI MS imaging, Gleason score (GS) is indicated inset and tumor regions 

as determined by histopathological evaluation are marked in black, the tissue boundary 

(marking the area selected for MALDI MSI) is marked in red, b) segmentation maps 

produced via bisecting k-means clustering (k = 8) of MALDI MSI data, tumor regions were 

transferred from registered H&E images.
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Fig. 4. 
MALDI MS ion images of varying Gleason scores (GS) of prostate cancer tissue, regions 

outlined in black correspond with tumor regions annotated by an expert pathologist, a) m/z 
780.5483 which is identified as cardiolipin CL(80:9) (Δppm = 0.18), b) m/z 782.5655 which 

is identified as phosphatidylcholine PC(34:1) (Δppm = 1.93), c) m/z 745.4755 which is 

identified as phosphatidylserine PS(32:4) (Δppm = 1.05), d) m/z 697.4776 which is 

identified as phosphatidic acid PA(34:1) (Δppm = 0.43), e) m/z 776.5922 which is identified 
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as ceramide 1-phosphate CerP(44:3) (Δppm = 0.82), f) m/z 943.5682 which is identified as 

phosphatidylinositol PI(44:9) (Δppm = 1.34).
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Fig. 5. 
MALDI FT ICR MSI of validation set of prostate tissue specimens, a) H&E image of tissue 

section post-MALDI analysis with tumor region, as determined by an expert pathologist, 

outlined in black, b) segmentation map of MALDI MSI data produced via k-means 

clustering (k = 8), c) m/z 780.5483 which is identified as cardiolipin CL(80:9) (Δppm = 

0.18), d) m/z 697.4776 which is identified as phosphatidic acid PA(34:1) (Δppm = 0.43), e) 

m/z 782.5655 which is identified as phosphatidylcholine PC(34:1) (Δppm = 1.93), f) m/z 
943.5682 which is identified as phosphatidylinositol PI(44:9) (Δppm = 1.34).
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Fig. 6. 
MALDI TOF MSI of three prostate tissue specimens with Gleason score (GS) indicated 

inset, a) H&E image of serial tissue section with tumor region, as determined by an expert 

pathologist, outlined in black, b) segmentation map of MALDI MSI data produced via k-

means clustering (k = 12), c) m/z 400.5 which is assigned as palmitoylcarnitine, d) m/z 
782.7 which is assigned as PC(34:1), e) m/z 704.3, an unidentified ion which exhibits lower 

intensity in the tumor and f) m/z 749.1 which is assigned as PS(32:2).
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Table 1.

Classifying m/z values between segmented tumor regions of Gleason scores (GS): GS (3+4) = 7 and GS (4+3) 

= 7; only ions with ROC curve AUC > 0.75 were considered for further identification. m/z were searched 

against Lipid Maps database and assignments were proposed, assignments were accepted if Δppm < 2.

m/zmeas AUC (ROC curve) P-value (t-test) Assignment m/zcalc Proposed formula Ion Δppm

672.42175 0.896465 <0.001 PE(28:1(OH)) 672.4211 C33H64NO9PNa [M+Na]+ 0.97

756.55066 0.884178 <0.001 PC(32:0) 756.5514 C40H80NO8PNa [M+Na]+ −0.98

725.5567 0.875336 <0.001 SM(d34:1) 725.5568 C39H79N2O6PNa [M+Na]+ −0.14

697.4776 0.842421 <0.001 PA(34:1) 697.4779 C37H71O8PNa [M+Na]+ −0.43

776.59216 0.836056 <0.001 CerP(d44:3) 776.5928 C44H84NO6PNa [M+Na]+ −0.82

942.62207 0.831284 <0.001 PS(48:9) 942.6219 C54H89NO10P [M+H]+ 0.18

721.47803 0.826778 <0.001 PA(36:3) 721.4779 C39H71O8PNa [M+Na]+ 0.18

780.54834 0.824187 <0.001 CL(80:9) 780.5482 C89H158O17P2 [M+2H]2+ 0.18

943.56824 0.821017 <0.001 PI(44:9) 943.5695 C53H84O12P [M+H-H2O]+ −1.34

969.58246 0.818404 <0.001 PI(O-42:6) 969.5803 C51H89O12P [M+2Na-H]+ 2.23

745.47552 0.816761 <0.001 PS(32:4) 745.4763 C38H70N2O10P [M+NH4]+ −1.05

723.49335 0.816391 <0.001 PA(36:2) 745.4755 C39H73O8PNa [M+Na]+ −0.21

778.60876 0.813485 <0.001 CerP(d44:2) 778.6085 C44H86NO6PNa [M+Na]+ 0.33

945.5838 0.812709 <0.001 PI(P-42:6) 945.5827 C51H87O12PNa [M+Na]+ 1.16

995.59589 0.804375 <0.001 PI(P-44:6) 995.596 C53H91O12P [M+2Na-H]+ −0.11

783.56787 0.803694 <0.001 CL(76:0) 783.5692 C85H166O17P2Na2 [M+2Na]2+ −1.70

749.50769 0.802757 <0.001 PS(32:2) 749.5076 C38H74N2O10P [M+NH4]+ 0.12

666.48358 0.802267 <0.001 CerP(d36:2) 666.4833 C36H70NO6PNa [M+Na]+ 0.42

781.5531 0.799709 <0.001 CL(76:2) 781.5536 C85H162O17P2Na2 [M+2Na]2+ −0.64

782.56549 0.799189 <0.001 PC(34:1) 782.567 C42H82NO8PNa [M+Na]+ −1.93

747.49188 0.798069 <0.001 PS(32:3) 747.4919 C38H72N2O10P [M+NH4]+ −0.03

613.34918 0.787268 <0.001 LPG(26:6) 613.35 C32H54O9P [M+H]+ −1.34

973.60712 0.774293 <0.001 PA(54:11) 973.6083 C57H91O8PK [M+K]+ −1.21

804.54663 0.77272 <0.001 LacCer(d30:2) 804.5468 C42H78NO13 [M+H]+ −0.21

999.68384 0.77175 <0.001 MIPC(m38:1) 999.6856 C50H100N2O15P [M+NH4]+ −1.76

998.68329 0.765729 <0.001 PS(50:6) 998.6845 C56H98NO10PNa [M+Na]+ 1.19

734.56921 0.762519 <0.001 PC(32:0) 734.5694 C40H81NO8P [M+H]+ −0.26

970.65326 0.759785 <0.001 PS(50:9) 970.6532 C56H93NO10P [M+H]+ 0.06

914.59161 0.757626 <0.001 PS(46:9) 914.5906 C52H85NO10P [M+H]+ 1.10

915.59595 0.756136 <0.001 PI(40:4) 915.5957 C49H88O13P [M+H]+ 0.27

806.56427 0.753874 <0.001 CL(84:11) 806.5638 C93H162O17P2 [M+2H]2+ 0.58
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