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Abstract

Lower grade gliomas are invasive brain tumors that are difficult to completely resect 

neurosurgically. They often recur following resection and progress, resulting in death. Although 

previous studies have shown that specific germline variants increase the risk of tumor formation, 

no previous study has screened many germline variants to identify variants predictive of survival in 

glioma patients. In this study, we present an approach to identify the small fraction of prognostic 

germline variants from the pool of over four million variants that we variant called in The Cancer 

Genome Atlas whole exome sequencing and RNA sequencing datasets. We identified two 

germline variants that are predictive of poor patient outcomes by Cox regression, controlling for 

eleven covariates. rs61757955 is a germline variant found in the 3’ UTR of GRB2 associated with 

increased KRAS signaling, CIC mutations, and 1p/19q co-deletion. rs34988193 is a germline 

variant found in the tumor suppressor gene ANKDD1a that causes an amino acid change from 

lysine to glutamate. This variant was found to be predictive of poor prognosis in two independent 

lower grade glioma datasets and is predicted to be within the top 0.06% of deleterious mutations 

across the human genome. The wild type residue is conserved in all 22 other species with a 

homologous protein.

Implications: This is the first study presenting an approach to screening many germline variants 

to identify variants predictive of survival and our application of this methodology revealed the 

germline variants rs61757955 and rs34988193 as being predictive of survival in lower grade 

glioma patients.
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Introduction

Grade II and grade III (low grade) gliomas are primary brain tumors that are derived from 

glial cells and include astrocytomas and oligodendrogliomas. They are most commonly 

found in the cerebral hemispheres. They are highly invasive and therefore difficult to 

completely resect neurosurgically without significant patient morbidity. Following surgery, 

patients are typically treated with chemotherapy and radiation, though these tumors typically 

recur or progress to grade IV gliomas and are fatal.1 The median survival following lower 

grade glioma diagnosis is around 7 years.2

While the 2007 World Health Organization’s (WHO) classification of central nervous 

system neoplasms differentiated between neoplasms primarily based on histological 

features, the updated 2016 WHO classification system now utilizes both molecular and 

histological parameters.1 Isocitrate dehydrogenase mutation (IDH) status, 1p/19q co-

deletion status, telomerase reverse transcriptase (TERT) promoter mutation status, MGMT 
promoter methylation, TP53 mutation status, and ATRX mutation status may be used to 

molecularly characterize gliomas.1,3 The availability of genomic data from patient glioma 

samples from groups such as The Cancer Genome Atlas (TCGA), the Chinese Glioma 

Genome Atlas (CGGA), and the Ivy Glioblastoma Atlas Project has substantially 

contributed to our understanding of these tumors.4,5

Many studies have utilized these datasets to identify gene expression signatures, microRNA 

expression patterns, somatic mutation status, and imaging characteristics that are predictive 

of survival in lower grade gliomas.6–8 While studies have shown that germline mutations can 

increase an individual’s susceptibility for specific cancers,9–12 including a recent study that 

identified 853 pathogenic or likely pathogenic germline variants found in 8% of 10,389 

cancer patients,13 no study has comprehensively screened all of the germline variants in a 

given cancer type to discover the prognostic variants in that cancer type. Although germline 

mutations have been shown to be prognostic in breast cancer14 and medulloblastoma9 in 

genes that have been well-characterized in the context of these cancers, these variants were 

not identified using an unbiased approach that screened a large number of germline variants. 

Identifying prognostic germline variants is challenging due to the limited effect size of 

germline variants, the large number of germline variants, and confounding clinical factors 

that may be associated with germline variants. Here we present a novel methodology for 

identifying prognostic germline variants and report two germline variants that we have found 

to be associated with survival in lower grade glioma patients.

Methods

Glioma Datasets

491whole exome sequenced normal blood samples (WXS normal), 503 whole exome 

sequenced tumor samples (WXS tumor), and 501 RNA sequenced tumor samples (RNA 

tumor) from TCGA lower grade glioma4 patients available on the Cancer Genomics Cloud 

(CGC)15 platform were used as part of this analysis. The clinical information was 

downloaded directly from the TCGA data portal using the GenomicDataCommons (https://

bioconductor.org/packages/release/bioc/html/GenomicDataCommons.html) R package 
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available through Bioconductor. Additional molecular characteristics about these TCGA 

patients were acquired by downloading the supplement from Ceccarelli et. al.16 The raw 

sequencing data from the Chinese Glioma Genome Atlas patients was downloaded using 

accession number SRP027383 from the Sequence Read Archive. Clinical information for 

these patients was downloaded directly from the project’s website (http://www.cgga.org.cn/).

Variant Calling

Variant calling was performed on the TCGA lower grade glioma whole exome sequenced 

normal blood samples (WXS normal), whole-exome sequenced tumor samples (WXS 

tumor), and RNA sequenced tumor samples (RNA tumor) using VarDict17 on CGC. The 

VarDict settings were set at default except for requiring mapping quality greater than 30, 

base quality greater than 25, a minimum of 3 variant reads, minimum allele frequency of 

5%, and the removal of duplicate reads. We compiled a list of all of the unique variants and 

ran ‘samtools18 depth’ on all sequencing files requiring a mapping quality greater than 30. 

We determined the status of each variant in each patient from the three datasets (WXS 

normal sample, WXS tumor sample, and RNA tumor sample). The variant status at positions 

with fewer than ten reads for a given patient was changed to unknown. We used the WXS 

tumor samples to insert variant calls into the WXS normal samples at positions at which a 

variant status was listed as unknown in the WXS normal samples. If the variant status was 

still missing in a given patient, we then used the RNA tumor sample to insert variant calls 

into the combined WXS variant call set, allowing us to create the combined set of variant 

calls.

The same program parameters and approach were used to variant call and process the 

CGGA RNA sequencing dataset. All computation on the CGGA dataset was performed 

locally and not on CGC.

Quality Control

We used annovar19 to determine the allele frequencies of the variants called by VarDict as 

listed in gnomAD (http://gnomad.broadinstitute.org/). We calculated the allele frequency of 

the variants in our study using the following formula:

2 ∗ Number o f Minor Allele Homozygotes + Number o f Heterozygotes
2 ∗ Total Number o f Patients

The R package GGally (https://cran.r-project.org/web/packages/GGally/index.html) was 

used to calculate the correlation between the four variant call sets and to display their 

correlations with each other. Only variants with an allele frequency of greater than 5% in 

gnomAD and found in 15 or more of the TCGA lower grade glioma patients were tested for 

an association with survival by Cox regression.

Because we used the WXS tumor and RNA tumor samples to fill in missing variant calls, we 

evaluated whether somatic mutations were affecting the validity of our results. We first 

determined the percentage of variants called in the WXS tumor sample that were somatic 

mutations. To do this, we downloaded the set of somatic mutations generated by the TCGA 

Research Network.20 We then calculated the number of somatic mutations called in each 
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patient in this variant call set and divided that number by the total number of variants called 

in that patient’s WXS normal sample. To assess whether somatic mutations were affecting 

the integrity of our results, we counted the number of times that a somatic mutation called 

by the TCGA Research Network overlapped with the set of germline variants that we were 

testing for an association with survival.

Since we used the RNA tumor sample to fill in missing variant calls, we evaluated whether 

RNA editing was having a significant impact on our analysis. To do this, we downloaded the 

set of over 2.5 million known RNA editing sites from a rigorously annotated database of 

RNA editing sites, RADAR.21 We counted the number of times that the germline variants 

that we were testing for an association with survival overlapped with any of the known 2.5 

million RNA editing sites.

Principal Component Analysis

In order to calculate principal components that could separate patients on the basis of race, 

we used PLINK22 to create a pruned set of germline variants to avoid bias from variants in 

linkage disequilibrium. Pruning was performed using a window size of 50 variants and a 

variance inflation factor of 2. These variants were used to calculate principal components 

using base R.

Cox Regression and Receiver Operator Characteristic Curves

Lasso in the R package glmnet23 was run on 17 covariates (Table 1). Information about 

patient age, gender, tumor location, grade, treatment site, and TP53 mutation status was 

acquired from the TCGA data portal, while data for patient somatic mutation count, percent 

aneuploidy, TERT expression, IDH mutation status, 1p/19q co-deletion status, MGMT 

promoter methylation status, and chromosome 7 gain with chromosome 10 loss status was 

acquired from Ceccarelli et. al.16 The principal components were calculated as described 

above. 11 of these 17 covariates were selected for inclusion in the final model for survival 

prediction. The R packages survival24 and survminer25 were used to run Cox regression and 

create Kaplan-Meier curves. For each minor allele, we our model tested whether the minor 

allele was associated with a difference in survival outcomes with respect to the reference 

allele. False discovery rate correction was performed through Bonferroni correction.

Receiver operator characteristic (ROC) curves were created and evaluated using the 

survivalROC (https://cran.r-project.org/web/packages/survivalROC/survivalROC.pdf) and 

pROC (https://cran.r-project.org/web/packages/pROC/pROC.pdf) R packages. In order to 

test whether rs61757955 significantly improves the survival model consisting of the eleven 

covariates selected by Lasso, we compared the two ROC curves using the bootstrap method 

with 1000 iterations. We also used this bootstrapping approach to determine whether 

ANKDD1a expression levels, GRB2 expression levels, rs61757955, and rs34988193 

together improve the survival model with respect to the eleven covariates selected by Lasso.
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RNA-Sequencing Data Processing

We downloaded the HTSeq FPKM quantification files for each patient from the Genomic 

Data Commons data portal. We only used gene quantification files from primary tumor 

samples as part of this analysis. Replicate samples from a single patient were averaged.

Variant Correlation to Covariates and Somatic Mutations

In order to test for associations between the germline variants and genomic and histological 

tumor characteristics, we divided patients based on their germline variant status. We used the 

Wilcoxon rank-sum test to test for significant differences in each of the continuous variables 

between patients with and without a given variant. We used Fisher’s exact test to test for 

differences in each of the discrete variables using a similar approach. Somatic mutation calls 

were downloaded from Ellrott et. al.20

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) of mRNA changes associated with rs61757955 and 

rs34988193 was performed by dividing the patients into two groups for each variant based 

on whether or not they had the reference allele at the position of the variant. For each 

germline variant, we calculated the log fold change for all genes expressed greater than one 

fragment per kilobase per million mapped reads (FPKM) between patients with the variant 

and without the variant. For each gene, fold change was calculated by dividing the median 

expression of the gene in patients with the variant by the median expression of the gene in 

patients without the variant. We used the log fold change to rank the genes from greatest log 

fold change to smallest log fold change. This file was used as input for GSEA.26

Variant Annotation

In order to identify deleterious mutations, we annotated all variants by combined annotation 

dependent depletion (CADD) scores and only analyzed the variants predicted to be within 

the top 0.1% of all deleterious variants (CADD > 30).27 This led us to identify rs34988193 

in ANKDD1a as a potentially deleterious variant predictive of survival. Because rs34988193 

causes an amino acid change from positively charged lysine to negatively charged glutamate, 

we ran a BLASTp (httpps://blast.ncbi.nlm.nih.gov/Blast.cgi) search so that we could 

determine how many species have a protein homologous to ANKDD1a and how consistently 

the wild type lysine residue was conserved. We identified homologous sequences in 22 other 

species. These sequences were aligned using ClustalW in MEGA.28 We also annotated this 

variant with its PhyloP score.29 Because the crystal structure for ANKDD1a was not 

available, we downloaded the predicted model for this protein from Modbase (https://

modbase.compbio.ucsf.edu/modbase-cgi/index.cgi) and calculated the Gribskov score using 

prophecy on EMBOSS.30 We retrieved linked variants from Ensembl using the population of 

Utah residents with Northern and Western European ancestry which is demographically 

similar to the TCGA lower grade glioma patient population.
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Results

Identification of High Quality Germline Variants

Our variant calling pipeline is shown in Figure 1. Briefly, we used the variant caller VarDict 

on Cancer Genomics Cloud to identify variants from whole exome sequencing (WXS) and 

RNA sequencing samples in about 500 lower grade glioma patients. In total, we found 

4,453,701 unique variants. We used ‘samtools depth’ to determine the sequencing depth at 

each of these variants for each patient and changed the variant status to ‘unknown’ for 

patients with sequencing coverage less than 10 reads at a given position. We created a set of 

combined variant calls by using the WXS and RNA tumor samples to fill in unknown values 

in the whole exome sequenced normal samples that resulted from having a sequencing 

coverage of less than 10 reads at a given position. This approach increased our sample size 

and enabled us to include many more variants in our analysis than if we had solely used 

variant calls from the whole exome sequenced normal blood samples. Ultimately, this left us 

with four sets of variants – WXS normal, WXS tumor, RNA tumor, and a combined set that 

resulted from merging the other three variant call sets, giving preference to the WXS normal 

and then WXS tumor variant calls. We used the combined variant call set when testing 

variants for an association with survival. We only tested variants found in 15 or more lower 

grade glioma TCGA patients and listed in gnomAD as having an allele frequency of greater 

than 5%.

Tumor Variant Calls are not Significantly Affected by Somatic Mutations or RNA Editing 
After Filtering

Because we used sequencing data from the WXS tumor and RNA tumor samples to fill in 

missing calls in the WXS normal samples, we evaluated our variant calls for contributions 

from somatic mutations and RNA editing. We first showed that the majority of variant calls 

in the tumor sample are germline variant calls. To do this, we counted the number of somatic 

mutations called by the TCGA Research Network’s analysis in each patient and divided that 

number by the number of variants that we called in the WXS normal sample.20 The median 

number of somatic mutations called per patient was 39. The median number of variants 

called in the WXS normal sample was 95,794. We therefore estimated that over 99.9% of 

variants called in the WXS tumor sample consisted of germline variants and that the 

percentage of somatic mutations in the WXS tumor sample across all patients was quite 

small (Figure S1). Because somatic mutations rarely occur at the same position, we 

suspected that the number of somatic mutations included in our study was extremely small 

since we limited our analysis to variants found in 15 or more of the lower grade glioma 

patients and found in gnomAD with an allele frequency of greater than 5%. Indeed, only one 

of the 196,022 variants that we tested overlapped with a somatic mutation. This somatic 

mutation occurred in only a single patient (Table S1). Ultimately, we did not find any 

evidence to suggest that somatic mutations were impacting the quality of our analysis.

We next determined whether RNA editing was affecting our analysis by downloading the 2.5 

million known RNA editing sites from the rigorously annotated RNA editing database, 

RADAR.21 Only 215 of the 196,022 variants that we tested were located at a position that 

overlapped with a known RNA editing site. We did not find any of these variants to be 
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prognostic as part of our analysis. We therefore did not find any empirical evidence to 

suggest that somatic mutations or RNA editing impacted our findings (Table S1).

Finally, we established that our four variant call sets (WXS normal, WXS tumor, RNA 

tumor, and combined) were concordant with each other by calculating the allele frequency 

of each variant called in the four sets and demonstrating a very strong correlation between 

all pairs of variants (r > 0.98 for all pairs, Figure S2). To further evaluate the quality of our 

variants calls, we calculated the frequency of each allele and compared it to the frequency of 

these alleles as listed in gnomAD. Our alleles frequencies were well correlated with 

gnomAD (r > 0.93 for all four variant sets, Table S2). As expected, the distribution of allele 

frequencies is negatively skewed as the majority of the identified variants are rare (Figure 

S2). We used the variants from the WXS normal samples to determine the principal 

components. As expected, these principal components effectively separate patients on the 

basis of reported race (Figure S3).

Identification of 271 Prognostic Germline Variants that are Independent of Clinical 
Covariates

In order to identify clinically relevant germline variants, we restricted our analysis to 

variants found in at least 15 patients in the TCGA dataset and found in gnomAD with an 

allele frequency of greater than five percent. This restricted our analysis to 196,022 testable 

variants (Figure 2A). In order to reduce the risk of identifying variants that are prognostic 

because they are confounded by other covariates known to be associated with survival, we 

used the machine learning algorithm Lasso to determine which of 17 covariates should be 

controlled for in our Cox regression model. Lasso regression was useful in the screening of 

these 17 covariates because it penalizes models based on the number of coefficients, 

allowing for the elimination of less predictive coefficients from the model. The algorithm 

selected 10 covariates known to be associated with differences in survival in lower grade 

glioma (age, somatic mutation count, percent aneuploidy, histological subtype of 

astrocytoma, tumor grade, treatment site, IDH mutation status, 1p/19q co-deletion status, 

MGMT promoter methylation status, chromosome 7 gain/chromosome 10 loss status) along 

with the third principal component that we calculated (Table 1). Although the first two 

principal components are more effective in stratifying patients on the basis of race than the 

third principal component, the selection of the third principal component over the first two 

suggests that the third principal component contributes more information to the survival 

model than the first two principal components. This third principal component primarily 

separates African Americans from each other, suggesting that a subpopulation of African 

Americans experienced worse clinical outcomes in this dataset compared to other groups. 

We ran Cox regression on all 196,022 variants one at a time, controlling for these 11 

covariates, to identify germline variants predictive of survival.

We identified 271 germline variants that are predictive of survival (p < 0.001) (Figure 2A). 

As is the case with germline variants in general, the majority of these germline variants are 

found in protein-coding genes (Figure 2B), are located in introns (Figure 2C), and are single 

nucleotide polymorphisms (Figure 2D). Most single nucleotide polymorphisms are 

transitions (Figure 2E).
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The Germline Variant rs61757955 in GRB2 is Associated with Poor Prognosis

We identified two germline variants that are highly predictive of survival after false 

discovery rate correction (FDR < 0.10) (Figure 3A, Table 2A). rs61757955 results in a 

mutation in the 3’ UTR of Growth Factor Receptor Bound Protein 2 (GRB2) and is 

associated with a poor prognosis (p=7.08E-10, hazard ratio(HR)=20.4, Figure 3B, Table 

2A). To determine whether rs61757955 enhances the survival model compared to the eleven 

clinical covariates alone, we calculated a risk score for each patient using a Cox regression 

model with rs61757955 and the other 11 covariates and a risk score using the 11 covariates 

alone. Using these risk scores, we determined the rate at which a patient would be correctly 

labeled as alive or dead at 7 years with a given false positive rate to create a receiver 

operator characteristic curve. The increased area under the curve suggests that rs61757955 

enhances the survival model compared to the eleven clinical covariates alone (p=0.0489, 

Figure 3C). The allele frequency of rs61757955 is close to 0% according to the 1000 

Genomes Project31 in the Chinese population and, as expected, did not show up in the 

Chinese Glioma Genome Atlas. We also found rs28672782, a germline variant found in the 

intron of BRSK2, to be associated with a favorable prognosis, though the testable sample 

size for this variant was small and the maximum follow up for patients with this variant was 

only three years. Therefore, we did not investigate this variant further (Figure S4, Table 2A).

In order to test whether rs61757955 in GRB2 is associated with an increased risk of other 

genomic abnormalities, we separated patients on the basis of this variant to see if there was a 

difference in the incidence of the genomic or histological variables (Table 3). We found this 

variant to be associated with an increased incidence of 1p/19q co-deletions (p=0.038). 

Because 1p/19q co-deletions are frequently seen in Capicua transcriptional repressor (CIC) 

mutated gliomas32 and CIC aberrations are known to be a driver in lower grade glioma 

tumorigenesis,33 we tested whether there was a difference in the incidence of CIC mutations 

in patients with this variant. 38% of patients with this variant had CIC mutated gliomas, 

whereas only 16% of patients without the variant had a CIC mutation (p=0.0168, Table 3). 

Although the incidence of oligodendrogliomas was elevated in patients with the variant 

compared to patients without the variant, consistent with reports from the literature that 

1p/19q co-deletions and CIC mutations are enriched in oligodendrogliomas,32 this difference 

was not statistically significant (p=0.475). Since rs61757955 is in a non-coding region, we 

also tested whether this variant is associated with differences in gene expression. We 

separated patients based on their variant status and calculated the log fold change of each 

gene between patients with the variant and patients without the variant. This data was used 

as the input for gene set enrichment analysis (GSEA). We found rs61757955 to be 

associated with increased KRAS signaling (FDR=0.015) (Figure 3D).

Because we only have whole exome sequencing and RNA sequencing data from The Cancer 

Genome Atlas, we do not know whether the upregulation of genes in the KRAS signaling 

pathway and the increased incidence of CIC mutations and 1p/19q deletions are due to this 

variant or a linked variant in a regulatory region that we would be able to analyze with whole 

genome sequencing data. Therefore, we identified the four other variants that are genetically 

linked to rs61757955 in the European population, the population which is most similar to the 

TCGA lower grade glioma patient population (Table S3). These variants did not pass the 
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criteria to be included within the 196,022 testable variants that we had identified at the 

beginning of this study but could become useful in the future.

rs34988193 is a Deleterious Germline Variant Present in ANKDD1a Associated with Poor 
Outcomes

In order to identify prognostic variants that are predicted to be deleterious due to effects on 

the encoded protein, we repeated our analysis but restricted it to only variants with a 

combined annotation dependent depletion (CADD) score greater than 30 and expression 

greater than one FPKM on average. 81 variants met this criteria. These variants correspond 

to the top 0.1% of deleterious mutations as predicted by this scoring system. We found the 

germline variant rs34988193 in the tumor suppressor gene ANKDD1a to be associated with 

poor prognosis in the TCGA dataset (p=0.001, HR=1.73, FDR < 0.10, Figure 4A-B, Table 

2B). Because this variant is found in both the European and Asian populations, we were able 

to test whether this variant is also predictive of survival in the independent Chinese Glioma 

Genome Atlas (CGGA) dataset. We found this variant to be predictive of survival in the 

CGGA dataset and we found the hazard ratio that we calculated in CGGA to be very similar 

to the hazard ratio calculated in the TCGA dataset (p=0.0743, HR=1.79, Figure 4C, Table 

2B). rs34988193 is not linked with any other variant in the European population. We did not 

find any enriched pathways after performing gene set enrichment analysis and this variant 

was not associated with differences of any of the genomic or histological variables (Table 

S4).

ANKDD1a contains ten ankyrin repeat domains and one death-like domain. This variant 

causes a non-synonymous mutation in the last codon of the ninth ankyrin repeat domain. 

The AAG to GAG codon change results in the incorporation of negatively charged glutamate 

instead of the wild type positively charged lysine residue in the loop between ankyrin repeats 

nine and ten (Figure 4D). This variant has a CADD score of 32 and is therefore predicted to 

be in the top 0.06% of deleterious mutations across the human genome. We performed a 

BLASTp search using the ANKDD1a protein sequence to identify homologous sequences in 

22 other species. We aligned these sequences using ClustalW and found that this lysine 

residue is conserved in all 22 of these species (Figure 4E). The PhyloP score at this position 

is 8.42, suggesting that evolution is occurring much more slowly than expected at this 

residue assuming no selection pressure. We determined the position-specific profile 

Gribskov’s score for a lysine to glutamate amino acid change at this position using the 

multiple sequencing alignment from 23 species to be 15 to 3, suggesting that this variant is 

highly unfavorable.

Combined Model Predicts Survival Better Than Clinical Covariates Alone

As a result of this analysis, we found the germline variants rs61757955 in the 3’ UTR of 

GRB2 and rs34988193 in the protein-coding region of ANKDD1a to be predictive of 

survival in lower grade glioma patients. We constructed a survival model consisting of the 

eleven clinical covariates, rs61757955, rs34988193, GRB2 expression, and ANKDD1a 

expression and generated a receiver operator characteristic curve by using this model to 

categorize patients as alive or dead after seven years of follow up. This combined model is 
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significantly better at predicting survival compared to the eleven clinical covariates alone 

(p=0.0279, Figure 4F).

Discussion

Up until this point, the identification of prognostic features in gliomas has been limited to 

clinical factors, somatic mutations, gene expression changes, and methylation pattern 

changes.6–8 Although many studies have commented on how germline variants could enable 

physicians to better individualize patient care by being able to better predict how a patient 

might respond to chemotherapeutic treatment,34–36 most large-scale studies have focused on 

identifying germline variants that predispose or protect an individual to a disease.13,37 These 

studies have not focused on understanding how germline variants can be used to 

individualize patient care following diagnosis. Identifying prognostic germline variants is 

difficult due to the large number of germline variants, the limited effect of any single 

germline variant, and clinical factors that may confound the effect of germline variants. In 

this study, we have developed a novel method that can be used to identify prognostic 

germline variants and we have used that method to identify two variants that are predictive 

of survival in the TCGA dataset. The germline variant rs61757955 in GRB2 is not found in 

the Asian population and so could not be confirmed in an independent dataset. In contrast, 

the germline variant rs34988193 in ANKDD1a is found in both the European and Asian 

populations, and remarkably, was found to be prognostic with very similar hazard ratios in 

both the TCGA and CGGA datasets.

Studies of germline variants using TCGA datasets typically solely utilize the WXS normal 

blood samples.13,38 One major disadvantage to this approach is that it limits the analysis to 

genes within the capture regions of the whole exome sequencing kits used by the study.4 In 

this study, we combined the information from both the whole exome sequencing and RNA 

sequencing datasets for a given patient to identify germline variants outside of the whole 

exome sequencing capture region. Our approach had the added benefit of providing us with 

more information for a given variant for variants with low sequencing depth in the whole 

exome sequencing datasets. We do not believe that this approach significantly affected the 

accuracy of our variant calls because the allele frequencies calculated from the RNA 

sequencing dataset were well correlated with the allele frequencies from gnomAD and with 

the allele frequencies calculated from the whole exome sequencing datasets. We showed that 

somatic mutations and RNA editing did not affect the integrity of our finding. Only one 

somatic mutation in a single patient overlapped with the 196,022 variants that we tested in 

our analysis and only 215 of the 196,022 variants that we tested overlapped with the 2.5 

million known RNA editing sites. We did not find any of these variants to be predictive of 

survival. Instead, we feel that the increased sample size resulting from the additional 

sequencing coverage greatly outweighs any effect that somatic mutations or RNA editing 

had on our results.

We next needed to devise an approach to using these germline variants in a Cox regression 

model. We first had to decide how to deal with the absence of a variant in the variant call 

file. The variant could be absent because the patient was wild type for that allele or because 

the sequencing depth at that position was too low to make the variant call. We therefore 
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determined the sequencing depth of each variant at each position so that we could exclude 

patients with low sequencing depths for the testing of specific variants. Testing a large 

number of variants increased the probability of a variant being significant solely because it 

was confounded with another significant variable. To avoid this issue, we tested each variant 

while controlling for 11 other covariates that we found to be predictive of survival. In this 

study, we found rs61757955 to be associated with differences in 1p/19q co-deletion status. 

By including the 1p/19q co-deletion as a covariate in our model, we were able to estimate 

the effect of rs61757955 independent from the 1p/19q co-deletion status and the other ten 

covariates.

GRB2 is a signal transduction adaptor protein that plays an oncogenic role in a variety of 

cancers.39–42 GRB2 plays an important role in the RAS/RAF/ERK pathway. Its SH2 domain 

binds the phosphotyrosine of activated growth factor receptor, while its two SH3 domains 

bind the guanine nucleotide exchange factor son of sevenless (SOS) protein, resulting in 

SOS recruitment to the plasma membrane and subsequent RAS activation. RAS binds and 

activates the kinase RAF, which phosphorylates the kinase MEK. MEK phosphorylates and 

activates extracellular signal-regulated kinase (ERK) which transmits the signal to 

transcription factors in the nucleus. This results in cell proliferation.43 We found the variant 

rs61757955 located in the 3’ UTR of GRB2 to be associated with poor prognosis in glioma 

patients. Separating patients on the basis of this variant revealed that the KRAS signaling 

pathway is upregulated in patients with this variant. As described above, GRB2 plays a well-

characterized role in this pathway.43 We also found this variant to be associated with an 

increased incidence of CIC mutations and 1p/19q co-deletions. CIC is a known driver of 

lower grade glioma pathogenesis.33 Mutations in CIC are common in oligodendrogliomas 

and are associated with poor prognosis.4,32 Although patients with rs61757955 variant 

exhibited an elevation in the incidence of oligodendrogliomas which we expected given the 

increased incidence of CIC mutations and 1p/19q co-deletions,32 this difference was not 

statistically significant. It is possible that this germline variant or the four other germline 

variants that it is linked with increase a patient’s risk for oligodendrogliomas with the CIC 
mutation and 1p/19q co-deletion.

In this study, we were only able to study variants in the whole exome or RNA sequencing 

data. Although it is possible that the 3’ UTR of GRB2 has regulatory activity or affects 

GRB2 protein translation efficiency, it is also possible that one of the variants that 

rs61757955 is linked to regulates the KRAS signaling pathway. None of the four linked 

variants are in the protein coding sequence of GRB2 so that if they upregulate RAS activity, 

like the rs61757955, they likely do so by regulating the expression of GRB2. While recent 

large-scale sequencing studies have published patient whole genome sequences,44 this data 

is not yet available for gliomas. We will be able to apply our approach to variants in 

regulatory regions in the future to specifically identify these prognostic variants when whole 

genome sequencing data for gliomas is available. Our inability to further study this variant in 

the CGGA dataset due to this variant being rare in Asian populations is a limitation of this 

study which could be addressed in the future with the availability of additional glioma 

sequencing datasets. This result also suggests that the clinical usefulness of specific 

germline variants is dependent on the frequency of that germline variant in the population.
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ANKDD1a is a tumor suppressor gene that has been shown to inhibit cell autophagy and 

induce apoptosis in glioblastoma multiforme (GBM). It directly interacts with and 

upregulates FIH1, resulting in inhibition of HIF1α activity and decreased HIF1α half-life. 

This induces apoptosis in GBM cell lines in hypoxic microenvironments. Hypermethylation 

of this gene is common in GBM and leads to decreased ANKDD1a expression and increased 

cell proliferation.45 We found the germline variant rs34988193, located at the end of the 

ninth of ten ankyrin repeat domains in this protein, to be associated with a poor prognosis in 

lower grade glioma patients in both the TCGA and CGGA datasets. The hazard ratio 

independently calculated using the two datasets is remarkably similar. The wild type lysine 

residue is conserved in all 22 species with a homologue to ANKDD1a and this position has 

a high PhyloP score. This variant is predicted to be within the top 0.06% of deleterious 

mutations in the human genome by CADD score27 because it causes a change from a 

positively charged lysine residue to a negatively charged glutamic acid residue in the loop of 

this ankyrin repeat. Ankyrin repeats are common domains known for their involvement with 

protein-protein interactions.46,47 Previous studies have suggested that mutations in the loops 

of ankyrin repeats may disrupt protein-protein interactions.48–50 The change from a 

positively to negatively charged amino acid resulting from the germline variant rs34988193 

in the loop of ANKDD1a may disrupt ANKDD1a’s protein interaction partners and could 

explain the poor prognosis associated with this variant seen in two independent datasets. 

Given the amino acid change, further studies involving rs34988193 in ANKDD1a could be 

directed towards experimentally determining whether or not this variant alters ANKDD1a’s 

protein-protein interactions.

rs61757955 in GRB2 and rs34988193 in ANKDD1a could also be used to enhance 

predictions made by survival models clinically, as we found that these variants are 

significant predictors of prognosis even after controlling for eleven covariates. The 

prognostic effect of rs34988193 in ANKDD1a seems to be fairly reliable, as we found that 

this variant had a similar hazard ratio in both the TCGA and CGGA datasets. Our approach 

could be used in the future to identify sets of germline variants that together enhance the 

predictions made by survival models, though the current number of lower grade glioma 

sequencing samples is small relative to the large number of possible combinations of 

germline variants. Focused studies on particular sets of genes or pathways could potentially 

get around this low sample size problem by drastically limiting the number of variants 

studied. We believe that this study provides researchers with an effective approach to 

identifying biologically significant germline variants and provides clinicians with germline 

variants that could enhance currently existing survival models.
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Figure 1. 
A flowchart describing the steps involved in identifying prognostic germline variants.
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Figure 2. 
Prognostic germline variants in the TCGA dataset.

(A) Of the 4.4 million unique variants called in the TCGA dataset, we ran Cox regression on 

the 196,022 germline variants found in gnomAD with an allele frequency greater than 5% 

and found in 15 or more of the TCGA lower grade glioma patients.

(B-E) Similar to the 196,022 germline variants, the 271 prognostic variants are mostly found 

in (B) protein-coding genes, (C) are located in introns, and are (D) single nucleotide 

polymorphisms (SNP). (E) Most single nucleotide polymorphisms cause transitions.
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Figure 3. 
rs61757955 is a highly prognostic germline variant identified in the TCGA dataset.

(A) Manhattan plot showing the p-values resulting from testing each germline variant by 

Cox regression, controlling for the 11 variables in bolded in Table 1.Two variants passed the 

FDR threshold in the TCGA dataset.

(B) A Kaplan-Meier plot depicting the deleterious outcome associated with rs61757955, 

adjusting for the eleven covariates.

(C) Receiver operator characteristic curve at 7 years. rs61757955 increases the area under 

the curve compared to the 11 covariates alone, suggesting that it improves the clinical 

model.

(D) Separation of patients on the basis of whether or not they have this germline variant to 

determine which genes are induced or repressed in patients with rs61757955. Subsequent 

gene set enrichment analysis reveals that patients with this germline variant exhibit 

upregulation of the genes involved with KRAS signaling.
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Figure 4. 
rs34988193 is a prognostic variant predicted to be highly deleterious.

(A) A Manhattan plot with the p-values resulting from testing each germline variant by Cox 

regression, controlling for the eleven covariates in bolded in Table 1. rs34988193 is 

prognostic (FDR<0.10) in the TCGA when restricting the analysis to the top 0.1% most 

deleterious variants by combined annotation dependent depletion (CADD).

(B-C) Kaplan-Meier plots depicting the deleterious outcome associated with rs34988193 in 

the (C) TCGA and (D) CGGA datasets, adjusted for the eleven covariates.

(D) A schematic showing that this variant is located in the ninth ankyrin repeat of 

ANKDD1a. The predicted protein structure of ANKDD1a reveals that this variant leads to 

an amino acid change from lysine to glutamate on the loop of an ankyrin repeat.

(E) Multiple sequence alignment of ANKDD1a in 22 species showing that lysine is 

conserved at this position in all of the species with this protein.

(F) Receiver operator characteristic curves comparing the ability of two survival models to 

label patients as alive or dead after seven years of follow up. The inclusion of rs61757955 

variant status, rs34988193 variant status, GRB2 expression and ANKDD1a expression 
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significantly improves the survival prediction compared to the eleven covariates bolded in 

table 1 alone (p=0.0279).
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Table 1.

List of variables that are known to be associated with differences in survival in lower grade glioma patients. 11 

variables (bolded) were selected by Lasso for inclusion in the survival model. We used these 11 variables as 

covariates in our Cox regression model when testing each germline variant.

Covariate Median (Min-Max) or Number of Patients

Age 41 (14 - 87)

Gender
Female 250

Male 200

Somatic Mutation Count 50 (0 - 12255)

Percent Aneuploidy 11% (5.2E-4% - 95%)

log(TERT Expression) 1.0 (0.0 - 9.1) FPKM

Principle Component 1 (PC1) 0.043 (−0.091 - 0.064)

Principle Component 2 (PC2) −0.017 (−0.23 - 0.17)

Principle Component 3 (PC3) −0.53 (1.34E-4 - 0.33)

Histological Type

Astroctyoma 172

Oligoastrocytoma 113

Oligodendroglioma 165

Tumor Location

Frontal Lobe 265

Temporal Lobe 125

Parietal Lobe 42

Other 18

Grade

G2 212

G3 237

Cannot Be Assessed 1

Treatment Site

Henry Fords Hospital 82

Case Western St. Joes 90

Other 278

IDH Mutant
Wild Type 83

Mutant 367

1p/19q Co-deletion
Absent 303

Present 147

MGMT Promoter Methylation
Unmethylated 80

Methylated 370

Chr 7 gain/Chr 10 loss
Absent 399

Present 51

TP53 Mutant
Absent 232

Present 218
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Table 3.

The association between the germline variant rs61757955 and genomic and histological variables. Patients 

were divided based on whether or not they had the germline variant rs61757955. Patients with the germline 

variant rs61757955 were more likely to have CIC mutated gliomas and the 1p/19q co-deletion

Variable Mean or Percentage
(Wild Type)

Mean or
Percentage
(Mutant)

p-value

CIC Mutated 15.9% 38.1% 0.017

1p/19q Co-deletion 25.2% 47.6% 0.038

Oligodendroglioma 33.7% 42.9% 0.475

Total Somatic Mutation Count 30.9 30.0 0.766

Percent Aneuploidy 15.1% 11.7% 0.524

Astrocytoma 38.1% 42.9% 0.651

Grade 3 53.0% 42.9% 0.497

IDH Mutated 78.1% 85.7% 0.583

1p/19q Co-deletion 25.2% 47.6% 0.038

MGMT Promoter Methylation 77.8% 81.0% 1.000

Chr 7 Gain/Chr 10 Loss 13.0% 9.5% 1.000

Expression of GRB2 (FPKM) 45.7 44.4 0.636
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