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The gene mutated in individuals with Huntington’s disease
(HD) encodes the 348-kDa huntingtin (HTT) protein. Patho-
genic HD CAG-expansion mutations create a polyglutamine
(polyQ) tract at the N terminus of HTT that expands above a
critical threshold of ~35 glutamine residues. The effect of these
HD mutations on HTT is not well understood, in part because it
is difficult to carry out biochemical, biophysical, and structural
studies of this large protein. To facilitate such studies, here we
have generated expression constructs for the scalable produc-
tion of HTT in multiple eukaryotic expression systems. Our set
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of HTT expression clones comprised both N- and C-terminally
FLAG-tagged HTT constructs with polyQ lengths representa-
tive of the general population, HD patients, and juvenile HD
patients, as well as the more extreme polyQ expansions used in
some HD tissue and animal models. Our expression system
yielded milligram quantities of pure recombinant HTT protein,
including many of the previously mapped post-translational
modifications. We characterized both apo and HTT-HTT-as-
sociated protein 40 (HAP40) complex samples produced with
this HD resource, demonstrating that this toolkit can be used to
generate physiologically meaningful HTT complexes. We fur-
ther demonstrate that these resources can produce sufficient
material for protein-intensive experiments, such as small-angle
X-ray scattering, providing biochemical insight into full-length
HTT protein structure. The work outlined and the tools gener-
ated here lay a foundation for further biochemical and struc-
tural work on the HTT protein and for studying its functional
interactions with other biomolecules.

Huntington’s disease (HD)® is a devastating inherited neuro-
degenerative disorder that causes a range of progressive behav-
ioral, cognitive, and physical symptoms. Incidence of HD varies
in different parts of the world, but HD is thought to affect
between 0.42 to 17.2 per 100,000 of the population (1). There
are currently no disease-modifying therapies available for
patients (2). HD is hallmarked by an expansion of a CAG-trinu-
cleotide repeat tract in exon 1 of the HTT gene above a critical
threshold of ~35 CAG triplets (3, 4), translating to a polyglu-
tamine (polyQ) expansion in the extreme N terminus of the
huntingtin (HTT) protein. PolyQ-expanded HT'T is thought to
be responsible for the wide-ranging biochemical dysfunction

¢The abbreviations used are: HD, Huntington’s disease; HTT, huntingtin;
polyQ, polyglutamine; SAXS, small-angle X-ray scattering; SEC-MALS, size-
exclusion chromatography in tandem with multiangle light scattering;
TCEP, tris(2-carboxyethyl)phosphine; IDR, intrinsically disordered region;
PTM, post-translational modification; LIC, ligase-independent cloning;
PSM, peptide spectrum match; MD, molecular dynamics; SES, sparse
ensemble selection; ACN, acetonitrile; DSLS, differential static light
scattering.
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observed in HD models and patients, including proteostasis
network impairment (5), transcription dysregulation (6), mito-
chondrial toxicity (7, 8), cellular energy imbalance (9), synaptic
dysfunction (10), and axonal transport impairment (8).
Although it is thought that HTT is likely a scaffold protein (11,
12), the function of HTT, WT, or polyQ expanded, is still
incompletely understood.

Biochemical investigation of the role of HTT, in either the
WT or the disease state, is often dependent on obtaining large
amounts of pure HTT protein of different polyQ lengths. The
HTT protein is 3144 amino acids long (assuming a polyQ
stretch of 23 residues, NCBI reference sequence NP_002102.4),
a potentially daunting prospect for expression and purification
given its size. A number of groups have published tools and
methods by which full-length HTT might be expressed and
purified from either insect (13—15) or mammalian cells (16).
However, the tools produced and shared with the wider com-
munity are often limited by the number of different polyQ
lengths, the position of an affinity tag, or their tractability for
large-scale production for biochemical studies. To date, the
published literature reporting experiments with purified HTT
protein samples remains limited. Therefore, tools and detailed
methods that will enable biochemical and biophysical studies of
HTT by a larger number of researchers should accelerate our
understanding of the function of this elusive protein.

Toward this end, we have cloned 28 HTT constructs that
allow expression of HT'T protein through transient transfection
of mammalian cells or viral transduction of insect or mamma-
lian cells. Constructs have either N- or C-terminal FLAG tags to
assist in purification and yields of WT and polyQ-expanded
HTT protein using these systems are up to 1 mg/liter of suspen-
sion culture of either insect or mammalian cells. The protein
samples obtained from a simple two-step protocol are highly
pure (>90% purity) and amenable to numerous downstream
analyses and assays. Our constructs permit production of HTT
in complex with the HTT-binding protein HAP40, as well as in
its apo-form, and we have characterized these HTT protein
samples. This includes mapping post-translational modifica-
tions (PTMs) of the proteins derived from both insect and
mammalian cells, revealing similar modification motifs to those
previously reported in the literature (17-19). Both apo and
HTT-HAP40 complex samples are folded, as judged by reason-
able thermal melting transitions of protein samples in solution.
HTT and HTT-HAP40 samples were also assessed for mono-
dispersity using size-exclusion chromatography in tandem with
multiangle light scattering (SEC-MALS). We demonstrate how
using these resources to generate large amounts of purified
HTT protein sample enables protein-intensive experiments
such as SAXS. We analyzed SAXS data for apo HTT samples
and the HAP40 complex, providing initial insight to the com-
plex structure in solution.

Results
Cloning of HTT expression constructs

Ligase-independent cloning (LIC) was used to clone the full-
length HTT gene into the baculovirus transfer vector pPBMDEL
(Fig. 1A), for expression of proteins in insect cells as well as in
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Figure 1. A, pBMDEL vector map. B, 28 HTT expression constructs with differ-
ent polyQ lengths were generated with either N- or C-terminal FLAG tags. C,
FLAG tags are appended to either end of the full-length HTT expression con-
struct (comprising exon1, the N-terminal HEAT domains, the IDR, the Bridge
domain, and the C-terminal HEAT domain) with minimal additional sequence.

mammalian cells. In addition to the sites for LIC, the vector
contains a “stuffer” fragment that includes the SacB gene,
allowing negative selection on 5% (w/v) sucrose, and a trun-
cated VSVG fragment for pseudotyping of the baculovirus. As
described previously for other HTT clones, a 15-bp repetitive
element containing a mix of CAG and CAA codons was used to
encode the polyQ expansion, in an effort to help maintain sta-
bility and integrity of the DNA sequence through various gen-
erations of vector propagation (20).

As an ~10-kb gene with multiple repetitive sequence
elements, HTT is nontrivial to subclone between different vec-
tors. We first generated N- and C-terminally FLAG-tagged
pBMDEL-HTT constructs lacking part of the exon 1 sequence.
Using different polyQ lengths encoding exon 1 PCR-generated
¢DNAs, our LIC-cloning protocol generated a variety of differ-
ent polyQ-encoding HTT constructs due to the error-prone
nature of the recombination step. By sequencing multiple col-
onies, we identified HTT clones with a variety of polyQ lengths
with both N- and C-terminal FLAG tags (Fig. 1B). These entry
vectors serve as valuable reagents to allow future generation of
even more polyQ length HTT constructs. Additionally, by
using a repetitive mix of codons for the polyQ expansion (CAG
CAA CAG CAA CAA),, we expect improved polyQ stability
over generations of plasmid, bacmid, and baculovirus propaga-
tion compared with repetitive CAG codon tracts (20).

The resulting HT'T open reading frames encoded within this
series of constructs have either an N-terminal FLAG-octapep-
tide between the START methionine and the N-terminal
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methionine of the HTT amino acid sequence or have the
FLAG-octapeptide linked to the extreme C terminus of HTT
viaa Gly—Gly—Ser—Gly linker (Fig. 1C). As subtle changes to the
exon 1 amino acid sequence of the HTT protein have been
shown to give rise to changes to biophysical properties of the
protein (21, 22), the C-terminally FLAG-tagged constructs
allow expression of a “clean” exon 1 sequence.

Expression of HTT variants in insect cells or mammalian cells
yields functional proteins

The HTT pBMDEL expression constructs we have devel-
oped allow the expression of HTT protein by three different
methods: baculovirus-mediated expression in insect cells; tran-
sient transfection in mammalian cells; or transduction in mam-
malian cells (Fig. 2). All three methods allow cell growth in
suspension culture permitting facile scaling of the culture vol-
umes and thus scaling of the protein production as needed.
Irrespective of the expression system, HTT protein could be
purified in a two-step protocol, as described previously (14),
from cell lysates in a Tris-salt buffer system comprising first a
FLAG pulldown step and followed by size-exclusion chroma-
tography using a Superose6 resin column (Fig. 2A4). Similar to
the HTT purification efforts of other research groups, multiple
peaks are present in the size-exclusion chromatography profile,
likely indicating the presence of a range of different oligomeric
and/or aggregated states.

Yields of the WT (Q23) purified HT'T protein samples by the
three expression methods can be as high as ~1.6 mg/liter pro-
duction in Sf9 insect cell culture to ~1 mg/liter in transduced
EXPI293F mammalian cells and ~0.4 mg/liter in transiently
transfected EXPI293F mammalian cells when measured after
FLAG pulldown. Comparisons of preparations of HTT Q23
samples with either N- or C-terminal FLAG tag did not show
significant difference in yield. In contrast, comparison of the
yields of purified HTT with different polyQ expansions showed
a trend of decreasing yield with increasing polyQ length. For
example, in insect cells HTT Q42 yielded ~0.5 mg/liter,
whereas Q145 gives yields of <0.1 mg/liter. Longer polyQ
lengths were also generally found to be more variable in yield
between productions. For all constructs in each expression
system, the two-step purification protocol yielded a protein
sample that is >90% pure by Coomassie-stained SDS-PAGE
analysis (Fig. 2B). Samples were analyzed by Western blot-
ting using anti-HTT antibodies that revealed a discrete band
of the expected molecular weight for each sample (Fig. S1).

To assess whether these protein samples were folded, the
C-terminal FLAG-tagged HTT samples of different polyQ
lengths, purified from Sf9 cells, were analyzed by DSLS over a
temperature gradient from 25 to 85 °C to assess thermal stabil-
ity and propensity to aggregate under increasing temperatures.
HTT samples were stable up to ~55 °C with sigmoidal thermal
melting curves reflective of a folded globular protein (Fig. 3A4).
Interestingly, irrespective of polyQ length, the temperature of
aggregation (7,,,) values (35) for all HTT samples were similar
at ~60-63 °C, indicating that the polyQ repeats did not signif-
icantly affect protein thermal stability. This suggests that polyQ
may not be interacting with the folded globular part of the
protein.
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Purification of the HTT-HAP40 complex, previously reported
from an adherent mammalian cell-expression system (23), could
be achieved through a 3:1 viral titer ratio of HTT'>'** Q23 in a
C-terminally FLAG-tagged pPBMDEL expression construct and
HAP40' " in an N-terminally His,-tagged pFBOH-MHL
insect cell expression vector (Fig. 2C). The purification protocol
was modified so that an additional Ni-affinity chromatography
step was included following the FLAG pulldown. The final size-
exclusion chromatography step reveals that the HTT-HAP40
complex is a monodisperse sample, indicating increased pro-
tein stability and conformational homogeneity compared with
apo HTT. Formation of this complex by HTT produced in
insect cells indicates that the protein expressed is correctly
folded and functional with respect to formation of an important
protein interaction.

HTT-HAP40 complexes with WT (Q23) and polyQ
expanded (Q54) were also analyzed by DSLS (Fig. 3B) yielding
similar thermal aggregation profiles (~57-60 °C) again, sug-
gesting a lack of interaction between the polyQ repeat and the
globular portion of the protein complex.

HTT expressed in Sf9 insect cells retains reported
phosphorylation PTMs

PTM of HTT is well-described for protein derived from var-
ious mammalian cell systems and in some detail for HTT
extracted from post-mortem brain tissue (17-19). However, it
is not known whether these PTMs are conserved in HTT
expressed in Sf9 insect cells. Purified HTT Q23 and Q54
from Sf9 and EXPI293F were subjected to bottom-up pro-
teomics (24, 25). PTMs were mapped for HTT expressed in
Sf9 and EXPI293F cells and compared with published PTMs
of mammalian-derived HTT (Tables 1-4 detail results for
HTT Q23 samples from Sf9 and EXPI293F production, and
complete data can be found on PRIDE (accession
PXDO010865) and in Zenodo).

To map the PTMs on HTT Q23 produced in Sf9 cells as
completely as possible, this sample was digested with five pro-
teases having complementary and nonspecific cleavage speci-
ficity: trypsin; lysargiNase (27); pepsin; WT «a-lytic protease
(WaLP); and M190A «a-lytic protease (MaLP) (28). Trypsin and
lysargiNase cleave at the C and N termini, respectively, of lysine
and arginine residues thus yielding complementary (or mirror-
image) peptides. WaLP and MaLP preferentially cleave at ali-
phatic amino acids, whereas pepsin at pH >2 cleaves at Phe,
Tyr, Trp, and Leu in position P1 or P1’ (29). MaLP, WaLP, and
pepsin were selected to probe the Lys- and Arg-poor regions of
the protein. Digestion of the other HTT samples was performed
with trypsin alone.

When LC/MS data from the five proteolysis reactions of Q23
HTT from Sf9 are searched together, at least 90% sequence
coverage was observed, whereas trypsin digestion of the other
HTT samples yielded at least 50% sequence coverage (Figs. S2
and S3). As we were able to digest such large overall amounts
(hundreds of micrograms) of HT'T protein in multiple rounds
of MS experiments, due to the high levels of production from
our expression systems, this also increased the overall peptide
coverage and allowed us to map PTMs with lower incidence in
the samples. Because of the large size of the HTT protein, rou-
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Figure 2. A, Superose6 10/300 GL column size-exclusion chromatography profile of HTT'3"%* Q23 expressed in Sf9 cells and purified using the C-terminal FLAG
tag. Coomassie-stained 4-20% SDS-PAGE analysis of size-exclusion chromatography fractions (0.5 ml volume) spanning 11.5-14 ml as marked on the elution
profile. B, Coomassie-stained 4-20% SDS-PAGE analysis of C-terminally FLAG-tagged samples of HTT of different polyQ lengths from the following: lane 1,
baculovirus-mediated expression in Sf9 insect cells; lane 2, transient transfection in mammalian EXPI293F cells; or lane 3, transduction in mammalian EXP1293F
cells. C, Superose6 10/300 GL column size-exclusion chromatography profile of HTT'3'44 Q23 co-expressed with HAP40' 7" in 5f9 cells and purified using the
HTT construct C-terminal FLAG tag and HAP40 N-terminal His tag. Coomassie-stained 4-20% SDS-PAGE analysis of size-exclusion chromatography fractions
(0.5 ml volume) spanning 12-14.5 ml is as marked on the elution profile.

tine MS protein identification experiments of intact sample are PAGE analysis, HTT sequence peptides were the highest abun-
not feasible. Instead, we used peptide mapping analysis to con- dance proteins detected, although some contaminating pro-
firm that the purified sample was indeed the HTT protein. As  teins were detected. Details of these contaminants for the
expected for the high purity of the samples indicated by SDS- HTT Q23 samples from EXPI293F cells (Table S1) show that
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Figure 3. A, DSLS profiles of HTT' "% Q19, Q23, Q42, and Q54 (left) and the calculated thermal aggregation temperatures that show high stability indicating
folded protein samples. B, similar results are seen for HTT'>"**-HAP40'~3"" for both Q23 and Q54 samples.

Table 1

Phosphorylation motifs identified for Sf9-expressed Q23 HTT' 3% in references to literature

Modifications that have been discovered in proteomics studies, but not published, were retrieved from PhosphoSitePlus (17). Some modifications have not been described
before. To illustrate the likelihood of these being physiologically relevant modifications, NetPhos 3.1 predictions for the putative enzyme and likelihood score are included
(31). Only modifications with at least three peptide spectrum matches for at least one peptide containing the modification are listed in the table. All data are available via

PRIDE (accession PXD010865) with summaries in Zenodo.

HD patient/control In vitro or animal

Site No. of PSMs“ Reports or predictions tissue samples models
Ser-421 9(9) Reported in Refs. 16, 18, 26, 54—61, 61-79 Yes Yes
Ser-421/434 10 (10) Both reported Yes/no Yes/yes
Ser-432 3(7) Reported in Refs. 16, 18, 75, 80, 81 No Yes
Ser-434 3(5) Reported in Refs. 16, 18, 54, 56, 57, 63—65, 68, No Yes

71-76,79, 81-89
Ser-622 3(3) Reported in Ref. 90 No Yes
Ser-780 3(4) Predicted NetPhos 3.1 (CDK1, 0.514) No No
Thr-816 3(3) Predicted NetPhos 3.1 (unspecified, 0.957) No No
Ser-1181 3(5) Reported in Refs. 16, 18, 26, 57, 72, 88, 90-92 Yes Yes
Ser-1201 27 (37) Reported in Refs. 16, 18, 26, 54, 55, 57, 68, 69, No Yes

74,75,79, 85, 86, 88—97
Ser-1469 6 (6) Predicted NetPhos 3.1 (CDK1, 0.513) No No
Thr-1557 4(6) Predicted NetPhos 3.1 (unspecified, 0.777) No No
Ser-1864 4 (4) Reported in Refs. 16, 18, 55, 98 Yes Yes
Ser-1866 5(8) Reported in Refs. 16, 18, 54, 55 No Yes
Ser-1867 3(5) Predicted NetPhos 3.1 (unspecified, 0.975) No No
Ser-1876 4 (4) Reported in Refs. 16, 18, 54, 55, 57, 68, 70, 74, Yes Yes

75,79, 83-90, 94-103
Tyr-2102 3(3) Predicted NetPhos 3.1 (unspecified, 0.921) No No
Ser-2550 3(3) Reported in Refs. 16 No Yes
Ser-2775 3(4) Predicted NetPhos 3.1 (PKC, 0.491) No No
Ser-2776 7 (8) Predicted NetPhos 3.1 (unspecified, 0.989) No No
Thr-2800 10 (13) Predicted NetPhos 3.1 (CaM-II, 0.456) No No
Ser-2913 7 (10) Predicted NetPhos 3.1 (unspecified, 0.990) No No
Thr-3133 10 (12) Predicted NetPhos 3.1 (PKC, 0.813) No No

“ PSMs are reported as the number of peptide spectrum matches for the most abundant peptide containing the modification described with the total number of peptide

spectra for all peptides containing this modification motif in parentheses.

most of these proteins are unlikely to be true HTT interac-
tors as they have high CRAPome scores (30) or are of very
low abundance. Modifications were detected for all samples,
with well-described phosphorylation motifs being present in
HTT samples from both Sf9 and EXPI293F production
methods (Fig. 4).

By employing multiple enzymes, sequences in regions
containing sparse Lys and Arg residues, for example a 20-a-
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mino acid-long peptide within exon 1 (Fig. S4), were
detected. Peptide—spectrum matches (PSMs) were used to
prioritize the confident phosphorylation sites. HTT ex-
pressed in Sf9 cells retains many of the highly-observed phos-
phorylation sites described in the literature for mammalian
celllines and post-mortem tissue (Tables 1 and 2 and Figs. S5
and S6). A total of 22 phosphorylation events with at least
three PSMs were mapped in Sf9-expressed Q23 HTT, 11 of

SASBMB


http://www.jbc.org/cgi/content/full/RA118.007204/DC1
http://www.jbc.org/cgi/content/full/RA118.007204/DC1
http://www.jbc.org/cgi/content/full/RA118.007204/DC1

Table 2

A toolkit of HTT protein resources

Arginine and lysine monomethylation modifications identified for Sf9-expressed Q23 HTT'~3'%4 in references to literature

Methylation of huntingtin has not been previously described or reported. Only modifications with at least three peptide spectrum matches for at least one peptide containing
the modification are listed in the table. All data are available via PRIDE (accession PXD010865) with summaries in Zenodo.

Site No. of PSMs” Site No. of PSMs* Site No. of PSMs*
Arg-221 4 (4) Arg-1461 3(5) Lys-2802 5(5)
Lys-700 3(5) Arg-1555 4 (4) Arg-2908 4.(6)
Arg-908 7(9) Arg-1947 3(5) Arg-3112 3(4)
Lys-1264 6 (6) Lys-2163 3(5) Arg-3130 10 (10)
Lys-1448 3 (4) Arg-2774 7 (15)

“PSMs are reported as the number of peptide spectrum matches for the most abundant peptide containing the modification described with the total number of peptide

spectra for all peptides containing this modification motif in parentheses.

Table 3

Phosphorylation motifs identified for EXPI293F-expressed Q23 HTT' 344 in references to literature

Modifications that have been discovered in proteomics studies, but not published, were retrieved from PhosphoSitePlus (17). Some modifications have not been described
before. To illustrate the likelihood of these being physiologically relevant modifications, NetPhos 3.1 predictions for the putative enzyme and likelihood score are included
(31). All data are available via PRIDE (accession PXD010865) with summaries in Zenodo.

HD patient/control In vitro or animal

Site No. of PSMs” Previously reported tissue samples models
Tyr-173 1(1) Predicted NetPhos 3.1 (unspecified, 0.587) No No
Ser-419 1(1) Reported in Refs. 16, 18, 60, 70, 75 No Yes
Ser-421 3(3) Reported in Refs. 16, 18, 26, 5461, 61-79 Yes Yes
Ser-421/431 1(1) Both reported Yes/no Yes/yes
Ser-421/434 5(5) Both reported Yes/no Yes/yes
Ser-431 1(1) Reported in Refs. 16, 18, 55, 56, 63, 75, 80, 104 No Yes
Ser-432 2 (4) Reported in Refs. 16, 18, 75, 80, 81 No Yes
Ser-434 5(7) Reported in Refs. 16, 18, 54, 56, 57, 63—65, 68, 71-76, 79, 81-89 No Yes
Ser-622 1(1) Reported in Ref. 90 No Yes
Ser-623 3 (4) Reported in Ref. 105 No Yes
Ser-1063 1(1) Predicted NetPhos 3.1 (unspecified, 0.989) No No
Ser-1106 8 (8) Reported in Refs. 16, 90 and Zhou (2011) PhosphoSitePlus dataset No Yes

(https://www.phosphosite.org/curatedInfoAction.action?record=

22693604)
Ser-1181 6(8) Reported in Refs. 16, 18, 26, 5461, 61-79 Yes Yes
Ser-1197 2(2) Reported in Refs. 16, 89 No Yes
Ser-1201 12 (38) Reported in Refs. 16, 18, 26, 54, 55, 57, 68, 69, 74, 75, 79, 85, 86, 88—97 No Yes
Thr-1262 1(1) Predicted NetPhos 3.1 (CDK1, 0.495) No No
Thr-1411 1(1) Reported in Refs. 16, 90 and Guo (2007) PhosphoSitePlus dataset No Yes

(https://www.phosphosite.org/curatedInfoAction.action?record=

25582702)
Thr-1859 1(1) Reported in Refs. 106 No Yes
Ser-1864 4(5) Reported in Refs. 16, 18, 55, 98 Yes Yes
Ser-1866 3(5) Reported in Refs. 16, 18, 54, 55 No Yes
Thr-1868 1(1) Reported in Refs 16 No Yes
Ser-2550 1(1) Reported in Ref. 16 No Yes
Ser-2690 2(2) Predicted NetPhos 3.1 (unspecified, 0.994) No No
Thr-2748 1(1) Predicted NetPhos 3.1 (PKC, 0.529) No No
Thr-3098/Tyr-3101  1(1) Predicted NetPhos 3.1 (GSK3, 0.446)/predicted NetPhos 3.1 (EGFR, 0.449) No/no No/no

“ PSMs are reported as the number of peptide spectrum matches for the most abundant peptide containing the modification described with the total number of peptide

spectra for all peptides containing this modification motif in parentheses.

Table 4

Other post-translational modifications identified for EXPI293F-ex-
pressed Q23 HTT'3"*%in references to literature

Methylation of huntingtin has not been previously described or reported. Only
modifications with at least three peptide spectrum matches for at least one peptide
containing the modification are listed in the table. All data are available via PRIDE
(accession PXD010865) with summaries in Zenodo.

Site No. of PSMs” Modification
Lys-826 1(1) Acetylation (Lys)
Arg-2053 1(1) Dimethylation (KR)
Arg-2781 4 (4) Methylation (KR)
His-2786 6 (14) Methylation (His)
Lys-2932 1(1) Acetylation (Lys)

“ PSMs are reported as the number of peptide spectrum matches for the most
abundant peptide containing the modification described with the total number
of peptide spectra for all peptides containing this modification motif in
parentheses.

which have been reported in at least one instance in the
literature. Mapping the remaining modifications to the cryo-EM
HTT-HAP40 model shows that most would-be surface-exposed
residues in the context of apo HTT (Fig. S7) and their respective
physiological likelihood and probably kinase, as determined by
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NetPhos analysis (31), are detailed in Table 1. Monomethylation of
some lysine and arginine residues was also detected (Table 2).
Sequence analysis of HT'T using CIDER (32) and IUPred (33) in
conjunction with analysis of the recently published near-atomic
resolution cryo-EM structure of HTT in complex with HAP40
(Fig. 5) (23) reveals that most of the phosphorylation sites are
within disordered regions of the protein structure as described
previously (18). Although some of these previously unreported
modifications may be artifacts of the Sf9 expression system, they
appear to have a minimal effect on global huntingtin function, as
seen by the ability of this sample to form a complex with HAP40.

A total of 25 phosphorylation motifs with at least three PSMs
were mapped for HTT Q23 expressed in EXPI293F cells, 19 of
which have been described previously in the literature (Tables 3
and 4 and Fig. S5). Interestingly, we also observed acetylation
(Lys-826 and Lys-2932), monomethylation (Arg-2781 and
His-2786), and dimethylation (Arg-2053) of our samples,
none of which have been previously described in the litera-
ture. Acetylation of HTT at other sites has been previously
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Figure 4. Spectra of $1181 phosphorylation motifs detected from samples of HTT'~3'%* Q23 derived from Sf9 (A) and EXPI293F (B) production. This
modification has been detected in human brain samples, indicating that many of the detected phosphorylation motifs detected in the purified HTT samples

are physiologically relevant.
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in the current cryo-EM model. Phosphorylation motifs of insect cell-derived HTT Q23 mapped by peptide MS and found in at least three peptide spectrum

matches are annotated.

described, and methylation motifs are observed in MS data
of post-mortem human brain tissue samples of HTT (18),
indicating that HTT protein methylation is a physiological
modification.

Characterization of HTT and HTT-HAP40 protein sample
monodispersity

Size-exclusion chromatography of HTT protein derived
from insect Sf9 or mammalian EXPI293F cells using a Super-
ose6 10/300 GL column gives a characteristic elution profile
(Fig. 2A), with a void-aggregate peak followed by peaks previ-
ously attributed as being dimer and monomer species of HTT
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based on column standards (14—16). The recent cryo-EM
structure of HTT in complex with HAP40 reveals a bi-lobed
structure of HTT in which the N-HEAT and C-HEAT domains
wrap around HAP40 yielding a more compact and globular
structure (23). Furthermore, HAP40 was described as being
critical for producing a conformationally homogeneous HTT
sample amenable to cryo-EM structure determination. Our
purified samples of apo HTT therefore lack a binding partner
such as HAP40, which may account for the broad and overlap-
ping elution peaks observed in gel-filtration analyses as well as
the tendency for self-association when HTT samples are ana-
lyzed at higher protein concentrations.
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Figure 7. Experimental SAXS data. A, R -based Kratky plots of experimental SAXS data for HTT-HAP40 complex (red) and apo HTT (blue). The experimental
dataare displayed as empty circles. The solid lines show regularized experimental curves determined using GNOM. The theoretical curve expected for a spherical
protein of similar size is shown by a dashed line. B, normalized pair distance distribution function P(r) calculated from experimental SAXS data with GNOM.

To further understand this tendency for self-association and
sample heterogeneity, a C-terminal FLAG-tagged HTT Q23
sample taken from the “monomer” peak of the Superose6 elu-
tion profile was analyzed by SEC-MALS using the same speci-
fication Superose6 column, which allows calculation of the in-
solution protein mass. This analysis revealed a peak with a
shoulder with approximate mass calculations indicating that
this sample is a mixture of both HTT monomer and dimer (Fig.
6A). In contrast, the HTT-HAP40 complex sample run on the
same SEC-MALS set up at the same total protein concentration
is monodisperse, and the mass calculated across the peak is
stable indicating the sample is homogeneous and not self-asso-
ciating (Fig. 6B). Long-term storage and freeze-thaw of HTT—
HAP40 samples had minimal effect on the peak profile, whereas
apo HTT samples had a tendency to redistribute from mono-
mer peak to a peak profile similar to that observed during puri-
fication. Taken together, these results suggest HAP40 binding
reduces homotypic HTT interaction, possibly by competing for
an interaction interface or through a linkage effect (34).

SAXS analysis of the HTT-HAP40 complex in solution

The cryo-EM structure of HTT-HAP40 (23) has laid a tre-
mendous foundation for our understanding of the structure of
the huntingtin protein with respect to its global architecture,
HEAT repeat organization, and complex formation with the
HAP40-binding partner protein. However, technical limita-
tions of cryo-EM combined with sample limitations from the
conformational flexibility and heterogeneity of HTT limit our
current understanding of certain structural details. The Guo et
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al. (23) cryo-EM structure was resolved at a resolution of 4 -5 A
and is missing several regions of the HT'T protein. Roughly 25%
of the huntingtin protein, including many functionally impor-
tant elements such as exonl and the highly modified 400 — 650
amino acid intrinsically disordered region (IDR), are not
resolved in the cryo-EM maps, presumably due to the fact these
regions are intrinsically disordered (Fig. 5).

To further understand the structure of the entire HTT pro-
tein, we conducted SAXS analysis of both the Q23 isoforms of
HTT (isolated monomer peak) and the HTT-HAP40 complex
in solution. Similar to other biophysical and structural analysis
techniques, SAXS requires large (milligram) quantities of pro-
tein. Our toolkit of HTT reagents permits production of suffi-
cient sample for structural analyses, expediting further investi-
gation of the HT'T protein by such methodologies.

For both HTT and HTT-HAP40 sample data, R, -based
Kratky plots of the experimental curve do not fit the expected
data for a generic globular protein of similar mass (Fig. 7). The
experimentally calculated radius of gyration (R,) for both sam-
ples was also much larger than that expected on the basis of the
resolved residues of the cryo-EM structure (Table 5). This indi-
cates that there is a degree of flexibility or disorder in both
samples. This is not unexpected due to the large regions of the
HTT protein sequence with predicted disorder, which are not
present in the Guo et al. (23) cryo-EM HTT-HAP40 model.
Interestingly, the normalized pair distance distribution func-
tion P(r) of HTT-HAP40 shows a narrower range of atomic
radii compared with the apo HT'T sample, consistent with the
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Table 5
SAXS parameters for data validation and interpretation
Protein sample RS RS D,.°  Mass?  Mass®
A A (real) A kDa kDa
HTT/HAP40 633 +21 57.7+04 179 386 (390) 391
HTT 69.9+22 67.7+08 220 422 (350) 428

“ Radius of gyration (R,) was calculated the using Guinier fit in the g range

0.015 < g < 0.025 A~ ! and 0.012< ¢ < 0.019 A~ ! for HTT/HAP40 and HTT,
respectively.

® Radius of gyration was calculated using GNOM.

¢ Maximum distance between atoms was calculated using GNOM.

4 Molecular mass was estimated using SAXSMoW (47). The mass expected from
the sequence is shown in the parentheses.

¢ Molecular mass was estimated from SAXS data based on volume of correlation
(Ve) (48).

HAP40 complex being more compact. However, taking into
account the high propensity of HT'T self-association observed
in our analytical size-exclusion chromatography profiles, apo
HTT SAXS analysis may also be confounded by self-association
of molecules in the concentrated solutions used for SAXS data
collection. This assertion is corroborated by the higher molec-
ular weight estimated from SAXS data (Table 5) for apo HTT
compared with HTT-HAP40. Therefore, further SAXS analy-
sis of the apoprotein was not pursued.

To better understand the HTT-HAP40 structure, including
the disordered/missing regions of the cryo-EM model, we per-
formed coarse-grained molecular dynamics (MD) simulations,
and calculated an ensemble of conformations that best fits the
solution SAXS data for HTT-HAP40. This modeling approach
assumed that the residues with known coordinates in the
cryo-EM model form a quasi-rigid complex, whereas the resi-
dues with missing coordinates are flexible. Predicted SAXS
scattering curves were averaged over an ensemble of MD-sim-
ulated structures using the optimal weights for each ensemble
member obtained with the sparse ensemble selection (SES)
method (35). The resulting average “theoretical” scattering
curve for the SES weighted ensemble of structures gave a much
better fit to the experimental scattering data than that of the
cryo-EM structure (Fig. 84).

The most populated model (44%) in this ensemble (Fig. 8C)
shows extensive protruding regions of disorder extending out
from the rigid complex core indicating that the overall envelope
of the protein is likely to be larger than that calculated from the
cryo-EM structure (Fig. 8B). For many of the HEAT repeats, the
disordered regions of the connecting sequence are not seen in
the cryo-EM structure, but the molecular modeling we have
completed allows us to visualize how these might be arranged
with respect to the rigid HEAT repeat core structure. The com-
plete SES ensemble (Fig. 8D) further indicates how, in particu-
lar, the IDR and exonl region of huntingtin are probably very
structurally heterogeneous and dynamic in their conformation
and are able to extend away from the more rigid core of the
structure in many different arrangements due to their inherent
flexibility. The extension of both exon1 and the IDR away from
the core HTT-HAP40 complex is consistent with the accessi-
bility of these domains to enzymes capable of post-translational
modification.

A key feature of the cryo-EM structure is the large cavity that
extends through the N-terminal HEAT repeat domain. This
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cavity is approximately the same diameter as a dsDNA helix,
and it is tempting to envision a potential nucleic acid—binding
role of this region of the HT'T protein, especially given the func-
tional links between HTT and DNA damage repair (36, 37). At
the current resolution of the structural information, it is also
difficult to analyze potential surface charge or “greasy” surface
residue hotspots that could indicate interaction sites. However,
our SES ensemble model indicates how this cavity could be
capped by certain conformational states of disordered loop
regions, not resolved in the cryo-EM structure. These loops
could act as gatekeepers to any binding partner, nucleic acid, or
protein by accessing this cavity. Similarly, an apparent cavity on
the side of the N-terminal HEAT repeat domain in the cryo-EM
model may also be capped by a flexible protein chain. Expan-
sion of the polyQ region seems unlikely to affect the global
structure of huntingtin given that exonl1 is distal from the rigid
HEAT repeat domains. Therefore, the mechanism by which the
polyQ expansion affects huntingtin protein structure and func-
tion remains a question for future structural studies.

Discussion

We have generated a resource of 28 different HTT expres-
sion constructs that allow the generation of purified HT'T sam-
ples of different polyQ lengths and affinity tags from three dif-
ferent expression systems. All constructs are available through
Addgene, including the entry vector that will allow other
researchers to make additional CAG expansion forms of the
HTT gene should they require them. Our expression constructs
permit facile scaling of culture volumes to enable the purifica-
tion of milligram quantities of WT HTT protein from both
insect and mammalian cells as well as substantial production of
various polyQ-expanded HT'T species.

These HTT proteins from different expression systems are
modified with PTMs previously described in the literature as
well as additional modifications of unknown physiological rel-
evance but that do not seem to alter HTT function in its ability
to forma complexwith HAP40. Wedescribe HT T protein meth-
ylation for the first time, a modification conferred by various
protein methyltransferases, many with links to neurodegenera-
tion (38). Further characterization of these modifications and
their function could open up novel avenues for understanding
HTT protein structure—function. The constructs cloned may
also be used in future studies for co-expression with modifying
enzymes to make highly site-specific PTMs on the sample as
well as to test how certain enzymes might function on HTT.

Our work characterizing the biophysical properties of HT'T
confirms that the protein is not monodisperse or homogeneous
when purified in its apo-form. Co-expression and purification
with HAP40 allow purification of a more monodisperse protein
sample, rendering it amenable to more detailed structural anal-
ysis, as performed previously by cryo-EM (23). It is unclear
whether HAP40 is a constitutive binder of HTT in physiological
settings, although its effects on the biophysical characteristics
of the HTT protein are clearly significant. Interestingly, very
few HTT protein—protein interaction studies have identified
HAP40 as an interacting protein of HTT, and it is only identi-
fied in the published literature in a small number of articles (23,
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Figure 8. Fitting SAXS data to structural models of HTT-HAP40 complex. A, experimental SAXS profiles (black circles) plotted with the theoretical profile for
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the EM structure (B) as well as the most populated (~44%) solution model (C) and complete ensemble of the HTT-HAP40 complex (D) are shown with surface
representation of the globular regions and backbone trace of the flexible regions (color key as in B).

39) compared with the multiple extensive HTT interaction net-
work publications (41, 42).

Because of the high yield of both HTT and HTT-HAP40
proteins from our toolkit of resources, we were able to conduct
preliminary biophysical analyses of these samples. Our SAXS
analysis in tandem with molecular dynamics simulations per-
mitted the generation of an SES ensemble, representing a pos-
sible solution structure of the HTT-HAP40 complex. This
model gives insight into how HTT is post-translationally mod-
ified at flexible and accessible regions of sequence and suggests
potential regulatory mechanisms such as steric capping of
binding regions of the protein. Our SAXS model serves as an
important resource for understanding the complete HTT—-
HAP40 complex, and it should help prevent misinterpretation
of certain features of the cryo-EM structure that lacks ~26% of
the protein molecule. In particular, the exon1 region of HTT is
distal to the complex core, and polyQ expansion does not affect
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HTT thermal stability as shown by DSLS. Therefore, it is likely
that the effect of polyQ expansion on HT'T structure—function
is more nuanced. Both exonl and the IDR have many of the
hallmarks of interacting domains observed for intrinsically dis-
ordered protein regions (43), as they are heavily modified by
PTMs, are conformationally flexible, and contain regions of
charged amino acids (i.e. nearly 20% of residues in the IDR are
negatively charged). The purported role of huntingtin as a scaf-
fold protein could be explained through dynamic protein—
protein interactions mediated through these regions of the
structure (40, 41).

The precise molecular function of unexpanded HTT remains
elusive, so it is unclear how the polyQ expansion may alter the
HTT protein sufficiently to give rise to the wide-ranging bio-
chemical dysfunction observed in HD models and patients.
These reagents and the accompanying methods and validation
for the production of HTT protein will provide an enabling
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framework for future research requiring purified HTT and its
complexes for a wide range of polyQ lengths.

Experimental procedures
Cloning of HTT and HAP40 expression constructs

HTT expression constructs were assembled in two steps into
the mammalian/insect cell vector pPBMDEL, an unencumbered
vector created for open distribution of these reagents. First,
entry vectors for N-terminal FLAG-tagged and C-terminal
FLAG-tagged HTT (amino acids 1-3144) were constructed
without the polyQ regions, amino acids 7-85. PCR products
encoding WT HTT were amplified from cDNA (Kazusa clone
FHC15881) using primers N_int FWD (ttaagaaggagatatactA-
TGGACTACAAAGACGATGACGACAAGATGGCGACC-
CTGGAAAAGCgctGACCTTAGTCGCTAAcctgcaGGAGC-
CGCTGCACCGACCAAAG)/N_int_REV (gattggaagtagaggtt-
ttaGCAGGTGGTGACCTTGTGGAC) for the N-terminal
FLAG-tagged HTT and C_int_FWD (ttaagaaggagatatactATG-
GCGACCCTGGAAAAGCgctGACCTTAGTCGCTAAcctgce-
aGGAGCCGCTGCACCGACCAAAG)/C_int_REV (gattggaa-
gtagaggttttaCTTGTCGTCATCGTCTTTGTAGT Caccgcttec-
accGCAGGTGGTGACCTTGTGGAC) for the C-terminal
FLAG-tagged HTT. All PCR products were inserted using the
In-Fusion cloning kit (Clontech) into the pBMDEL that had
been linearized with BfuAl Second, synthetic polyQ regions
were inserted into the intermediate plasmids using the In-
Fusion cloning kit. The polyQ regions were PCR-amplified
using the primers polyQP_Fwd (ATGGCGACCCTGGAAAA-
GCTG)/polyQP_Rev  (TGGTCGGTGCAGCGGCTCCTC)
from template plasmids CH00007 (Q23), CH00008 (Q73), and
CHO00065 (Q145) (all from Coriell Institute Biorepository). PCR
products were inserted into the intermediate vectors that had
been linearized with Afel and Sbfl. Upon screening the assem-
bled HTT expression constructs, we found that our cloning
method generated a range of polyQ lengths. We selected con-
structs with polyQ lengths from Q15 to Q145. The HTT-coding
sequences of intermediate and final expression constructs were
confirmed by DNA sequencing. The sequences were confirmed
by Addgene where these reagents have been deposited. HAP40
¢DNA corresponding to amino acids 1-371 was subcloned into
pFBOH-MHL expression vector using ligase-independent
cloning.

HTT and HTT-HAP40 protein expression

The recombinant transfer vectors HTT pBMDEL and
HAP40 pFBOH-MHL were transformed into DH10Bac Esch-
erichia coli cells (Invitrogen, Bac-to-Bac System) to generate
recombinant Bacmid DNA. Sf9 cells (Invitrogen) were trans-
fected with Bacmid DNA using jetPRIME® transfection reagent
(PolyPlus transfection, catalog no. 89129-924), and recombi-
nant baculovirus particles were recovered. The recombinant
virus titer was sequentially amplified from P1 to P3 virus stocks
for protein production in the Sf9 insect cells and EXPI293F
mammalian cells.

Baculovirus-mediated expression of HT'T in insect cells—Sf9
cells at a density of ~4.5 million cells/ml were infected with 8
ml of P3 recombinant baculovirus and grown at 130 rpm and
27 °C. HyQ SFX insect serum medium containing 10 ug/ml
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gentamicin was used as the culture medium. Infected cells were
harvested when viability dropped to 80— 85%, normally after
~72 h post-infection. For HTT-HAP40 complex production,
the same general protocol was followed but with a 3:1 ratio of
HTT/HAP40 P3 recombinant baculovirus infection step.

Transduction of HT'T in mammalian cells—EXPI293F cells
(ThermoFisher Scientific, catalog no. A14527) were main-
tained in EXPI293 expression medium (ThermoFisher Scien-
tific, catalog no. A1435102) in a humidified 8% CO, incubator
at 37 °C and 125 rpm. Cells were transduced at a density of 2—-3
million cells/ml of culture. The transduction used recombinant
baculoviruses of HT'T constructs generated by transfecting Sf9
cells using Transfer vector pPBMDEL and JetPRIME® transfec-
tion reagent (catalog no. 89129-924). The volume of the virus
added into the cells was at ratio 6% of the total volume of the
production. Infected cells were harvested after 7—10 days post-
transduction depending on cell viability.

Transient transfection of HTT in mammalian cells—
EXPI293F cells (ThermoFisher Scientific, catalog no. A14527)
were maintained in EXPI293 expression medium (Thermo-
Fisher Scientific, catalog no. A1435102) in a humidified 8% CO,,
incubator at 37 °C and 125 rpm. Cells were transfected at a
density of 2—3 million cells/ml of culture. FectoPRO® transfec-
tion reagent (VWR, catalog no. 116-001) and plasmid
pBMDEL-HTT DNA were separately diluted in serum-free
OptiMEM complexation medium (ThermoFisher Scientific,
catalog no. 31985062) at 10% of the total production volume in
aratio of 1 ug of DNA to 1.2 ul of FectoPro to 0.5 ul of Boost-
er/ml of cell culture. After 5 min of incubation at room temper-
ature, the transfection mixtures were combined and incubated
for an additional 20 min. The FectoPRO® transfection reagent/
DNA/OptiMEM mixture was then added to the cells with an
addition of FectoPRO® Booster in a ratio of 1 ug of DNA to 1.2
wl of FectoPro to 0.5 ul of Booster/ml of cell culture. The trans-
fected cultures of EXPI293 cells were harvested after 72—96 h
post-transfection—dependent cell density and viability.

HTT and HTT-HAP40 protein purification

The same protocol was used to purify HTT from insect and
mammalian cell culture, adapted from Huang et al. (16) and
Guo et al. (23). Cell cultures were harvested by centrifugation at
4000 rpm, 20 min, 4 °C (Beckman JLA 8.1000), washed in pre-
chilled PBS, resuspended in 20 cell paste volumes of prepara-
tion buffer (50 mm Tris, pH 8, 500 mm NaCl), and stored at
—80 °C prior to purification. Cell suspensions were thawed and
diluted to at least 50 times the cell paste volumes with
prechilled buffer and supplemented with 1 mm phenylmethyl-
sulfonyl fluoride, 1 mm benzamidine-HCl, and 20 units/ml ben-
zonase. Note: two freeze—thaw cycles of cell suspensions were
found to be sufficient for cell lysis. The lysate was clarified by
centrifugation at 14,000 rpm, 1 h, 4 °C (Beckman JLA 16.2500),
and then bound to 0.1 cell paste volumes of anti-FLAG resin
(Sigma M2) at 4 °C with rocking for 2 h. Anti-FLAG resin was
washed twice with the 100 cell paste volumes of buffer. HTT
protein was eluted with 1 cell paste volume of buffer supple-
mented with 250 ug/ml 3XFLAG peptide (Chempep) run twice
over the anti-FLAG resin. Residual HTT protein was washed
from the beads with 0.5 cell paste volume of buffer. The sample
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was spin-concentrated with molecular weight cutoff of 100,000.
Depending on the protein yield, the sample was run as one or
more sample runs on Superose 6 10/300 GL column in size-
exclusion chromatography buffer (20 mm HEPES, pH 7.5, 300
mM NaCl, 5% (v/v) glycerol, 1 mm TCEP) at 0.4 ml/min ensur-
ing no more than 2 mg of protein was applied per run to mini-
mize protein aggregation. For HTT-HAP40, the same protocol
was followed except for using preparation buffer with just 300
mM NaCl, and an additional step where FLAG elution was
rocked with 2 ml of equilibrated nickel-nitrilotriacetic acid
resin for 30 min before washing in preparation buffer and then
elution with buffer supplemented with 300 mm imidazole prior
to the size-exclusion chromatography step.

SDS-PAGE and Western blot analysis

SDS-PAGE and Western blot analysis were performed
according to standard protocols. In brief, purified proteins were
denatured in sample buffer (50 mm Tris-HCI, 0.1 m DTT, 2%
SDS, 0.1% bromphenol blue, and 10% glycerol, pH 6.8) at 98 °C
for 5 min, followed by SDS-PAGE. After electrophoresis, the gel
was either directly stained with Coomassie Blue or subjected to
Western blot analysis. For Western blot analysis, proteins were
transferred onto polyvinylidene difluoride membranes. The
primary antibody used was anti-HTT (Abcam, ab109115,
1:5000), and the secondary antibody used was IRDye® 800CW
anti-rabbit IgG (LI-COR, 926-32211, 1:5000). Membranes were
visualized on an Odyssey® CLx Imaging System (LI-COR).

HTT MS

All data were acquired on an Agilent 1260 capillary HPLC
system coupled to an Agilent Q-TOF 6545 mass spectrometer
via the Dual Agilent Jetstream ion source.

Bottom-up proteomics for sequence coverage and PTM
analysis—Proteins were processed according to established
protocols (42). Briefly, proteins were reduced with DTT (10 mm
final concentration) for 30 min at room temperature, alkylated
with iodoacetamide (55 mM final concentration) for 30 min at
room temperature, and incubated with trypsin (6 ul, 0.2 mg/ml)
overnight at 37 °C. The digests acidified to pH 2 in hydrochloric
acid and were desalted on-column (by diverting the first 2 min
to waste), before analysis. Peptides were separated on a C18
Advance BioPeptide column (2.1 X 150 mm 2.7-um particles)
at a flow rate of 400 wl/min and an operating pressure of
4700 p.s.i. Peptides were eluted using a gradient from 100%
solvent A (98:2 H,0O/ACN with 1% formic acid) to 50% B (96:4
ACN/H,O with 1% formic acid) for 80 min. Mass spectra were
acquired from m/z 300 to 1700 at a rate of eight spectra/s. The
tandem mass spectra were acquired in automated MS/MS
mode from m/z 100 to 1500 with an acquisition rate of three
spectra/s. The top 10 precursors were selected and sorted by
abundance only. Collision-induced dissociation was done using
all ions at [4+(m/z)/100] — 1 and — 5.

Data analysis—Raw data were processed using PEAKS Stu-
dio 8.5 (build 20171002) and the reference complete human
proteome FASTA file (Uniprot). Cysteine carbamidomethyla-
tion was selected as a fixed modification, and methionine oxi-
dation and Asn/Gln deamidation as variable modifications. A
minimum peptide length of five, a maximum of three missed
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cleavage sites, and a maximum of three labeled amino acids per
peptide were employed.

HTT sequence disorder prediction

Disorder prediction was performed using IUPred (33, 43). A
threshold of 0.5 was used to define disordered or ordered
regions, with predicted disordered regions shaded in light red
(Fig. 5). Further sequence analysis of HT'T was performed using
the sequence analysis tool local CIDER (32). Hydrophobicity
was calculated using a normalized Kyte-Doolittle scale (43, 44).
Resolved structure and domain annotations were based on the
solved cryo-EM structure of HTT in complex with HAP40 (23).

DSLS

The thermal stability of HTT*3** Q19, Q23, Q42, and Q54
as well as HTT****-HAP40"'~*"! Q23 and Q54 samples were
analyzed by DSLS using Stargazer. With four repeats per sam-
ple, HTT and HTT-HAP40 proteins at 1 mg/ml in 20 mMm
HEPES, pH 7.5, 300 mm NaCl, 5% (v/v) glycerol, 1 mm TCEP
were heated from 20 to 85 °C. Protein aggregation was moni-
tored using a CCD camera. The temperature of aggregation

(T,qg) Was analyzed and fitted as described previously (35).

SEC-MALS

The absolute molar masses and mass distributions of purified
protein samples of HTT'>'* Q23 and HTT'>'"* Q23—
HAP40' "' complex with C-terminal FLAG tag at 1 mg/ml
were determined using SEC-MALS. Samples were injected
through a Superose 6 10/300 GL column (GE Healthcare) equil-
ibrated in 20 mm HEPES, pH 7.5, 300 mm NaCl, 5% (v/v) glyc-
erol, 1 mm TCEP followed in-line by a Dawn Heleos-II light
scattering detector (Wyatt Technologies) and a 2414 refractive
index detector (Waters). Molecular mass calculations were per-
formed using ASTRA 6.1.1.17 (Wyatt Technologies) assuming
a dn/dc value of 0.185 ml/g.

SAXS data collection and analysis

SAXS measurements were carried out at the beamline
12-ID-B of the Advanced Photon Source, Argonne National
Laboratory. The energy of the X-ray beam was 14 keV (wave-
length A = 0. 8856 A), and two setups (small- and wide-angle
X-ray scattering) were used simultaneously to cover scattering
q ranges of 0.006 < g < 2.6 A~ !, where g = (47/A)sin6, and 26
is the scattering angle. Thirty two-dimensional images were
recorded for each buffer or sample solutions using a flow cell,
with the accumulated exposure time of 0.8 -2 s to reduce radi-
ation damage and obtain good statistics. No radiation damage
was observed as confirmed by the absence of systematic signal
changes in sequentially collected X-ray scattering images. The
2D images were corrected and reduced to 1D scattering profiles
using the Matlab software package at the beamlines. The 1D
SAXS profiles were grouped by sample and averaged.

Concentration-series measurements for each sample were
carried out at 300 K. We used HT'T concentrations of 1.0, 2.0,
and 4.0 mg/ml and complex HTT/HAP40 concentrations of
0.5, 1.0, and 2.0 mg/ml, respectively, in 20 mm HEPES, pH 7.5,
300 mMm NaCl, 5% (v/v) glycerol, 1 mm TCEP. The data were
processed and analyzed with ATSAS program package (45).
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The scattering profile of the protein was calculated by subtract-
ing the background buffer contribution from the sample-buffer
profile, and the difference data were extrapolated to zero solute
concentration by standard procedures. Guinier analysis and the
experimental radius of gyration (R,) estimation from the data of
infinite dilution were performed using PRIMUS. The pair dis-
tance distribution function, P(r), and the maximum dimension
of the protein, D, in real space was calculated with the indi-
rect Fourier transform using program GNOM (46). The molec-
ular weights were estimated separately based on volume calcu-
lated by SAXMoW (47), and volume of correlation (V<) (48) was
calculated by DATVC in g range of 0 < g < 0.3 A", The
theoretical scattering intensity of a structural model was calcu-
lated and fitted to the experimental scattering intensity using
CRYSOL (49) and FoXS (50) programs.

Fitting structural ensemble to SAXS data

The SAXS data indicate that the HT'T/HAP40 complex pos-
sesses some degree of flexibility. The known EM structure of the
complex (Protein Data Bank code 6ez8) is missing ~26%
of the residues, and it does not fit the SAXS data. We assume that
the residues with known coordinates form a quasi-rigid part of the
complex, although the residues with missing coordinates are flex-
ible. We performed coarse-grained MD simulations to generate
the initial ensemble of possible conformations of the complex. The
MD trajectory of 1000 ns was generated at 300 K, and the theoret-
ical scattering profiles in the g range 0 < g < 0.3 A~ for 5000
frames taken from the trajectory were calculated using FoXS. The
calculated scattering curves were averaged over the entire ensem-
ble of structures using the optimal weights for each ensemble
member obtained with the SES method (35), and this average pro-
file was compared with the experimental scattering data.

Coarse-grained molecular dynamics simulations

We used a coarse-grained model of HTT/HAP40 protein
complex to enhance the sampling efficiency in the conforma-
tional space of the complex. In this model, amino acid residues
in the proteins are represented as single beads located at their
C, positions and interacting via appropriate bonding, bending,
torsion angle, and nonbonding potential. A G6-like model of
Clementi et al. (51) was employed to maintain the structured
globular domains as quasi-rigid in the simulation. For flexible
regions, we adopted a simple model in which adjacent amino
acids beads are joined together into a polymer chain by means
of virtual bond and angle interactions with a quadratic potential
as shown in Equation 1,

Vo = Ky(b — bo)* Vo = Ko — ag)? (Ea. 1)

with the constants K,, = 50 kcal/mol and K, = 1.75 kcal/mol
and the equilibrium values b, = 3.8 A and «, = 112° for bonds
and angles, respectively. The excluded volume between non-
bonded beads was treated with pure repulsive potential as

shown in Equation 2,
Ve = €R(0'R/fij)12 (Eq.2)

where r;; is the inter-bead distance; o = 4 A, and €, = 2.0
kcal/mol.
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The interaction between quasi-rigid domains is modeled
with the residue-specific pair interaction potentials that com-
bine short-range interactions with the long-range electrostatics
as described (52, 53). The short-range interaction is given by a
Lennard-Jones 12-10"°~type potential, and simple Debye-
Hiickel-type potential is used for the electrostatic interactions
(53). In this study, we used the dielectric constant of 80 and the
Debye screening length of 10 A, which corresponds to a salt
concentration of about 100 mm. In-house software was devel-
oped and used to carry out constant temperature molecular
dynamics simulations of the coarse-grained model described
above.
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