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IL-32 is a cytokine involved in proinflammatory immune
responses to bacterial and viral infections. However, the role of
epigenetic events in the regulation of IL-32 gene expression is
understudied. Here we show that IL-32 is repressed by DNA meth-
ylation in HEK293 cells. Using ChIP sequencing, locus-specific
methylation analysis, CRISPR/Cas9-mediated genome editing,
and RT-qPCR (quantitative RT-PCR) and immunoblot assays, we
found that short-term treatment (a few hours) with the proinflam-
matory cytokine tumor necrosis factor � (TNF�) activates IL-32 in
a DNA demethylation–independent manner. In contrast, pro-
longedTNF�treatment(severaldays)inducedDNAdemethylationat
the promoter and a CpG island in the IL-32 gene in a TET (ten-eleven
translocation) family enzyme– and NF-�B–dependent manner.
Notably, the hypomethylation status of transcriptional regulatory ele-
mentsinIL-32wasmaintainedforalongtime(severalweeks),causing
elevated IL-32 expression even in the absence of TNF�. Considering
that IL-32 can, in turn, induce TNF� expression, we speculate that
such feedforward events may contribute to the transition from an
acute inflammatory response to chronic inflammation.

IL-32 is a proinflammatory cytokine (1–4). The IL-32 gene
emerges quite late during evolution and exists only in certain
mammals such as humans, chimpanzees, cattle, and horses;
however, it does not exist in rodents (5, 6). Moreover, IL-32
shares little sequence identity with other interleukins (1, 5).

Consistent with a role of IL-32 in the inflammatory response,
IL-32 expression is induced by TNF�3 in various human cell types,
including synovial fibroblasts, intestinal epithelial cell lines, and
pancreatic cancer cell lines (7–9). Reciprocally, IL-32 can also
induce the expression of TNF� and other cytokines in human
THP-1 monocytic cells (1). Interestingly, although mice do not
contain the IL-32 gene, ectopic treatment with human IL-32 can
induce TNF� expression in mouse Raw macrophage cells (1).
Moreover, injection of human IL-32 protein into the knee joints of
WT mice, but not into the knee joints of Tnf gene knockout mice,
provokes severe inflammation, suggesting that IL-32 exerts direct
effects on joint inflammation in a TNF�-dependent manner (2).
Functionally, IL-32 promotes the differentiation of monocytes
toward macrophage-like cells that display phagocytic activity, fur-
ther supporting a role of IL-32 in the immune response (10).

IL-32 plays important roles in inflammatory autoimmune dis-
eases (11, 12). IL-32 is highly expressed in rheumatoid arthritis
synovial tissue biopsies (2), inflamed mucosa of inflammatory
bowel disease (9), and chronic pancreatitis duct cells (8). These
reports suggest that IL-32 is likely a cytokine involved in chronic
inflammation and that it may serve as a potential therapeutic target.

As a proinflammatory cytokine, the expression of IL-32 is
induced during bacterial and viral infections, and its expression
improves host immunity in controlling these infections (13).
For example, in patients with active Mycobacterium tuberculo-
sis infection, IL-32 expression is induced, and it protects human
macrophages and peripheral blood mononuclear cells against
M. tuberculosis (14 –16). Likewise, the expression of IL-32 is
induced during HIV infection and influenza virus infection, as
it contributes to the antiviral response (4, 17, 18).

DNA methylation is an important gene silencing mechanism
that functions by recruiting corepressor proteins to impede the
binding of DNA methylation–sensitive transcription factors
(19, 20). DNA demethylation can be achieved by enzyme-me-
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diated active demethylation or by passive DNA demethylation
caused by interfering with maintenance DNA methylation (21).
TET family methylcytosine dioxygenases catalyze active DNA
demethylation through the sequential oxidation of 5mC
(5-methylcytosine) to 5hmC (5-hydroxymethylcytosine), 5fC
(5-formylcytosine), and 5caC (5-carboxylcytosine) (22–24), fol-
lowed by TDG (thymine DNA glycosylase)-mediated base exci-
sion repair (24).

Gene expression is often regulated by sequence-specific
transcription factors and epigenetic regulators. Given that
IL-32 expression is regulated during inflammation, under-
standing whether epigenetic events occur during the induction
of IL-32 expression is interesting. Here we report that IL-32 is
silenced by DNA methylation and that TNF� induces DNA
demethylation– dependent and –independent mechanisms to
control IL-32 activation. We also discuss the potential signifi-
cance of these mechanisms.

Results

IL-32 is silenced by DNA methylation in HEK293 cells

In our previous work, we performed RNA-Seq experiments
using HEK293 cells treated with the DNA-demethylating agent
5-aza-2�-deoxycytidine (5-aza-dC) and identified genes
silenced by DNA methylation (25, 26). IL-32 was one of the
genes strongly activated upon 5-aza-dC treatment (Figs. 1, A
and B), suggesting that IL-32 is a gene silenced by DNA meth-
ylation in HEK293 cells. Indeed, bisulfite sequencing data
revealed that both the promoter and CpG island (CGI) pre-
dicted by the Sequence Manipulation Suite (27) of the IL-32
gene (Fig. 1C) are highly methylated (Fig. 1D).

Short-term TNF� treatment induces IL-32 expression in a DNA
demethylation–independent manner

Given that the IL-32 gene is induced by TNF� treatment
(7–9) and repressed by DNA methylation in HEK293 cells, we

wondered whether TNF� treatment is sufficient to overcome
DNA methylation–mediated silencing. Thus, we treated
HEK293 cells with 50 ng/ml TNF� and analyzed IL-32 expres-
sion at various time points. IL-32 expression began to be
induced as early as 1 h post-TNF� treatment and was potently
activated after 3 h of TNF� treatment (Fig. 2A).

We next wanted to find out whether IL-32 activation was
accompanied by DNA demethylation. Interestingly, despite the
apparent transcriptional activation, no substantial DNA demeth-
ylation at the promoter or CGI of the IL-32 gene was observed after
1 h of TNF� treatment (Fig. 2, A and B). These results indicate that
TNF� treatment could activate IL-32 gene expression in a DNA
demethylation–independent manner. We then examined THP-1
cells, a human monocyte-like cell line (28), and HAP1 cells, a
human leukemia cell line (29) and also observed DNA demethyl-
ation–independent activation of IL-32 expression upon short-
term TNF� treatment in these cells (Fig. S1).

Long-term TNF� treatment induces significant DNA
demethylation of the IL-32 transcriptional regulatory region

We noticed a slight decrease in DNA methylation at the
IL-32 promoter after 3 h of TNF� treatment (Fig. 2B). This
finding prompted us to perform longer TNF� treatments with

Figure 1. The IL-32 gene is silenced by DNA methylation in HEK293 cells.
A, RNA-Seq results showed that 5-aza-dC treatment activates IL-32 expression
in HEK293 cells. The asterisk indicates that the FPKM values were added a
pseudocount of 0.5 to avoid being divided by zero. B, IL-32 FPKM values in
5-aza-dC- and DMSO-treated samples. C, schematic representation of the
IL-32 promoter and CGI. D, locus-specific bisulfite sequencing results revealed
that the promoter and CGI of IL-32 are highly methylated in HEK293 cells.

Figure 2. TNF� treatment overcomes DNA methylation–mediated silenc-
ing and activates IL-32 expression. A, RT-qPCR results showed that IL-32
expression is quickly activated upon TNF� treatment. Averages from three inde-
pendent experiments are shown, and error bars represent standard deviation. B,
locus-specific bisulfite sequencing data showed that the IL-32 transcriptional reg-
ulatory regions remain largely methylated upon 1-h TNF� treatment and that the
IL-32 promoter is slightly demethylated after 3-h TNF� treatment.
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measurements of IL-32 expression and DNA methylation at
various time points. As we anticipated, long-term TNF� treat-
ment (12 days) resulted in clear DNA demethylation of the
IL-32 transcriptional regulatory regions; furthermore, the
accumulation of DNA demethylation was accompanied by
IL-32 induction (Figs. 3, A–C).

Hypomethylation triggered by long-term TNF� treatment
leads to elevated IL-32 expression after the removal of TNF�

DNA methylation is a relatively stable epigenetic mark;
therefore, we wanted to find out whether the methylation status
of the IL-32 transcriptional regulatory regions could be stably
maintained after TNF� treatment. We treated HEK293 cells
with TNF� for 12 h or 12 days and then cultured the cells in
TNF�-free medium for an additional 10-day period. Bisulfite
sequencing data revealed that the promoter and CGI of the
IL-32 gene remained largely hypomethylated in the cells that
underwent 12 days of TNF� treatment and 10 days of with-
drawal (Fig. 4A), indicating that TNF�-induced DNA demeth-
ylation could be maintained for a considerable period of time.

Moreover, we noticed that prior exposure to long-term
TNF� treatment led to elevated basal IL-32 expression, even
after 10 days of TNF� withdrawal (Fig. 4, B and C). These
results indicated that long-term TNF� treatment not only
caused a stable epigenetic change but also led to a sustained
change in basal expression of the IL-32 gene. Similarly, long-

term TNF� treatment caused DNA demethylation and elevated
basal expression of the IL-32 gene in HAP1 cells (Fig. S2).

To determine whether the above effect could be maintained
for an even longer period, we treated HEK293 cells with TNF�
for 12 days and then cultured them in TNF�-free medium for
10, 18, or 30 days. RT-qPCR results showed that the up-regula-
tion of IL-32 was maintained after 10, 18, and 30 days, although
the up-regulated level became more moderate after 30 days
(Fig. 4D). Consistently, the DNA methylation level of the IL-32
promoter and CpG island began to increase after 30 days of
TNF� withdrawal (Fig. 4E). Taken together, these results sug-
gest that long-term TNF� treatment can induce heritable
hypomethylation at the promoter and CpG island of the IL-32
gene, causing long-term transcriptional alteration.

TET enzymes mediate IL-32 demethylation during long-term
TNF� treatment

DNA demethylation can be achieved by passive demethyla-
tion, TET enzyme–mediated active oxidation and demethyl-
ation, or both (21, 30). To find out whether passive demethyla-
tion was involved in TNF� induced demethylation, we
attempted to arrest the cells at S phase and simultaneously
treated the cells with TNF�. Unfortunately, these cells suffered
from severe cell death, and we were unable to draw a clear
conclusion about whether there was any involvement of passive
demethylation.

Figure 3. IL-32 transcriptional regulatory regions undergo DNA demethylation during 12 days of TNF� treatment. A, RT-qPCR analysis showed that the
IL-32 mRNA level can be more efficiently activated via long-term TNF� treatment. Averages from three independent experiments are shown, and error bars
represent standard deviation. B, Western blot results showed that the IL-32 protein level can be induced with 12 h and 12 days of TNF� treatment. C,
locus-specific bisulfite sequencing results revealed that the promoter and CGI of the IL-32 gene are gradually demethylated during long-term TNF� treatment.
Filled circles indicate methylated CpG sites, and open circles indicate unmethylated CpG sites. CpG site methylation percentages are shown.
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To determine whether DNA demethylation at the promoter
and CpG island of the IL-32 gene was mediated by TET
enzymes, we generated TET1 KO, TET2 KO, TET3 KO, and
TET1/2/3 triple knockout (TKO) cells using the CRISPR-Cas9
system. In these cells, frameshift mutations were introduced at
the C terminus of the TET family proteins to abrogate their
catalytic activity (Figs. S3 and S4, A and B).

We then performed bisulfite sequencing, and the results
revealed that the DNA demethylation induced by TNF� treat-
ment at the IL-32 gene promoter and CGI was largely abrogated

in TET TKO cells, with the single knockouts each displaying
varied partial defects (Fig. 5A). These results suggested that the
TET enzymes function together to promote TNF�-induced
IL-32 gene demethylation. We also confirmed that there was no
up-regulation of DNMT genes in TET TKO cells by RNA-Seq
experiments (Fig. S4C).

We next wanted to find out whether IL-32 gene demeth-
ylation mediated by TET enzymes was responsible for the
elevated IL-32 expression levels in cells recovered from long-
term TNF� treatment. Although IL-32 expression was

Figure 4. IL-32 basal expression is up-regulated after long-term TNF� treatment and is accompanied by sustained hypomethylation at the promoter
and CGI. A, locus-specific bisulfite sequencing data showed that the hypomethylation status of the IL-32 promoter and CGI can be maintained after 10 days of
TNF� withdrawal. B, a time course experiment revealed that the IL-32 basal expression level is up-regulated after long-term TNF� treatment and TNF�
withdrawal. Averages from three independent experiments are shown, and error bars represent standard deviation in the RT-qPCR results. d, day. C, Western
blot results showed that cells treated long-term with TNF� display a higher basal protein expression level of IL-32. D, RT-qPCR results revealed that the
up-regulation of IL-32 expression can be maintained for at least 30 days after TNF� withdrawal. Averages from three independent experiments are shown, and
error bars represent standard deviation. E, bisulfite sequencing data revealed that cells subjected to 12 days of TNF� treatment maintained relatively low
methylation levels at the promoter and CGI of the IL-32 gene even after 30 days of TNF� withdrawal.
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induced by 12 h or 12 days of TNF� treatment in all of the
above cells (Fig. S5), elevated IL-32 basal expression was not
observed in TET TKO cells withdrawn from long-term
TNF� treatment (Fig. 5B). These results are consistent with
the methylation states of the promoter and CGI of the IL-32
gene in these cells and support that long-term TNF� treat-
ment induces DNA demethylation at the transcriptional reg-
ulatory regions of the IL-32 gene, elevating its basal expres-
sion level.

NF-�B– dependent transcriptional activation contributes to
IL-32 gene demethylation and long-term elevation of its basal
expression

TNF� activates the NF-�B signaling pathway and induces
nuclear translocation of the canonical p50/p65 heterodimer
(31–36). Interestingly, a p65 binding site (�B site) is located in
the promoter of the IL-32 gene (Fig. 6A), and its presence was
confirmed by our p65 ChIP-Seq results (Fig. 6B). Therefore, we

Figure 5. TET enzymes mediate DNA demethylation, leading to up-regulated IL-32 basal expression upon long-term TNF� treatment. A, locus-specific
bisulfite sequencing results showed that TET enzymes are responsible for the DNA demethylation events during long-term TNF� treatment. B, RT-qPCR results
showed that the up-regulated IL-32 expression that occurred after long-term TNF� treatment depends on TET enzymes. Averages from three independent
experiments are shown, and error bars represent standard deviation. d, day.
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knocked out the RELA gene, which encodes p65, in HEK293
cells using the CRISPR-Cas9 system (Figs. S6, A and B, and
Table S4) and verified the cells using sequencing (Fig. S6C) and
Western blotting (Fig. 6C). RT-qPCR data revealed that TNF�-

mediated IL-32 activation was significantly impaired in RELA
KO cells (Fig. 6D), indicating that p65 is the predominant tran-
scription factor mediating IL-32 induction in response to
TNF�. Moreover, in RELA KO cells treated with TNF� for 12

Figure 6. NF-�B– dependent transcriptional activation promotes DNA demethylation and results in IL-32 up-regulation after long-term TNF� treat-
ment. A, schematic representation of a �B site (GGGAGTTTCC) in the IL-32 promoter. B, p65 ChIP-Seq results showed that p65 is enriched at the �B site of the
IL-32 promoter after 12 h of TNF� treatment. C, Western blot data validating the RELA KO cell line. D, RT-qPCR results revealed impaired IL-32 induction in RELA
KO cells. Averages from three independent experiments are shown, and error bars represent standard deviation. E, locus-specific bisulfite sequencing results
showed that the IL-32 CpG island DNA demethylation reaction that occurs during long-term TNF� stimulation is impaired in RELA KO cells. F, RT-qPCR results
showed that up-regulation of IL-32 transcription after long-term TNF� treatment is impaired in RELA KO cells. Averages from three independent experiments
are shown, and error bars represent standard deviation. d, day.
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days, the levels of DNA demethylation at the transcriptional
regulatory regions of IL-32 were reduced, especially at the CGI
of the IL-32 gene (Fig. 6E). The impaired DNA demethylation at
the CGI of the IL-32 gene was accompanied by less elevated
basal expression of IL-32 in long-term TNF�-treated RELA KO
cells (Fig. 6F). These data collectively support that TNF�-in-
duced NF-�B signaling pathway activation leads to DNA
demethylation–independent short-term activation and DNA
demethylation– dependent elevation of IL-32 basal transcrip-
tion in the absence of initial TNF� treatment.

Transcription factor–induced DNA demethylation has been
widely reported (37–50). In certain cases, these transcription
factors can associate with TET enzymes (42– 47, 49). In some
other cases, no direct evidence supporting the association
between transcription factors and TET enzymes is provided
(41, 50). We expressed FLAG-TET1, FLAG-TET2, or FLAG-
TET3 in HEK293 cells and stimulated the cells for 12 h with
TNF�. Then we performed immunoprecipitation experiments
with p65 and the TET enzymes, but we did not observe any
robust interaction. On the other hand, increased chromatin
accessibility has been reported to facilitate DNA demethylation
mediated by TET enzymes (51–54). We measured chromatin
accessibility at the IL-32 promoter by formaldehyde-assisted
isolation of regulatory elements assay (55) and observed in-
creased chromatin accessibility in response to 12-h TNF�
treatment (Fig. S6D and Table S5). Thus, we speculate that
p65-induced chromatin opening contributes to DNA demeth-
ylation mediated by TET enzymes.

CREB and the cAMP response element (CRE) at the IL-32
promoter are not required for elevated IL-32 basal expression
upon long-term TNF� treatment

The CpG site within the CRE of the IL-32 promoter has been
reported to be demethylated during influenza A virus infection,
which increases transcription factor CREB binding (4). We
wondered whether this CpG site within the CRE was also a
target for TNF�-induced demethylation, playing a role in long-
term activation of the IL-32 gene. Therefore, we examined the
CRE in the IL-32 promoter (Fig. S7A) and confirmed its demeth-
ylation by TNF� treatment (Figs. 2B, 3C, 4A, and 5A). We next
asked whether this CRE mediates the up-regulation of IL-32
transcription through long-term TNF� stimulation. Frame-
shift mutations were introduced in both alleles of the CREB1
gene to disrupt CREB binding to the CRE (Fig. S7B). However,
the RT-qPCR results revealed normal IL-32 activation by TNF�
in CREB1 KO cells (Fig. S7, C and D).

In addition, we also mutated this CRE within the IL-32 pro-
moter from TGACGTCA to TTTCGTCA (Fig. S7E). Again,
RT-qPCR revealed a largely normal elevation of IL-32 basal
expression after long-term TNF� treatment (Fig. S7F). Collec-
tively, these data suggest that the long-term effect of TNF�
treatment is not solely dependent on DNA demethylation of
the CpG site within the CRE of the IL-32 promoter.

Discussion

Signaling events triggered by environmental cues are well
known for their roles in transcriptional regulation. In most
cases, the majority of transcriptional changes triggered by sig-

nals are reset, and target gene expression returns to its initial
basal level upon withdrawal of the environmental cues that ini-
tiated the signaling events (56, 57). However, sometimes signal-
ing events can also trigger lasting epigenetic changes that facil-
itate a long-term effect (56 –60), which is an interesting field
termed “signal to chromatin” (61–63).

DNA methylation is certainly one of the most stable epige-
netic marks that can mediate a lasting effect. In recent years,
increasing evidence has supported the role of transcription fac-
tor binding in facilitating DNA demethylation in neighboring
regions (37–50) as well as the role of signaling events in stimu-
lating DNA demethylation (64). However, reports of a full axis
from signal to transcription factor to DNA demethylation to a
lasting transcriptional change in the absence of the initiating
signal are still limited (58). Here we report one such case: an axis
involving a TNF� signal, NF-�B pathway activation and asso-
ciation of p65 at the IL-32 promoter, TET enzyme–mediated
IL-32 gene demethylation, and long-term activation of IL-32
expression (Fig. 7).

In addition to the abovementioned case, the discovery of
DNA demethylation– dependent and –independent mecha-
nisms involved in activating IL-32 expression may have addi-
tional significance worthy of further investigation. As a TNF�
target, IL-32 has been reported to reciprocally induce the
expression of TNF� in certain cell types (1). We suspect that,
under certain in vivo situations, a strong acute inflammation
event or the cumulative effect of several acute inflammation
events may lead to demethylation of the IL-32 gene and a lasting
elevation of IL-32 basal expression, which may, in turn, stimu-
late TNF� expression in these cells or neighboring cells. Such a
self-reinforcing feedforward loop may well contribute to the
conversion from acute inflammation to chronic inflammation.
Understanding the potential mechanisms governing the con-
version from acute inflammation to chronic inflammation is
highly important because of its relevance to human health.
Although this study does not offer a clear answer for this impor-
tant question, it provides an interesting direction for future
exploration. One obvious difficulty in following up this study is
the lack of a mouse model. The IL-32 gene does not exist in
rodents (11), and follow-up studies will likely focus on human
diseases. Therefore, one key question is what kind of patholog-
ical conditions may be relevant to our observations. We reason
that chronic inflammatory diseases and autoimmune diseases
are potential candidates on which to focus.

TNF� antagonists, including soluble receptors and antibod-
ies, have excellent efficacy for treatment of chronic inflamma-
tory diseases (e.g. rheumatoid arthritis and inflammatory bowel
disease) (65, 66). Establishing a connection between TNF�-in-
duced demethylation and long-term activation of proinflam-
matory genes, including but not limited to IL-32, in any of the
above diseases would be highly interesting.

To offer a mechanistic answer for TNF�-induced long-term
gene activation in the absence of TNF�, our model is missing
one piece. We reason that the long-term effect of TNF� was
due to DNA demethylation that facilitated the association of
transcription factor(s) sensitive to DNA methylation. However,
in this case, we do not yet know the identity of such transcrip-
tion factor(s). The CREB binding site in the CRE of the IL-32
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promoter and its association with CREB provided an ideal
candidate, particularly because this site was found to be dem-
ethylated in A549 cells infected with influenza virus (4), and
the association of CREB with the CRE is DNA methylation–
sensitive (67, 68). However, in our case, this site does not appear
to be the sole answer because neither mutation of the CREB
gene nor mutation of the CRE site in the IL-32 promoter caused
sufficient changes (Fig. S7). Future studies in this direction are
of great interest.

We also performed HPLC-MRM (multiple reaction moni-
toring) MS/MS experiments at various time points following
TNF� treatment and observed a gradual subtle decline of the
global 5mC level (Fig. S8). Obviously, TNF� treatment–
induced DNA demethylation is not restricted to the IL-32 gene.
The identification of other potential targets and their biological
significance are interesting topics for future investigation.

Experimental procedures

Cell culture

HEK293 cells were cultured in DMEM/high glucose
(HyClone, catalog no. SH30022.01) supplemented with 10%
fetal bovine serum (Biological Industries, catalog no. 04-010-
1ACS) and a penicillin–streptomycin solution (BBI Life Sci-
ences, catalog no. E607011-0100). Recombinant human TNF�
(Peprotech, catalog no. 300-01A) was used at a final concentra-
tion of 50 ng/ml. For long-term TNF� stimulation, TNF� was
added to the culture medium immediately after each passage.

Antibodies

Antibodies against IL-32 (Abcam, catalog no. ab172339), p65
(Santa Cruz Biotechnology, catalog no. sc-372), and histone H3
(Abcam, catalog no. ab1791) are commercially available.

ChIP-Seq

ChIP experiments were performed with HEK293 cells using
procedures described previously (69). ChIP-Seq libraries were
constructed with a Kapa Hyper Prep Kit (Kapa Biosystems, cat-
alog no. KK8504) and NEBNext multiplex oligos for Illumina

(index primer set 1, New England Biolabs, catalog no. E7335).
Libraries were sequenced via NovaSeq using the 150-bp paired-
end mode.

Bioinformatics

50-bp single-end reads were generated by BGISEQ-500 plat-
forms for mRNA sequencing experiments (BGI, Shenzhen,
China). Sequencing quality was evaluated with FastQC soft-
ware and aligned to human genome hg38 using STAR Aligner.
FPKM values were quantified using Cuffdiff (v2.0.2). FPKM val-
ues were added to a pseudovalue of 0.5 to avoid being divided
by zero. ChIP-Seq reads were generated by Illumina
NovaSeq-6000 platforms (paired end, 150 bp). Adaptors
were removed by Trim_galore software and then aligned to
hg38 genome sequences (�2-bp mismatches allowed) with
Bowtie2. Uniquely mapped reads were kept and then
extended to the average fragment size. Genome profile files
were generated with IGV (integrative genomics viewer) tools
and linearly normalized to the same depth of 10 million reads.

IL-32 locus-specific methylation analysis

To perform IL-32 promoter and CpG island (Table S1) locus-
specific methylation analysis, purified genomic DNA was
treated with an EpiTect Bisulfite Kit (Qiagen, catalog no.
59104), and the converted DNA was amplified using locus-spe-
cific nested PCR primers (Table S2). Purified PCR products
were cloned, sequenced, and then analyzed using a BiQ Ana-
lyzer (70).

Genome editing using the CRISPR-Cas9 system

To generate RELA knockout, CREB1 frameshift mutant,
IL-32 promoter CRE mutant, and TET frameshift mutant cell
lines, guide RNA sequences (Table S3) were designed and
cloned into lentiCRISPR v2 vectors (Addgene, 52961) (71).
Individual clones were verified by genotyping PCR and Sanger
sequencing.

Figure 7. A model for DNA demethylation– dependent and –independent activation of IL-32 expression upon TNF� treatment.
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Primers for RT-qPCR

The sequences of primers used for RT-qPCR included the
following: IL-32 forward, TGGCGGCTTATTATGAGGAGC;
IL-32 reverse, CTCGGCACCGTAATCCATCTC; GAPDH
forward, CTGGGCTACACTGAGCACC; GAPDH reverse,
AAGTGGTCGTTGAGGGCAATG.
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