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ABSTRACT Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS) and
is the only hantavirus shown to spread person to person and cause a highly lethal
HPS-like disease in Syrian hamsters. The unique ability of ANDV N protein to inhibit
beta interferon (IFN�) induction may contribute to its virulence and spread. Here we
analyzed IFN� regulation by ANDV N protein substituted with divergent residues
from the nearly identical Maporal virus (MAPV) N protein. We found that MAPV N
fails to inhibit IFN� signaling and that replacing ANDV residues 252 to 296 with a
hypervariable domain (HVD) from MAPV N prevents IFN� regulation. In addition,
changing ANDV residue S386 to the histidine present in MAPV N or the alanine
present in other hantaviruses prevented ANDV N from regulating IFN� induction. In
contrast, replacing serine with phosphoserine-mimetic aspartic acid (S386D) in ANDV
N robustly inhibited interferon regulatory factor 3 (IRF3) phosphorylation and IFN�

induction. Additionally, the MAPV N protein gained the ability to inhibit IRF3 phos-
phorylation and IFN� induction when ANDV HVD and H386D replaced MAPV resi-
dues. Mass spectroscopy analysis of N protein from ANDV-infected cells revealed
that S386 is phosphorylated, newly classifying ANDV N as a phosphoprotein and
phosphorylated S386 as a unique determinant of IFN regulation. In this context, the
finding that the ANDV HVD is required for IFN regulation by S386 but dispensable
for IFN regulation by D386 suggests a role for HVD in kinase recruitment and S386
phosphorylation. These findings delineate elements within the ANDV N protein that
can be targeted to attenuate ANDV and suggest targeting cellular kinases as poten-
tial ANDV therapeutics.

IMPORTANCE ANDV contains virulence determinants that uniquely permit it to
spread person to person and cause highly lethal HPS in immunocompetent ham-
sters. We discovered that ANDV S386 and an ANDV-specific hypervariable domain
permit ANDV N to inhibit IFN induction and that IFN regulation is directed by phos-
phomimetic S386D substitutions in ANDV N. In addition, MAPV N proteins contain-
ing D386 and ANDV HVD gained the ability to inhibit IFN induction. Validating these
findings, mass spectroscopy analysis revealed that S386 of ANDV N protein is
uniquely phosphorylated during ANDV infection. Collectively, these findings reveal
new paradigms for ANDV N protein as a phosphoprotein and IFN pathway regulator
and suggest new mechanisms for hantavirus regulation of cellular kinases and sig-
naling pathways. Our findings define novel IFN-regulating virulence determinants of
ANDV, identify residues that can be modified to attenuate ANDV for vaccine devel-
opment, and suggest the potential for kinase inhibitors to therapeutically restrict
ANDV replication.
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Hantaviruses are transmitted by persistently infected rodent hosts (1–8). In humans,
pathogenic hantaviruses predominantly infect the endothelial cell (EC) lining of

capillaries and nonlytically disrupt normal barrier functions, causing highly lethal
edematous and hemorrhagic diseases (1, 5, 9–14). In Eurasia, pathogenic hantaviruses
cause hemorrhagic fever with renal syndrome (HFRS) (1, 4, 5, 15), while hantaviruses in
the Americas cause hantavirus pulmonary syndrome (HPS) (1, 2, 9–13, 16–19). Several
hantaviruses cause HPS, including Sin Nombre virus (SNV) and New York 1 virus (NY-1V)
in North America and Andes virus (ANDV) in South America (1, 2, 9–13, 16–23). In HPS
patients, nearly every pulmonary EC is infected (9) and HPS is characterized by acute
pulmonary edema, thrombocytopenia, hypoxia, respiratory distress, and a high mor-
tality rate (35% to 49%) (9, 11, 12, 14, 24, 25). ANDV is the only hantavirus spread person
to person (20, 21), and ANDV uniquely causes a highly lethal HPS-like disease in
immunocompetent Syrian hamsters (26–32). Steroids do not alter hantavirus disease in
patients (24). In hamsters, immunosuppression fails to inhibit lethal ANDV-directed HPS
and, in contrast, immunosuppression permits SNV to cause lethal HPS (29). In vitro,
pathogenic hantaviruses bind inactive �v�3 integrins (33–36), dysregulate normal
integrin functions which direct EC migration (37–39), and exacerbate hypoxia-induced
vascular permeability responses (38–41). ANDV infection of primary human pulmonary
microvascular ECs activates RhoA signaling pathways that direct the disassembly of
interendothelial cell adherens junctions and increase EC permeability (38–42).

Hantaviruses are enveloped negative-stranded RNA viruses with tripartite genomes
(1, 43–45). The L, M, and S gene segments encode, respectively, the viral polymerase,
Gn and Gc virion surface glycoproteins, and a nucleocapsid protein (N) (1, 44, 46). Gn
and Gc are integral membrane glycoproteins that are trafficked to the endoplasmic
reticulum (ER)/cis-Golgi network and acquired on virions during viral budding into the
lumen of the ER/cis-Golgi (1, 6, 46–49). The cytoplasmic tail of Gn (GnT) functions as a
matrix protein that recruits N protein encapsidated RNA to the ER/cis-Golgi, where
hantaviruses assemble and bud (1, 43, 46).

Replication of RNA viruses results in the generation of double-stranded or 3=-
triphosphate-containing RNAs that are sensed by melanoma differentiation-associated
protein 5 (MDA5) and retinoic acid-inducible gene I (RIG-I) (50–52), which induce type
I interferon (alpha/beta interferon [IFN�/�]). MDA5 and RIG-I direct the aggregation of
mitochondrial antiviral-signaling (MAVS) protein. which, in turn, recruits tank binding
kinase 1 (TBK1), which phosphorylates interferon regulatory factor 3 (IRF3) and activates
NF-�B (50–52). Activated NF-�B and pIRF3 are transcription factors that translocate to
the nucleus and in ECs bind the IFN� enhanceosome and transcriptionally induce the
expression of IFN� and a subset of cellular IFN-stimulated genes (ISGs) (50, 51). IFN� is
secreted and binds in an autocrine and paracrine manner to cellular IFN�/� receptors
(IFNARs), which further amplify the induction of antiviral ISGs (53, 54).

Prior treatment of ECs with IFN prevents hantavirus replication (55, 56), and patho-
genic hantaviruses regulate the early induction of IFN� in order to successfully replicate
in ECs (55–59). In contrast, nonpathogenic Prospect Hill virus (PHV) fails to regulate
early IFN induction or productively replicate in human ECs (55–59). Consequently,
hantaviruses with the potential to be human pathogens prevent the early induction of
IFN�, which would otherwise restrict hantavirus replication in human ECs (55–57,
59–62).

With the exception of PHV, GnTs from all hantaviruses tested inhibit IRF3 phosphor-
ylation and regulate IFN� induction in order to replicate in human ECs (55, 57, 60, 61,
63). We previously reported that, in addition to GnT regulation of IFN� signaling
pathways, ANDV contains a distinctively configured N protein that uniquely inhibits
IFN� induction (64). Thus far, only the ANDV N protein has been found to regulate IFN�

induction, while N proteins from other HPS- and HFRS-causing hantaviruses fail to
prevent RIG-I/MDA5/TBK1-directed transcriptional responses (64). ANDV N inhibits TBK1
autophosphorylation at a point upstream and ancillary to GnT regulation of IRF3
phosphorylation (64). This uniquely provides ANDV with a second mechanism for
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inhibiting IFN� induction and indicates that ANDV contains two proteins that block
sequential signaling steps required for IFN� induction (64).

A second ANDV protein that regulates IFN� induction suggests that ANDV N protein
is an ANDV-specific IFN-regulating virulence determinant with the potential to increase
ANDV replication and spread. This provides potential mechanisms for ANDV to uniquely
spread person to person and to bypass innate immune responses that permit ANDV to
cause lethal HPS in Syrian hamsters. In support of this, SNV, which lacks an N protein
that regulates IFN responses, induces early innate immune responses in Syrian ham-
sters which prevent SNV from causing HPS in hamsters (27, 29, 32). Recent studies of
ANDV/SNV reassortants indicate that both ANDV S (N protein) and M (Gn) RNA
segments are required for HPS-like disease in Syrian hamsters (29, 65) and are consis-
tent with requirements for both ANDV N and GnT proteins to regulate innate immune
responses for ANDV to cause HPS in immunocompetent hamsters.

Hantavirus N proteins are highly conserved; however, the elements within the ANDV
N protein that uniquely inhibit IFN� induction remain unknown (64). Here we swapped
residues from ANDV and Maporal virus (MAPV) (30, 66) N proteins in order to define
residues required for N protein to inhibit RIG-I/MDA5/TBK1-directed IFN� induction. We
identified S386 and a hypervariable domain (HVD; residues 252 to 296) to be critical for
ANDV N protein to regulate IFN signaling. Substituting the MAPV HVD or H386 into the
ANDV N protein prevented N protein from regulating IFN responses. Further substitut-
ing ANDV N with a phosphoserine-mimetic S386D mutation robustly inhibited IRF3
phosphorylation and IFN induction. Reciprocally, replacing homologous residues of the
MAPV N protein with D386 and the ANDV HVD conferred IFN pathway inhibition to the
MAPV N protein. The ability of phosphomimetic S386D mutations to block IFN signaling
suggested the potential for posttranslational phosphorylation of ANDV N protein to
direct IFN regulation. To determine whether N protein is phosphorylated, we immu-
noprecipitated N protein from ANDV-infected cells and by mass spectroscopy (MS) of
N protein tryptic peptides definitively found that S386 is phosphorylated. These find-
ings newly establish ANDV N as a phosphoprotein and phosphorylated S386 (pS386) as
a unique determinant of IFN regulation. These data indicate that ANDV N S386
phosphorylation regulates IFN induction, defines the HVD and S386 as targets for
attenuating ANDV, and suggests that cellular kinases are potential targets for anti-
ANDV therapeutics.

RESULTS
MAPV N fails to inhibit IFN� induction. We previously reported that the ANDV N

protein, but not N proteins from SNV, NY-1V, or PHV, inhibits RIG-I-, MDA5-, and
TBK1-directed IFN signaling responses (64). The domains and residues that permit the
ANDV N protein to uniquely regulate IFN signaling responses remain unknown. We first
determined whether the N protein from MAPV regulates IFN induction, because MAPV
is a South American hantavirus with an N protein that is 92% identical and 95% similar
to ANDV N (30, 66). HEK293T cells were cotransfected with plasmids expressing N
proteins from ANDV, NY-1V, and MAPV along with plasmids expressing the IFN
pathway activator MDA5 or RIG-I and either the interferon-stimulated response
element (ISRE) or IFN� promoter-directed luciferase (Luc) reporter. As previously
reported, expressing the ANDV N protein, but not the NY-1V N, inhibited RIG-I- and
MDA5-directed ISRE and IFN� induction (50% to 70%) (64) (Fig. 1A to D). Similar to
the findings obtained by expressing NY-1V N, expressing the MAPV N protein failed
to inhibit ISRE or IFN� transcriptional responses (Fig. 1A to D). In addition, the MAPV
N protein failed to inhibit TBK1-directed ISRE and IFN� transcriptional responses
(Fig. 1E and F) or block RIG-I-directed IRF3 phosphorylation (pS396) (Fig. 2). These
results indicate that the MAPV N protein is unable to inhibit IFN induction and
suggest that the few residues that differentiate the ANDV and MAPV N proteins are
likely to confer IFN regulation to ANDV N.

Unique ANDV N protein residues with the potential to confer IFN regulation.
We aligned the ANDV N protein with N proteins from NY-1V, SNV, and MAPV to identify
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FIG 1 MAPV N protein fails to regulate ISRE and IFN� induction. HEK293T cells were cotransfected with
a constant amount of total DNA using plasmids expressing ANDV, NY-1V, or MAPV N proteins or

(Continued on next page)
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residue differences with the potential to inhibit IFN signaling (Fig. 3). Only 11 residues
were uniquely present in the ANDV N protein and were not shared with either MAPV,
SNV, or NY-1V (Fig. 3, red residues) or were conservative amino acid substitutions
(L-I-V-M; D-E; K-R; T-S) (Fig. 3, black residues). Nine unique MAPV residues were present
in a single hypervariable domain (HVD; amino acids 252 to 296; Fig. 3), with 2 other
novel residues being found at positions 226 (G) and 386 (S) (Fig. 3). These differences
suggested specific ANDV N residues that may direct IFN regulation.

N protein HVD chimeras lack the ability to regulate IFN signaling. The HVD
between ANDV and MAPV N proteins contains highly dissimilar residues at positions
252 and 253 (VA¡SQ), 270 (R¡Q), 273 (N¡R), 278 (Q¡A), 285 and 286 (DH¡QT), 289
(T¡A), and 296 (T¡H) (Fig. 3). To determine if the HVD contributes to IFN regulation,
we expressed chimeric N proteins with residues 252 to 296 from MAPV, replacing ANDV
residues in an ANDV N protein background (ANDV N:Δhvd), and reciprocally replaced
the MAPV HVD with ANDV residues in an MAPV N protein background (MAPV N:Δhvd)
(Fig. 4A). We found that, in contrast to wild-type (wt) ANDV N protein, both the chimeric
ANDV N:Δhvd and the MAPV N:Δhvd proteins failed to inhibit MDA5-directed ISRE or
IFN� transcriptional responses (Fig. 4B and C) or IRF3 phosphorylation (Fig. 4D). These
findings demonstrate the importance of the HVD in ANDV N protein inhibition of IFN
signaling responses, but also reveal that the ANDV HVD is insufficient to confer IFN
regulation to the MAPV N protein.

Site-directed HVD mutations fail to alter IFN regulation. The loss of IFN regula-
tion by the ANDV N:Δhvd protein suggested that one or more key residues within the
HVD may be critical for ANDV N protein-directed IFN regulation. The ANDV and MAPV
N proteins differ by 17 amino acids; however, several ANDV residues are identical
(residues 256, 265, and 276) or similar (residues 263, 266, 279, and 281) to those present
in NY-1V or SNV N proteins, which fail to regulate IFN induction (Fig. 5A). As a result,
we focused our attention on 9 ANDV-specific residues in the HVD that differ from the
residues in the MAPV, NY-1V, and SNV N protein HVDs as well as a lysine-to-arginine
change at residue 262 (K262R) (Fig. 5A, red residues). ANDV N protein mutants
containing one, two, or three HVD substitutions with MAPV residues were generated by
site-directed mutagenesis (Fig. 5A). Similar to the wt ANDV N protein, we found that all
of the ANDV HVD single, double, or triple N protein mutants still inhibited MDA5-

FIG 1 Legend (Continued)
pcDNA3.1�, ISRE, or IFN� promoter-directed firefly luciferase (Luc) reporters, an internal pRL-null Renilla
luciferase control, and IFN pathway-activating plasmids expressing Flag-MDA5 (A to C), Flag-RIG-I-CARD
(D), or Flag-TBK1 (E and F). Firefly luciferase activity was measured at 24 h posttransfection, normalized
to control cotransfected constitutively expressing Renilla luciferase activity, and reported as the fold
increase compared to that in the empty vector pcDNA3.1�-transfected controls. Western blot analysis of
N protein, pathway inducers, and �-actin (total protein) indicates comparable protein expression levels
in the lysates. The assays were performed in triplicate with similar results in at least 3 separate
experiments. Asterisks indicate statistical significance (*, P � 0.05; **, P � 0.01; ***, P � 0.001), as deter-
mined by one-way ANOVA with Tukey’s post hoc test.

FIG 2 MAPV N protein fails to inhibit IRF3 phosphorylation. HEK293T cells were cotransfected as
described in the legend to Fig. 1 with a constant amount of DNA using plasmids expressing Flag-RIG-
I-CARD or IRF3 and increasing amounts of plasmids expressing ANDV, NY-1V, or MAPV N proteins and the
empty vector (pcDNA3.1�). Phospho-IRF3 (pIRF3 S-396), total IRF3, Flag-RIG-I, and N protein expression
was analyzed by Western blotting. Western blot analysis of N protein, RIG-I, IRF3, and �-actin (total
protein) indicates comparable protein expression levels in lysates.
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directed ISRE or IFN� transcriptional responses (Fig. 5B and C) and IRF3 phosphoryla-
tion (Fig. 5D). These findings demonstrate that individual or clustered HVD changes
failed to disrupt IFN regulation and that IFN regulation is conferred by a cooperative
group of ANDV HVD residues.

Mutating S386 to H abolishes IFN pathway regulation by ANDV N protein. In
addition to HVD residues, amino acid S386 is unique to ANDV N protein and in virtually
all other hantaviruses is either a histidine or an alanine residue. We found that an ANDV
N:S386H mutant was unable to inhibit MDA5-directed ISRE or IFN� transcriptional
responses (Fig. 6A and B) and also failed to dose dependently block MDA5-directed
IRF3 phosphorylation (Fig. 6C). Despite this, reciprocally mutating H386S in the MAPV
N protein failed to confer IFN pathway regulation (Fig. 6A and B). Taken together, these
results identify S386 to be critical for the ANDV N protein to inhibit IFN signaling
responses but insufficient by itself to confer regulation to MAPV N.

N protein mutants oligomerize with wt ANDV N. Although it was not anticipated
from residue swaps between homologous N proteins, we determined if IFN regulation
was altered due to aberrant N protein oligomerization. To address this, we coexpressed
ANDV N protein fused C terminally to green fluorescent protein (GFP) with wt ANDV N,
ANDV N:S386H, ANDV N:Δhvd, or ANDV N:Δhvd-S386H proteins and evaluated mutant
protein coimmunoprecipitation with wt ANDV N protein. We found that mutant ANDV
N proteins coprecipitated ANDV N-GFP similarly to wt ANDV N protein (Fig. 7A). These
findings fail to demonstrate a difference in protein oligomerization resulting from
residue swaps between virus-encoded and viable N protein homologues and suggest

FIG 3 Unique ANDV N protein residues with the potential to confer IFN regulation. The amino acid sequence of ANDV N protein was aligned with the amino
acid sequences of the MAPV, NY-1V, and SNV N proteins, and residues that differed from those in ANDV are shown. In comparison with ANDV N protein,
conservative amino acid differences (black) and novel residues in MAPV (red) are displayed.
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FIG 4 N protein HVD chimeras lack the ability to regulate IFN signaling. (A) HVD residues (252 to 296)
between ANDV and MAPV N proteins were reciprocally swapped to generate ANDV N:Δhvd and MAPV
N:Δhvd mutant proteins. (B and C) HEK293T cells were cotransfected as described in the legend to Fig. 1 with
plasmids expressing ISRE/IFN� promoter firefly luciferase reporters, Renilla luciferase, Flag-MDA5, and, as
indicated, plasmids expressing wt ANDV N protein, ANDV N:Δhvd, MAPV N:Δhvd, or wt MAPV N protein. Cells
were lysed at 24 h posttransfection, and firefly luciferase activity was normalized to internal control Renilla
luciferase activity, evaluated as described in the legend to Fig. 1. Comparable protein expression levels are
shown in the Western blots. Assays were performed in triplicate with similar results in at least 3 separate
experiments. Asterisks indicate statistical significance (*, P � 0.05), as determined by one-way ANOVA with
Tukey’s post hoc test. (D) HEK293T cells were transfected as described in the legend to Fig. 2 with plasmids
expressing IRF3, Flag-MDA5, and wt ANDV N protein, ANDV N:Δhvd, MAPV N:Δhvd, or wt MAPV N protein.
Phospho-IRF3 (pIRF3 S-396), Flag-MDA5, N protein, and �-actin expression levels were analyzed by Western
blotting, and the results are representative of those from �2 experiments.
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FIG 5 Site-directed HVD mutations fail to alter IFN regulation. (A) ANDV N mutants were generated to contain one,
two, or three dissimilar MAPV residues which also differ between ANDV, NY-1V, and SNV N proteins (Fig. 3, red
residues). (B and C) HEK293T cells were cotransfected as described in the legend to Fig. 1 with a constant amount of
plasmid DNA expressing ISRE or IFN� promoter-directed firefly luciferase reporters, an internal Renilla luciferase
control, Flag-MDA5, and plasmids expressing the indicated ANDV HVD N protein mutants, wt ANDV or MAPV N protein,
or the empty vector. Luciferase activity was measured and Western blot analysis was performed as described in the
legend to Fig. 1. Assays were performed in triplicate with similar results in at least 3 separate experiments. Asterisks
indicate statistical significance (***, P � 0.001), as determined by one-way ANOVA with Tukey’s post hoc test. (D)
HEK293T cells were cotransfected with plasmids expressing Flag-MDA5, IRF3, and the indicated mutant or wt ANDV
or MAPV N protein. Phospho-IRF3 [pIRF3 (Ser 396)], Flag-MDA5, N protein, and �-actin expression levels were analyzed
by Western blotting, and the results are representative of those from �2 experiments.
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that anomalous protein folding is not likely responsible for the differences in IFN
inhibition observed between N protein mutants.

Role of HVD and H386S in IFN regulation by MAPV N protein. Although
substituting the MAPV HVD or mutating S386H in ANDV N prevented IFN regulation
(Fig. 4B to D and 6A to C), reciprocal swaps into the MAPV N failed to block IFN
induction. To determine whether both changes are required to confer IFN pathway
regulation, we generated N proteins with both HVD and residue 386 changes (MAPV
N:Δhvd-H386S and ANDV N:Δhvd-S386H) (Fig. 7B) and assayed their ability to inhibit

FIG 6 ANDV N protein S386 is critical for IFN regulation. (A and B) HEK293T cells were cotransfected as
described in the legend to Fig. 1 with ISRE or IFN� firefly luciferase reporters and plasmids expressing
Flag-MDA5, control Renilla luciferase, and plasmids expressing the indicated N proteins: wt ANDV N,
ANDV N:S386H, wt MAPV, or MAPV N:H386S. Luciferase activity was measured and Western blot analysis
of input proteins was performed as described in the legend to Fig. 1. Assays were performed in triplicate
with similar results in at least 3 separate experiments. Asterisks indicate statistical significance (*,
P � 0.05; **, P � 0.01), as determined by one-way ANOVA with Tukey’s post hoc test. (C) HEK293T cells
were cotransfected as described in the legend to Fig. 2 with plasmids expressing IRF3 or Flag-MDA5 and
plasmids expressing the indicated N protein: wt ANDV N, ANDV N:S386H, MAPV N:H386S, or wt MAPV N.
After 24 h, cells were harvested and analyzed by Western blotting as described in the legend to Fig. 2,
and the results are representative of those from �2 experiments.
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IFN induction. However, despite containing both the ANDV HVD and H386S, the
chimeric MAPV N:Δhvd-H386S mutant failed to inhibit MDA5-directed ISRE induction
(Fig. 7C). Thus, additive ANDV N HVD and S386 changes were still insufficient to confer
IFN pathway regulation to the MAPV N protein.

FIG 7 Mutating the MAPV N protein to N:H386S or N:Δhvd fails to confer IFN regulation. (A and B)
HEK293T cells were cotransfected with plasmids expressing an ANDV N-GFP fusion protein (ANDV-GFP)
and plasmids expressing wt ANDV N protein, ANDV N:S386H, ANDV N:Δhvd, or ANDV N:Δhvd-S386H (A)
or mutants with changes in the HVD and residue 386, ANDV N:Δhvd (ANDV N:Δhvd-S386H) and MAPV
N:Δhvd (MAPV N:Δhvd-H386S) (B). Cell lysates were immunoprecipitated (IP) at 48 h posttransfection
with anti-GFP antibody and assayed by Western blotting (WB) for coprecipitated ANDV N protein or input
N protein by Western blotting. (C) HEK293T cells were cotransfected as described in the legend to Fig.
1 with plasmids expressing Flag-MDA5, ISRE firefly luciferase and Renilla luciferase reporters, and the
indicated N protein mutants or empty vector. Luciferase activity was measured, Western blot analysis was
performed, and the results were analyzed as described in the legend to Fig. 1. Assays were performed
in triplicate with similar results in at least 3 separate experiments. Asterisks indicate statistical significance
(*, P � 0.05), as determined by one-way ANOVA with Tukey’s post hoc test.
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Phosphomimetic S386D directs IFN regulation by ANDV and MAPV N proteins.
Serine phosphorylation of IRF3 is required for IFN pathway regulation, and S386
uniquely determines whether ANDV N protein regulates IFN induction. Since other
hantavirus N proteins lack a serine at position 386, we evaluated whether substi-
tuting a phosphoserine mimetic, aspartic acid, permitted ANDV N to inhibit IFN
signaling. ANDV N mutants containing S386D or S386A were generated and com-
paratively tested for IFN regulation. Similar to the ANDV N:S386H mutant, the ANDV
N:S386A mutant failed to inhibit IFN signaling responses (Fig. 8A and B). However,
we found that the phosphoserine-mimetic ANDV N:S386D mutant robustly inhib-
ited MDA5-directed ISRE and IFN� induction (Fig. 8A to D) and IRF3 phosphoryla-
tion (Fig. 8E). In contrast, the H386D substitution in the MAPV N protein (MAPV
N:H386D) failed to regulate MDA5-directed ISRE and IFN� transcription (Fig. 8C and
D) or IRF3 phosphorylation (Fig. 8E). These findings indicate that ANDV N protein
regulates IFN induction when either serine or the phosphoserine-mimetic aspartic
acid is present at residue 386. These findings implicate a role for phosphoserine in
IFN regulation by the ANDV N protein.

Roles for both HVD and S386 suggest the potential for a stepwise activation process
that could render phosphomimetic D386-directed IFN regulation independent of the
ANDV HVD. Here we determined whether the S386D mutation still required the
presence of the ANDV HVD to inhibit IFN induction. We observed that the ANDV
N:Δhvd-S386D mutant robustly inhibited MDA5-directed ISRE/IFN� induction (Fig. 9A
and B) and IRF3 phosphorylation (Fig. 9C). Thus, despite the presence of the MAPV HVD,
which alone abolished IFN regulation in ANDV N, the S386D mutation by itself by-
passed this restriction and conferred IFN regulation. In a reciprocal analysis we found
that MAPV N protein gained the ability to inhibit IRF3 phosphorylation (Fig. 9C) when
the MAPV N protein contained both phosphomimetic D386 and the ANDV HVD (MAPV
N:Δhvd-H386D). Thus, the MAPV N protein containing D386 still requires the presence
of the ANDV HVD to inhibit IFN induction. Collectively, these findings indicate that in
the ANDV N protein, phosphomimetic D386 is functional in regulating IFN responses,
regardless of the origin of the HVD, but that when S386 rather than the phosphoserine
mimetic is present, IFN regulation is dependent on the ANDV HVD. These findings
suggest that interactions of the HVD are required to direct S386 phosphorylation and
that the HVD does not mediate regulation once S386 is phosphorylated or D386 is
expressed.

ANDV N protein is phosphorylated. There is currently no evidence that N protein

is phosphorylated during ANDV infection, yet our findings identify S386 and phospho-
mimetic D386 to be critical for N protein to inhibit IFN signaling. To determine whether
S386 is phosphorylated during infection, we infected VeroE6 cells with ANDV or MAPV,
immunoprecipitated N protein at 3 days postinfection, and analyzed N protein tryptic
peptides for phosphorylation by nano-liquid chromatography tandem mass spectros-
copy (nLC/MS-MS). ANDV N protein S386 was found with a high confidence to be
phosphorylated by nLC/MS-MS analysis of 12 separate tryptic peptide spectra (res-
idues 379 to 406; Fig. 10A to D). The MAPV N protein contains H386, and consistent
with this, the MAPV tryptic peptide from residues 379 to 406 is not phosphorylated
(Fig. 10B); however, no additional phosphorylated MAPV or ANDV peptides were
resolved with high confidence by nLC/MS-MS. These findings newly demonstrate
that ANDV N is a phosphorylated on S386, the same residue required for IFN
regulation by ANDV N.

Collectively, these findings demonstrate that the ANDV N protein is phosphorylated
at S386 during ANDV infection and that IFN regulation by the ANDV N protein is
dependent on the presence of S386 or phosphoserine-mimetic D386 residues. This
reveals a unique ANDV determinant of IFN regulation, a function associated with viral
virulence and spread, and suggests potential mechanisms for attenuating ANDV by
replacing N:S386 and HVD residues.
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FIG 8 Phosphomimetic S386D directs IFN regulation by ANDV N protein. (A to D) HEK293T cells were
cotransfected as described in the legend to Fig. 1 with plasmids expressing Flag-MDA5, ISRE/IFN� firefly

(Continued on next page)
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DISCUSSION

Currently, there are no hantavirus-specific therapeutics or vaccines, and defining
determinants of hantavirus pathogenesis may identify targets for viral attenuation and
therapeutic intervention (6, 24, 67, 68). ANDV is responsible for causing highly lethal
HPS in South America within the natural range of its rodent host, Oligoryzomys
longicaudatus (1, 32). However, unlike other HPS- or HFRS-causing hantaviruses, ANDV
is also reportedly transmitted person to person and causes a 100% fatal HPS-like
disease in immunocompetent Syrian hamsters (16, 27, 32, 69). In contrast, MAPV, a
closely related South American hantavirus (70, 71), has not been associated with human
disease, and MAPV causes a milder HPS-like disease in Syrian hamsters that is only 20%
lethal (30, 66). In North America, SNV causes HPS, yet SNV lacks virulence determinants
that permit it to be transmitted person to person and or cause disease in immuno-
competent Syrian hamsters (29). SNV induces early innate immune responses in
hamsters that restrict replication and protect the hamsters from subsequent lethal
ANDV infection (29). Consistent with innate immunity restricting SNV virulence, SNV
causes lethal HPS in dexamethasone-immunocompromised Syrian hamsters, where
type I IFN responses are downregulated (29). In contrast, ANDV’s unique ability to
spread person to person and cause HPS in Syrian hamsters is consistent with an
enhanced ability to regulate IFN responses and suggests a role for unique IFN-
regulating determinants of ANDV in enhancing ANDV replication and spread.

Hantavirus replication is highly sensitive to prior or early type I IFN addition, and
pathogenic hantaviruses prevent early IFN� induction in ECs (55, 57, 60, 61, 63). Gn
proteins from pathogenic hantaviruses contain GnTs with the ability to inhibit early IFN
responses and permit hantaviruses to replicate in human ECs by reducing TBK1-
directed IRF3 phosphorylation (55, 57, 60, 61, 63). We previously reported that the
ANDV N protein uniquely prevents RIG-, MDA5-, and TBK1-directed IFN responses by
inhibiting TBK1 activation at a step upstream and ancillary to GnT IFN regulation (64).
Thus, ANDV uniquely contains a second IFN-regulating protein that provides an addi-
tional means of inhibiting IFN induction and that is consistent with enhanced ANDV
replication and spread (29, 65). A role for N protein in ANDV virulence is also evident
from the analysis of ANDV and SNV reassortant viruses, where the ability of ANDV to
cause lethal disease in Syrian hamsters requires both ANDV M and S segments (29, 65).
This is consistent with requirements for IFN regulation by both ANDV N and GnT
proteins to bypass hamster IFN responses that restrict the virulence of SNV (65). This
suggests that, when combined, both IFN-regulating ANDV N and GnT proteins are
determinants of ANDV virulence.

Here we compared ANDV N protein functions with the functions of N protein from
MAPV, a closely related South American hantavirus that is not associated with human
disease and that fails to cause highly lethal HPS in Syrian hamsters (30, 66, 70, 71).
Outside of a single HVD (residues 252 to 296), MAPV and ANDV N proteins are 96%
identical (99.7% similar). Despite this homology we found that, similar to SNV, NY-1V,
and other hantavirus N proteins tested thus far (64), the MAPV N protein is unable to
regulate IFN responses. This high level of amino acid identity permitted the use of a
homologous residue substitution approach to define N protein elements required to
inhibit IFN induction. We found that substituting the MAPV HVD for the ANDV HVD

FIG 8 Legend (Continued)
luciferase and Renilla luciferase reporters, the pcDNA3.1� empty vector, and the indicated N proteins: wt
ANDV N, ANDV N:S386H, ANDV N:S386A, ANDV N:S386D, MAPV N:H386D, or wt MAPV N. Luciferase
activity was measured, Western blot analysis were performed, and the results were analyzed as described
in the legend to Fig. 1. Assays were performed in triplicate with similar results in at least 3 separate
experiments. Asterisks indicate statistical significance (*, P � 0.05; **, P � 0.01; ***, P � 0.001), as deter-
mined by one-way ANOVA with Tukey’s post hoc test. (E) HEK293T cells were cotransfected with plasmids
expressing IRF3 and Flag-MDA5 as described in the legend to Fig. 2 and the plasmids expressing the
indicated N protein: wt ANDV N, ANDV N:S386D, MAPV N:H386D, wt MAPV N, or the empty vector.
Proteins were analyzed for Flag-MDA5, �-actin, total and phosphorylated IRF3, and N protein levels by
Western blotting as described in the legend to Fig. 2, and the results are representative of those from
�2 experiments.
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FIG 9 Role of HVD and H386D in IFN regulation by MAPV N protein. (A and B) HEK293T cells were cotransfected
as described in the legend to Fig. 1 with plasmids expressing Flag-MDA5, ISRE or IFN� firefly luciferase and Renilla
luciferase reporters, and plasmids expressing the indicated N protein: ANDV N:Δhvd, ANDV N:Δhvd-S386D, MAPV
N:Δhvd, or MAPV N:Δhvd-H386D. Luciferase activity was measured and Western blot analysis was performed as
described in the legend to Fig. 1. Assays were performed in triplicate with similar results in at least 3 separate
experiments. Asterisks indicate statistical significance (*, P � 0.05; **, P � 0.01), as determined by one-way ANOVA
with Tukey’s post hoc test. (C) HEK293T cells were cotransfected with plasmids expressing IRF3, Flag-MDA5, and the
indicated N protein expression plasmid (ANDV N:Δhvd, ANDV N:Δhvd-S386D, MAPV N:Δhvd, MAPV N:Δhvd-H386D,
wt ANDV N, or MAPV N) as described in the legend to Fig. 2. After 24 h, cells were harvested and analyzed by
Western blotting as described in the legend to Fig. 2, and the results are representative of those from �2
experiments.
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FIG 10 Mass spectroscopy analysis of N protein phosphorylation in infected cells. VeroE6 cells were ANDV or MAPV infected at an MOI of 0.5, and cell
lysates were harvested at 3 dpi in 1% NP-40 lysis buffer. Lysates were centrifuged at 18,000 � g, and N protein was immunoprecipitated with anti-N

(Continued on next page)
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prevented ANDV N:Δhvd from inhibiting IRF3 phosphorylation and IFN induction, yet
we were unable to define a subset of HVD residues required for IFN regulation.

Outside the HVD, a single change of ANDV S386 to the H386 present in MAPV N
prevented ANDV N protein from inhibiting IRF3 phosphorylation and IFN induction (Fig.
6). Substituting S386A into ANDV N also abolished IFN regulation, while changing S386
to the phosphomimetic aspartic acid (S386D) robustly inhibited TBK1-directed IFN
induction and IRF3 phosphorylation. Aspartic acid mimics the functions of phosphor-
ylated serine, and the ability of ANDV N:S386D to inhibit IFN signaling revealed a
potential role for ANDV N phosphorylation in pathway regulation.

In contrast to ANDV N, reciprocal substitutions of either ANDV HVD or S386 residues
into the MAPV N protein failed to confer IFN regulation. Similarly, the MAPV N:H386D
protein was unable to inhibit IFN signaling; however, the MAPV N protein containing
both H386D and the ANDV HVD (MAPV N:Δhvd-H386D) gained the ability to inhibit
IRF3 phosphorylation and IFN induction. This indicated that a combination of D386 and
the ANDV HVD is required to confer IFN regulation to the MAPV N protein. Despite this,
substituting S386D alone into ANDV N containing the MAPV HVD (ANDV N:Δhvd-
S386D) was fully capable of inhibiting IFN induction. As the ANDV HVD is required for
IFN regulation when S386 is present but is dispensable in the presence of the phos-
phomimetic D386, the ANDV HVD may recruit a cellular kinase to S386, and as a
consequence, phospho-S386 is capable of inhibiting IFN induction.

Although there are currently no reports of ANDV protein phosphorylation, roles for
S386 or D386 in IFN regulation by the ANDV N protein prompted us to determine
whether the ANDV N protein is phosphorylated. Analysis of ANDV and MAPV N proteins
from virally infected cells by mass spectrometry determined that only ANDV N:S386 is
specifically phosphorylated (Fig. 10A to D). Taking together the novel roles for S/D386
in IFN regulation by ANDV N protein, our findings suggest that pS386 restricts TBK1
phosphorylation and downstream IFN induction.

The role of phosphorylation in Bunyaviridae family viruses is poorly understood. One
study suggests that the N protein from Hantaan virus (HTNV) is serine/threonine
phosphorylated; however, neither the phosphorylation functions nor the residues
involved were identified (72). Although not a hantavirus, the NSs protein of the
Phlebovirus Rift Valley Fever virus is suggested to be serine/threonine phosphorylated
by casein kinase II (CKII) (73, 74), which has a consensus target sequence of (S/T)XX(D/E)
(74). While TBK1 is an autophosphorylating serine/threonine kinase that also directs
IRF3 phosphorylation, it lacks a highly specific consensus sequence target and ANDV N
protein does not coprecipitate TBK1. At this point, neither the cellular kinases that
target N residue 386 for phosphorylation nor the mechanism by which phosphorylated
ANDV N inhibits IFN signaling is known. Although the cellular factors that mediate IFN
regulation by ANDV N protein remain to be revealed, our findings point to novel HVD
and S386 phosphorylation as critical to IFN signaling pathway regulation and rational-
ize the study of the cellular kinases required to phosphorylate ANDV N protein.

Structurally, ANDV N S386 is present on a C-terminal bent �-helix (�15) (75), where
nearly all hantavirus N proteins exclusively contain a histidine residue, including Bayou,
Caño Delgadito (76), Choclo (77), El Moro Canyon (78), Montano, Necoclí (79), New York
1 (80), and Sin Nombre (81) viruses (Table 1). In contrast, other hantaviruses contain
A386 (Hantaan and Seoul viruses), E386 (Prospect Hill [82], Rockport [83], Puumala [84],
and Tula viruses), F386 (Araucaria viruses [85]), or N386 (Black Creek Canal virus [86])
(Table 1).

FIG 10 Legend (Continued)
antibody and protein A/G agarose. Samples were washed once in TBST, twice in TBS, and twice with Optima LC/MS-grade water (Thermo Fisher).
Nano-liquid chromatography-tandem mass spectroscopy (nLC/MS-MS) was performed on tryptic peptides of ANDV and MAPV N proteins. nLC/MS-MS
and tryptic peptide spectrum analysis identified phosphorylated S386 with high confidence from 12 separate peptides containing residues 379 to 406
of the ANDV N protein. (A) Location of the phospho-S386-containing peptide in the ANDV N protein. (B) nLC/MS-MS of ANDV N protein phosphorylation.
The mass spectra define phosphorylated serine 386 in a representative ANDV N peptide from residues 379 to 406 compared to H386-containing MAPV
N peptide, determined using Proteome Discoverer software. (C and D). Representative nLC/MS-MS spectra (C) and ion table data (D) from 1 of 12 tryptic
peptide spectral matches identified by Proteome Discoverer software.
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Our findings suggest the potential for S386, D386, and ANDV-like HVDs to act as
markers of hantavirus virulence or ANDV-directed person-to-person spread. Like ANDV
N protein, S386 is also present in the N protein of Laguna Negra virus (87) (Table 1),
which shares 90% identity and 94% similarity with ANDV N. LANV infection of Turkish
hamsters causes highly lethal HPS disease (32, 88); however, thus far LANV is not linked
to person-to-person transmission, and potential roles for LANV N S386 in IFN regulation
and virulence in Syrian hamsters remain to be evaluated (88). The only hantavirus with
an N protein that contains D386 is Dobrava virus (DOBV), a highly virulent HFRS-causing
hantavirus (89) (Table 1). However, the DOBV N protein is only 65% identical to the
ANDV N protein, and currently, it is unknown whether the DOBV N protein is capable
of regulating IFN responses.

ANDV is the only hantavirus spread person to person, but by pairwise evolutionary
distance and the rules of the International Committee on Taxonomy of Viruses (ICTV)
(90), Araucaria virus is considered a strain of ANDV. Although it is not known whether
Araucaria virus is spread person to person or able to cause HPS in Syrian hamsters, its
N protein contains F386 (85) (Table 1), not S386, and based on our findings, F386-
containing N proteins are unlikely to regulate IFN pathways. It will be important to
determine whether Araucaria virus N regulates IFN and whether the absence of an N
protein that regulates IFN also distinguishes Araucaria virus from the virulence and
person-to-person spread associated with ANDV.

Overall, our results define ANDV N protein to be an IFN-regulating virulence
determinant that may be genetically modified by changing HVDs or S386H residues to
attenuate ANDV. We reveal novel ANDV N protein phosphorylation to be a requirement
for IFN regulation and provide a rationale for targeting cellular kinases as a potential
means of therapeutically reducing ANDV virulence.

Conclusions. Viral regulation of innate immune responses universally enhances
virulence, replication, and spread, and here we define the IFN-regulating residues,
domains, and protein phosphorylation determinants that uniquely distinguish ANDV
from other hantaviruses. These findings are the first to determine that the ANDV N
protein is phosphorylated and that phosphorylated N regulates cell signaling pathways.
We define the IFN-regulating determinants of ANDV N protein that can be used to
attenuate virulent ANDV and leave open the potential for additional N protein phos-
phorylation events to impact ANDV replication and the barrier integrity of infected

TABLE 1 Comparison of the amino acid at residue 386 in representative hantavirus species nucleocapsid proteinsa

Virus name Abbreviation Amino acid at residue 386 Location GenBank accession no.

Andes virus ANDV S South America AY228237
Leguna Negra virus LANV S South America AF005727
Bayou virus BAYV H North America ADE06643
Caño Delgadito virus CADV H South America YP_009362103
Choclo virus CHOV H South America APD78410
El Moro Canyon virus ELMCV H North America YP_009506354
Maporal virus MAPV H South America AY267347.1
Montano virus MTNV H Central America YP_009361842
Necoclí virus NECV H South America AHJ38537
New York virus NY-IV H North America AAA76589
Sin Nombre virus SNV H North America NP_941975
Prospect Hill virus PHV E North America AAA47086
Puumala virus PUUV E Europe AAS19474
Rockport virus RKPV E North America AEA11490
Tula virus TULV E Europe AAL35891
Hantaan virus HTNV A Asia AAA79715
Seoul virus SEOV A Global AQR58377
Araucaria virus ARAUV F South America AAW57482
Black Creek Canal virus BCCV N North America BAM24402
Dobrava-Belgrade virus DOBV D Europe ADP21269
aSpecies were selected on the basis of currently acknowledged unique hantaviruses recognized by ICTV taxonomy. Hantaviruses causing hantavirus pulmonary
syndrome (HPS), hemorrhagic fever with renal syndrome (HFRS), or no disease (ND) are shown. Accession numbers used to determine residue 386 from the NIH-NCBI
Basic Local Alignment Search Tool (BLAST) are included.

Novel ANDV N Residues Required for IFN Regulation Journal of Virology

May 2019 Volume 93 Issue 10 e00338-19 jvi.asm.org 17

https://www.ncbi.nlm.nih.gov/nuccore/AY228237
https://www.ncbi.nlm.nih.gov/nuccore/AF005727
https://www.ncbi.nlm.nih.gov/protein/ADE06643
https://www.ncbi.nlm.nih.gov/protein/YP_009362103
https://www.ncbi.nlm.nih.gov/protein/APD78410
https://www.ncbi.nlm.nih.gov/protein/YP_009506354
https://www.ncbi.nlm.nih.gov/nuccore/AY267347.1
https://www.ncbi.nlm.nih.gov/protein/YP_009361842
https://www.ncbi.nlm.nih.gov/protein/AHJ38537
https://www.ncbi.nlm.nih.gov/protein/AAA76589
https://www.ncbi.nlm.nih.gov/protein/NP_941975
https://www.ncbi.nlm.nih.gov/protein/AAA47086
https://www.ncbi.nlm.nih.gov/protein/AAS19474
https://www.ncbi.nlm.nih.gov/protein/AEA11490
https://www.ncbi.nlm.nih.gov/protein/AAL35891
https://www.ncbi.nlm.nih.gov/protein/AAA79715
https://www.ncbi.nlm.nih.gov/protein/AQR58377
https://www.ncbi.nlm.nih.gov/protein/AAW57482
https://www.ncbi.nlm.nih.gov/protein/BAM24402
https://www.ncbi.nlm.nih.gov/protein/ADP21269
https://jvi.asm.org


endothelial cells. Our findings indicate that the unique ability of ANDV N protein to
inhibit TBK1 phosphorylation and IFN induction resides within a hypervariable domain
and an S386 residue that function as a phosphoprotein to inhibit IFN signaling
responses.

MATERIALS AND METHODS
Cells and virus. VeroE6 cells (ATCC CRL 1586) and HEK239T cells (ATCC CRL 1573) were grown

in Dulbecco’s modified Eagle’s medium (DMEM), 8% fetal calf serum (FCS), penicillin (100 units/ml),
streptomycin (100 �g/ml), and amphotericin B (250 ng/ml) at 37°C in 5% CO2 as previously described
(38). VeroE6 cells were maintained in DMEM supplemented with 4% FCS and the antibiotics
described above at 37°C in 5% CO2. Maporal virus (MAPV) was obtained from Brian Gowen, both
MAPV and Andes virus (ANDV; CHI-7913) were cultivated on VeroE6 cells in biosafety level 3 (BSL3)
facilities (66), and viral titers were determined on VeroE6 cells. For N protein analysis, VeroE6 cells
were ANDV or MAPV infected at a multiplicity of infection (MOI) of 0.5, and cell lysates were
harvested 3 days postinfection (dpi). VeroE6 cells were �90% infected at 3 dpi, as determined by a
focus assay of infected microvascular ECs using anti-N protein antibodies and immunoperoxidase
staining with 3-amino-9-ethylcarbazole (33, 34, 91).

Antibodies. Anti-�-actin monoclonal antibody (MAb; catalog number A5441) was purchased from
Sigma. Antibodies to TBK1 (catalog number 3504), phospho-TBK1 (Ser172; catalog number 5483), IRF3
(catalog number 4302), phospho-IRF3 (pS396; catalog number 4947), and Flag (catalog number 2368)
were purchased from Cell Signaling. Anti-N polyclonal rabbit serum directed at the New York 1 virus
nucleocapsid protein was generated as previously described (55, 56). Horseradish peroxidase (HRP)-
conjugated sheep anti-mouse (LNA931V/AH) and goat anti-rabbit (LNA934V/AH) immunoglobulin G
(H�L) antibodies were purchased from GE Healthcare.

Plasmids. Constitutively active RIG-I-caspase recruitment domain (CARD)-Flag (RIG-I, residues 1 to
284), MDA5-Flag, TBK1-Flag, and IRF3-5D expression plasmids were purchased from Addgene or previ-
ously described (64, 92, 93). Internal control, pRL-null Renilla luciferase reporter (Promega), and ISRE and
IFN� firefly luciferase reporter (Clontech) plasmids were previously described (64, 94, 95). Plasmids
expressing N proteins from New York 1 virus (GenBank accession number U36802.1) and Andes virus
(ANDV; CHI-7913; GenBank accession number AY228237.1) were generated in pcDNA3 vectors as
previously described (55, 57, 60, 63). MAPV RNA was purified from infected VeroE6 cells at 7 days
postinfection using an RNeasy kit (Qiagen), and cDNA was synthesized using a Transcriptor first-strand
cDNA synthesis kit (Roche). MAPV N protein coding regions (GenBank accession number AY267347.1)
(70) were PCR amplified using S segment-specific primers (GenBank accession number AY267347.1)
containing BsmBI and XbaI restriction sites and cloned into BamHI- and XbaI-cut pcDNA3.1� (Invitrogen).
Plasmids expressing chimeric ANDV N proteins with MAPV hypervariable domains (HVDs; amino acids
252 to 296; ANDV:Δhvd) and a reciprocal construct with the ANDV HVD from amino acids 252 to 296 in
an MAPV N protein background (MAPV:Δhvd) were synthesized by GenScript in pUC57 plasmids and
subcloned as described above into BamHI- and XbaI-cut pcDNA3.1�.

Site-directed mutagenesis was performed using PfuUltra high-fidelity DNA polymerase (Agilent) to
generate ANDV N protein mutants containing one or more amino acid changes (K262R, 270QR, Q278A,
285QTA, T296H, S386H, S386A, S386D, ANDV:Δhvd-S386H, and ANDV:Δhvd-S386D) and to generate
MAPV N mutants containing one or more amino acid changes (H386S, H386D, MAPV:Δhvd-H386S, and
MAPV:Δhvd-H386D) following the manufacturer’s protocol. Mutants were sequenced, and expression
was confirmed by Western blot analysis.

Sequence alignment. N protein sequences from ANDV (GenBank accession number AY228237) (96),
MAPV (GenBank accession number AY267347.1) (70), NY-1V (GenBank accession number AAA76589) (80),
and SNV (GenBank accession number NP_941975) (81) were aligned using the NIH-NCBI Basic Local
Alignment Search Tool (BLAST) program. Residue differences from aligned N protein sequences unique
to ANDV and discrete from MAPV, NY-1V, and SNV were comparatively determined.

Transfection and luciferase reporter assays. HEK293T cells were seeded (�100,000 cells/20 mm
well) in triplicate on 12-well plates and incubated overnight at 37°C, and �60% confluent cells were
transfected using polyethyleneimine (PEI; at a 3:1 �g PEI/DNA ratio) as previously described (63, 64).
A constant amount of total plasmid DNA was transfected into HEK293T cells. Cells were cotrans-
fected in triplicate with a common cocktail of IFN� or ISRE promoter-driven firefly luciferase reporter
plasmids (Clontech), Renilla luciferase plasmid (pRL-null; Promega), and the indicated pathway-
activating expression plasmids (RIG-I-CARD, MDA5, TBK1, or IKK-�), along with pcDNA3.1� plasmids
expressing wt or mutant ANDV, NY-1V, or MAPV N proteins or control empty pcDNA3.1� (64). Cells
were lysed at 24 h posttransfection in luciferase lysis buffer (25 mM HEPES [pH 8.0], 15 mM MgSO4,
4 mM EGTA, 1% Triton X-100; Promega) for 15 min at room temperature and assayed for luciferase
activity using a dual-luciferase assay kit (Promega) according to the manufacturer’s protocol. Assays
measuring IFN� or ISRE promoter-directed firefly luciferase expression were standardized to internal
constitutive Renilla luciferase expression controls. Luciferase reporter assays were performed in
triplicate, and the fold induction over that in uninduced, pcDNA3.1�-transfected controls was
determined using GraphPad Prism software as previously described (60, 63, 64, 94). Each experiment
was reproduced at least 3 times, with similar results each time, and the figures present represen-
tative results of replicates. Error bars denote the standard deviation versus the negative controls,
and asterisks denote statistical significance determined by one-way analysis of variance (ANOVA)
with Tukey’s post hoc test (GraphPad Prism software).
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IRF3 and TBK1 phosphorylation. HEK293T cells were plated and PEI transfected as described
above with a constant amount of total plasmid DNA expressing IRF3 and either wt or mutant ANDV
or MAPV N proteins or control empty pcDNA plasmids. Cells were washed at 24 h posttransfection
with phosphate-buffered saline (PBS) and lysed in 1% NP-40 lysis buffer: 50 mM Tris (pH 8.0), 1%
NP-40, 0.1% SDS, 150 mM NaCl, 2 mM EDTA, 5 mM NaF, 1 mM Na4P2O7, 1 mM Na3VO4, 1 mM
phenylmethylsulfonyl fluoride (PMSF), and 1� protease inhibitor cocktail (Sigma). Lysates were
clarified by centrifugation at 14,000 rpm for 30 min at 4°C, and proteins were analyzed by 10%
SDS-PAGE and Western blotting.

Western blot analysis. The protein concentrations in cell lysates were determined by a bicinchoninic
acid (BCA) assay (Pierce), and a constant amount of total protein was separated by SDS-PAGE. Proteins
were transferred to nitrocellulose, blocked with 2.5% bovine serum albumin or 5% milk in Tris-buffered
saline (TBS)–Tween 20 (TBST), and detected with antibodies to �-actin, TBK1, IRF3, pIRF3-S396, Flag, or
N protein in blocking buffer. After 3 to 5 washes in TBST, proteins were detected using species-specific
horseradish peroxidase-conjugated secondary antibodies (GE Healthcare) and detected via chemilumi-
nescence using a Luminata Forte system (Millipore).

Coimmunoprecipitation. HEK293T cells were cotransfected with vectors expressing GFP-tagged
ANDV N and either wt ANDV N, ANDV N:S386H, ANDV N:Δhvd, or ANDV N:Δhvd-S386H. Cells were lysed
at 48 h posttransfection in buffer containing 1% NP-40 (150 mM NaCl, 40 mM Tris-Cl, 10% glycerol, 2 mM
EDTA, 10 nM sodium fluoride, 2.5 mM sodium pyrophosphate, 2 mM sodium orthovanadate) with
protease inhibitor cocktail (Sigma). Anti-GFP antibody (catalog number sc-9996; Santa Cruz) and protein
A/G agarose were used to immunoprecipitate N-GFP constructs (57, 60). Samples were washed 3 times
in lysis buffer, resuspended in SDS sample buffer, separated by 10% SDS-PAGE, and analyzed by Western
blotting as described above.

Mass spectrometry analysis. ANDV and MAPV were cultivated on VeroE6 cells in BSL3 facilities, and
at 3 dpi, N proteins were purified from infected cell lysates using 1% NP-40 lysis buffer as described
above. Lysates were centrifuged at 18,000 � g, and N protein was immunoprecipitated from clarified
lysates with anti-N antibody and protein A/G agarose. Samples were washed one time in TBST, two times
in TBS, and two times with Optima LC/MS-grade water (Thermo-Fisher). Cysteines were reduced with
5 mM dithiothreitol, followed by iodoacetamide alkylation and trypsin digestion at a substrate ratio of
10:1, followed by Thermo CentriVac drying to 1 �l. Samples were resuspended in 0.1% formic acid in
MS-grade water. Tryptic peptides (1 �g) were analyzed by nLC/MS-MS on a Nano Easy 1200 liquid
chromatograph coupled directly to a Thermo Q Exactive HF mass spectrometer. Peptides were separated
by reverse-phase chromatography utilizing a Phenomenex peptide Aeris XBC-18 column at a 300-nl/min
flow rate and with a 90-min discontinuous 0.1% formic acid acetonitrile gradient. The mass spectrometer
operated in the data-dependent acquisition mode, and a single acquisition cycle comprised a single
full-scan mass spectrum (m/z � 400 to 1,600) in the Orbitrap ion trap mass analyzer, followed by
collision-induced dissociation fragmentation on the top 20 most intense precursor ions. MS-MS spectra
from raw files, corresponding to single biological samples, were extracted and submitted to Proteome
Discoverer software (Thermo) for database searching against ANDV and MAPV protein-containing
databases. Spectra were searched against indexed peptide databases for static modification of carbam-
idomethyl (�57.021 Da) and variable modification of methionine oxidation (�15.995 Da), deamidation
(�0.984 Da), and phosphorylation (�79.966 Da). Utilizing a target decoy peptide spectrum match
validator, only high- and medium-confidence peptides were included and set at a false discovery rate of
99% and 95%, respectively (Fig. 10A to D).
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