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materials properties must be known to 
design novel applications. For example, 
bandgaps are critical for solar cells, optical 
spectra for organic electronics, vibrational 
spectra to discover new thermoelectrics 
for waste heat recovery, X-ray spectra for 
better medical diagnostic materials, or 
conductivity spectra for light-weight bat-
teries with high storage capacity.

Different spectroscopic techniques 
reveal different properties, and every 
material is characterized by a variety of 
spectra. Current spectroscopic methods, 
such as absorption, emission, scanning 
tunneling, Raman or electron-paramag-
netic resonance, are well established. 
However, experiments are often time-
consuming and sometimes require large, 
multi-million-Euro facilities, such as syn-

chrotrons. Complementary theoretical spectroscopy methods 
based on quantum-mechanical first principles are similarly 
time consuming and require large-scale, high-performance 
computing facilities.

Spectroscopy has seen many technical advances in individual 
spectroscopic methods, but no recent paradigm shift that would 
overcome the time-cost conundrum. Here we show that artifi-
cial intelligence (AI) has the potential to trigger such a concep-
tual breakthrough toward data driven spectroscopy. We present 
the first step toward building an AI-spectroscopist to harvest 
the wealth of already available spectroscopic data. The AI-
spectroscopist is based on custom made deep neural networks 
that learn spectra of organic molecules. Our neural networks 
predict the peak positions of molecular ionization spectra with 
an average error as low as 0.19 eV and the spectral weight to 
within 3%. This accuracy is already sufficient for our example 
application on photoemission spectra, which typically have an 
experimental resolution of several tenth of eV and theoretical 
error bars of 0.1–0.3 eV. Once trained, the AI-spectroscopist can 
make predictions of spectra instantly and at no further cost to 
the end-user.

In this new paradigm, deep learning spectroscopy would 
complement conventional theoretical and experimental spec-
troscopy to greatly accelerate the spectroscopic analysis of mate-
rials, make predictions for novel and hitherto uncharacterized 
materials, and discover entirely new molecules or materials. 
We demonstrate this by using our AI-spectroscopist to make 
predictions for a new dataset of organic molecules that was 
not used in training the deep neural networks. At no further 

Deep learning methods for the prediction of molecular excitation spectra are 
presented. For the example of the electronic density of states of 132k organic 
molecules, three different neural network architectures: multilayer perceptron 
(MLP), convolutional neural network (CNN), and deep tensor neural network 
(DTNN) are trained and assessed. The inputs for the neural networks are the 
coordinates and charges of the constituent atoms of each molecule. Already, 
the MLP is able to learn spectra, but the root mean square error (RMSE) is 
still as high as 0.3 eV. The learning quality improves significantly for the CNN 
(RMSE = 0.23 eV) and reaches its best performance for the DTNN (RMSE = 
0.19 eV). Both CNN and DTNN capture even small nuances in the spectral 
shape. In a showcase application of this method, the structures of 10k previ-
ously unseen organic molecules are scanned and instant spectra predictions 
are obtained to identify molecules for potential applications.

Machine Learning

1. Introduction

Spectroscopy is central to the natural sciences and engineering 
as one of the primary methods to investigate the real world, 
study the laws of nature, discover new phenomena and charac-
terize the properties of substances or materials. Spectroscopic 
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computational cost, we make spectra predic-
tions for the 10 000 mole cules of the dias-
tereomers dataset of Ramakrishnan et al.[1,2] 
This gives us an overview over the spectral 
characteristics of the new dataset and helps 
us to identify interesting molecules for fur-
ther analysis. In the future, we could extend 
this quick screening application to large 
numbers of organic molecules whose spectra 
have not been measured or computed, but 
are required for developing an application or 
analyzing an experiment.

2. Previous Machine Learning 
Attempts for Spectral Properties

AI methods, which encompass machine 
learning methods, are gaining traction in the natural sciences 
and in materials science.[3–26] However, previous work has 
focused on scalar quantities such as bandgaps and ionization 
potentials. For solids, only bandgap values and densities of 
states at the Fermi level have been learned with kernel ridge 
regression,[18,26,27] support vector machines,[28] reduced-error 
pruning trees and rotation forests,[19] gradient boosted deci-
sion trees,[25] and Bayesian optimization.[23] For molecules, 
kernel ridge regression[29] and neural networks[5,24] have been 
applied to learn ionization potentials and electron affinities or 
nuclear magnetic resonance (NMR) chemical shifts.[30] Both 
bandgaps and ionization potentials are single target values. 
The learning of continuous curves, such as spectra, is not 
frequently attempted.

In this study we compare the performance of three deep 
neural network architectures to evaluate the effect of model 
choice on the learning quality. We perform both training and 
testing on consistently computed (theoretical) spectral data to 
exclusively quantify AI performance and eliminate other dis-
crepancies, unlike an early study[31,32] which compared predic-
tions from theory-trained neural networks against experimental 
data. In further contrast with early work,[31] we probe model 
performance with dataset size by utilizing spectra for 105–106 
organic molecules, sizes increasingly available from modern 
database resources.

3. Molecular Representation

In this work we approach molecules from an atomistic perspec-
tive, in which the atomic structure, that is coordinates of all the 
constituent atoms, is known precisely. This atomistic repre-
sentation is natural to theoretical spectroscopy, as the spectral 
properties can then directly be calculated from approximations 
to the Hamiltonian of each molecule. In general, representa-
tion (or feature engineering) is an important aspect in machine 
learning. How to best present molecules and materials to an 
AI for optimal learning, prediction and inference has been a 
pressing question in chemistry and materials science for the 
last few years,[33] and several different representations have 
been tried.[3,4,9,21,25,27,29,31,33–37]

To represent the molecules to two of our three neural net-
works, we use the Coulomb matrix 1C Z Zij i j RR RRii jj� �= − − , 
where Zi is the atomic number (nuclear charge) of atom i and 
RRii its position. The diagonal elements i = j have been fit to the 
total energies of atoms (0.5 2.4Zi ).[4] A typical Coulomb matrix is 
shown in Figure 1 for the N-methyl-N-(2,2,2-trifluoroethyl)for-
mamide molecule. The Coulomb matrix is appealing due to its 
simplicity and efficiency. We will show here that it provides suf-
ficient input for learning molecular spectra, if the neural net-
work architecture is sophisticated enough.

4. Method—Neural Network Architectures

In this work, we chose neural networks due to their ability 
to learn complex mappings between input and target spaces 
(such as the Hamiltonian in quantum mechanics). Neural net-
work models have surged in popularity recently, since they can 
express complex function mappings using inputs with very 
little or no feature engineering. Here we explored three neural 
network architectures illustrated in Figure 2: a) the multilayer 
perceptron (MLP), which is one of the simplest architectures 
and accepts vectors as input, b) the convolutional neural net-
work (CNN), which accepts tensors as inputs, and c) the deep 
tensor neural network (DTNN), a custom design for molecular 
data by Schütt et al.[22] Each of the above is a deep network 
architecture. The depth, for example, in an MLP arises from 
stacking multiple hidden layers. Each hidden layer accepts 
output from the previous layer as input, and returns a non-
linear affine transformation as the output.

The MLP was chosen because of its architectural simplicity 
and also because a similar network was used earlier[5] to pre-
dict fourteen different molecular properties simultaneously. 
Conversely, the CNN is the neural network of choice in image 
recognition. Much like an image, which is a matrix (or tensor) 
representation of a real world object, the Coulomb matrix is a 
matrix representation of a real molecule containing spatially 
repeating patterns, so we expect the CNN to perform well. The 
CNN transforms the input via a sequence of intermediate rep-
resentations by convolving the input with one or more learnt 
filter matrices in a convolutional layer and passing the output 
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Figure 1. a) Atomic structure of the N-methyl-N-(2,2,2-trifluoroethyl)formamide molecule and 
b) its corresponding Coulomb matrix representation.
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through a nonlinear pooling operation in a pooling layer. Sev-
eral convolutional and pooling layers are stacked and the final 
output is obtained by flattening the output of the last pooling 
layer via a fully connected layer (like the ones found in the 
MLP).

Making another conceptual leap, we adopt the DTNN architec-
ture[22] that has been motivated by previous architectures for text 
and speech recognition[38,39] and recently been used to predict 
atomization energies of molecules.[22] In the DTNN, the atoms 
are embedded in each molecule like words in a text. The inter-
action between atoms and their surroundings are represented 
by an interaction tensor (the red block in Figure 2c) which is 
learned iteratively. Each atom in the molecule has its own inter-
action tensor, which in the first interaction pass encodes intera-
tomic distances. In the second interaction pass the tensors learn 
angles between three different atoms and in subsequent passes 
higher order interatomic relations (e.g., dihedral angles). The 
DTNN encodes local atomic environments in a similar fashion 
as the many-body tensor representation (MBTR) recently pro-
posed by Huo and Rupp.[21] However, the DTNN is designed to 
learn this representation rather than to expect it as input.

5. Training and Hyperparameter Optimization

The hyperparameters of each neural network (e.g., the number 
of hidden layers and nodes within them) are determined with 
Bayesian optimization for each dataset. This is a critical step, 
since it has been shown[40] that effectively tuned network hyper-
parameters can achieve higher prediction accuracy than those 
with manually chosen ones. We used 90% of each data set for 
training and the rest was split equally between validation and 
test sets. The networks were trained by backpropagation, with 
the Adam[41] update scheme. Root mean square errors (RMSE) 
and squared correlations R2 were evaluated for the test set of 
molecules that the neural networks had not “seen” before. We 
take R2 as a quality measure for the learning success of our 
neural networks, whereas the RMSE quantifies the predictive 
accuracy for excitation energies. We refer the reader to the Sup-
porting Information for details on the DNN architecture, hyper-
parameters, and training algorithm.

6. Datasets

We use the QM7b[5,42] and QM9[2,43] datasets of organic mole-
cules to train the AI-spectroscopist. We optimized the structure 
of all molecules with the Perdew–Burke–Ernzerhof (PBE)[44] 
density functional augmented with Tkatchenko–Scheffler van 
der Waals corrections (PBE+vdW)[45] as implemented in the 
Fritz Haber Institute ab initio molecular simulations (FHI-
aims) code.[46,47] After discarding molecules with fewer than 
sixteen occupied energy levels, we were left with 5883 and 
132531 molecules, which are henceforth referred to as 6k and 
132k datasets, respectively. In each set we collect the highest 
16 occupied PBE+vdW eigenvalues as excitation energies for 
each molecule. The molecular spectra are then computed by 
Gaussian broadening (0.5 eV) these eigenvalues into the occu-
pied density of states. The resulting curve was discretized with 
300 points between −30 and 0 eV. Level broadening encom-
passes vibrational effects, finite lifetimes and spectrometer 
resolution; we discuss our dataset choices in relation to our 
findings further on.

For the application test, we use the 10k diastereomers 
dataset of Ramakrishnan et al.[1,2] It contains 9868 “additional” 
diastereoisomers of 6095 parent C7H10O2 isomers from the 
134k dataset.[2] The molecules in this 10k set are not part of the 
134k set and were used by Ramakrishnan et al. to validate their 
delta-learning approach.[1] We here use only the molecular coor-
dinates from the 10k set and obtain the corresponding spectra 
with the trained deep learning framework.

7. Results

First we discuss the simultaneous prediction of the 16 mole-
cular eigenvalues in our datasets. Figure 3 shows the RMSE 
and R2 values for the three different neural network architec-
tures and the 6k and 132k datasets. We observe that only the 
DTNN 132k performs uniformly well across all 16 states. For 
the other networks the predictions of the deeper levels have the 
highest R2 values and are therefore learned “best” regardless of 
the model and the dataset size. However, the predictive accu-
racy is still relatively low (high RMSE) for some networks. This 
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Figure 2. Canonical illustration of the three neural network types: a) the multilayer perceptron (MLP); b) the convolutional neural network (CNN); 
and c) the deep tensor neural network (DTNN). Green circles to the left represent the molecular input and yellow circles to the right the output (here 
16 excitation energies or the molecular excitation spectrum). The gray blocks are schematics for fully connected hidden layers, convolutional blocks, 
pooling layers, and state vectors. Nodes corresponding to atom types in the DTNN are represented as blue squares and the distances matrix between 
different atoms as pink squares. Parameter tensors (red squares) project the vectors encoding atom types and the interatomic distance matrix into a 
vector with same dimensions as the atom type encodings. The DTNN is evaluated iteratively, building up more complex interactions between atoms 
with each iteration.
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seemingly contradictory behavior likely arises because lower 
energy levels (from 11 to 15) for smaller molecules correspond 
to electronic core states, which have a significantly higher abso-
lute energy than valence states. While the cores states are easily 
learned, predictions with a low relative error at this end of the 
spectrum can result in absolute errors of several tens of eV and 
give rise to high RMSE values.

The learning quality then decreases gradually (the R2 value 
decreases) the closer the state is to the highest occupied mole-
cular orbital (state number 0) and then rises again from state 3 
to 0. Interestingly, the RMSE exhibits an inverse correlation. It 
first improves and then rises again for the last 4 states. The best 
predictions are given by the DTNN 132k and have an RMSE of 
only 0.16 eV with an average RMSE of 0.186 eV (see Table 1).

Next we consider spectra predictions for the CNN and DTNN 
trained on the 132k set as shown in Figure 4. For spectra we 
calculate the relative difference (or relative spectral error (RSE)) 
between the predicted and the reference spectrum. The first 
column of Figure 4 shows RSE histograms for 13 000 test mole-
cules from the 132k dataset. The RSE distribution is narrow 
and the typical error is around 4% for the CNN and 3% for the 
DTNN; very low for both neural networks.

To understand the spectra predictions better, we picked three 
spectra that are representative of the best, average and worst 
predictions made by the CNN and DTNN and plotted them 
in Figure 4 with the corresponding reference spectrum. We 
observe that the best predictions are able to capture all features 
of the reference spectrum. The average predictions for the 
CNN miss spectral features, but capture the average shape of 
the spectrum. The worst CNN predictions do not represent the 
reference spectrum well. The DTNN does much better in both 
categories. It captures most spectral features, but still averages 
through some.

Table 1 provides a performance summary for the neural net-
works we have tested. It confirms our observations that both 
the amount of training data and complexity level of the neural 
network improve the predictive power. The DTNN is our best 
performing network with an average error of 0.19 eV for energy 
levels and 3% for spectral intensity.

8. Application

To showcase the power of our deep spectra learning method, 
we present a first application of the AI-spectroscopist. For the 
10k dataset we have information on the structure of each mole-
cule, but no spectra. Computing the spectra with DFT would 
take considerable computational effort and time. With the AI-
spectroscopist, we gain an immediate overview of the spectral 
content of the dataset.

A summary of the prediction is shown in Figure 5. Panel 
a shows a histogram of the number of molecules that have 
spectral intensity (above a 0.1 threshold) at a given energy. It 
tells us that spectral intensity in this dataset is uniformly dis-
tributed between −18 and −2 eV for all molecules. Only four 
molecules have peaks below this range. The average spectrum, 
obtained by summing up all predicted spectra and dividing by 
the number of molecules, is shown in Figure 5c. This is the 
typical spectrum to expect from this dataset.

The spectral scan in Figure 5a also allows us to quickly detect 
molecules of interest in a large collection of compounds. The 
four molecules with spectral intensity below the main region 
and the molecules with the highest ionization energy can be 
easily identified, as illustrated in Figure 5b. Various molecules 
of interest, e.g., structures with peaks in particular regions of 
the spectrum, could then be further investigated with elec-
tronic structure methods or experiments to determine their 
functional properties.

In this fashion, the fast spectra prediction mode of our 
AI-spectroscopist could be applied to the inverse mapping 
problem. Here, we seek to learn the structures of molecules or 
materials that exhibit certain properties. Inferring the atomic 
structure from a measured spectrum can be achieved with 
generative models,[48] where AIs exposed to certain content are 
trained to produce similar content. However, most machine 
learning research to date has focused on generative models for 
continuous data like images and audio and not for the more 
difficult problem of generating discrete data such as molecules 
or materials. For solid clusters, simple inverse relations have 
recently been established between X-ray absorption (XAS) spec-
troscopy[49–51] and coordination shells of atoms. For molecules, 
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Figure 3. Root mean square error (RMSE) and squared correlation (R2) 
for the sixteen molecular excitations for the different neural network archi-
tectures and data sets. The states are labeled in descending order from 
the highest occupied molecular orbital (state number 0).

Table 1. Summary of the RMSE for the 16 excitations and the RSE for 
spectra for the 6k and the 132k datasets. The results are averages over 
5 runs, except for the spectra predictions of 132k dataset which were 
averaged over 3 runs. The resulting statistical error is at most ±0.003 
and has therefore been omitted from this table.

Datasets → 6k 132k

Model ↓ Levels [eV] Spectra Levels [eV] Spectra

MLP 0.317 NA NA NA

CNN 0.304 0.057 0.231 0.039

DTNN 0.251 0.051 0.186 0.029
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neural-network based auto encoders and decoders[52] were 
combined with a grammar-based variational autoencoder[53] to 
map from the discrete molecular space into a continuous latent 
space (in which optimizations can be performed) and back. 
Even with such sophisticated models it is not easy to generate 
valid, synthesizeable molecules and inverse predictions remain 
difficult in practice.

The AI-spectroscopist can facilitate inverse predictions for 
molecules, given a trial dataset of molecular structures with 
possible relevance. Spectral scan data can be produced at the 
press of a button, and analyzed for structures with the desired 
spectral features. These could then be screened for the best 
spectral match to produce candidate molecules. With scien-
tific expertise and intuition, relevant trial datasets could be 
assembled for instant screening. Should it emerge that the 
trial dataset did not contain structure types associated with 

desired properties, the spectral scan search would require 
widening the structural pool. In such cases the search may 
not be successful, and it may be necessary to resort to a 
generative approach.

9. Discussion

Figure 3 shows a clear learning trend across the deep 
learning methods: with increasing NN sophistication 
(MLP→CNN→DTNN) the state dependence of both R2 and 
RMSE reduces. Concomitantly, the learning success (increasing 
R2) and the predictive accuracy increase (RMSE reduces). The 
DTNN is our most sophisticated network and trained for the 
larger 132k dataset it then exhibits the most uniform perfor-
mance with high accuracy for every state.

Adv. Sci. 2019, 6, 1801367

Figure 4. Comparison of CNN and DTNN spectra predictions: the first column depicts RSE histograms for 13 000 test molecules from the 132k dataset. 
The following three columns show the spectra of the best, an average, and one of the worst predictions compared to the corresponding reference 
spectrum. The colored circles mark the histogram positions of the selected molecules.

Figure 5. Spectral scan of the 10k diastereoisomer dataset performed with the DTNN: a) histogram of molecules that have spectral intensity at a 
certain energy. The four molecules in the inset are outliers that give rise to the peak with lowest energy. b) The six molecules that have the highest 
ionization energy. c) Average spectrum of all molecules in the dataset (red line). The gray lines mark the averages of the ±1 confidence level of the 
DTNN predictions.
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Figure 3 also allows us to distinguish the effects of training 
set size and network complexity. Both the CNN and DTNN 
trained on the 132k dataset perform better than the corre-
sponding models trained on the 6k dataset. As expected, their 
respective accuracies increase with the number of data points. 
However, the DTNN trained on only the 6k dataset almost 
outperforms the CNN trained on the 132k set. This illustrates 
that a purpose designed NN architecture can learn from fewer 
data points.

Regarding spectra predictions, even the worst predictions 
of the DTNN might still look good to a spectroscopist, as the 
overall shape and peak positions of the spectrum are captured 
well. The main differences between the DTNN prediction and 
the reference spectrum are slight peak shifts and an overall 
spectral weight reduction. Slight peak shifts lead to a large 
intensity difference, but only small difference in the peak ener-
gies, which is the more important observable in spectroscopy.

Our current spectral metric is very sensitive to peak posi-
tions. This is in principle desirable, since it forces the neural 
networks to prioritize on peak positions (and thus excitation 
energies). However, for many complex spectra, peaks due to 
individual excitations merge into a broader spectral structure. 
In such cases, it might be more suitable to adjust future met-
rics to better capture spectral shapes. In X-ray diffraction (XRD) 
and low energy electron diffraction (LEED) studies the same 
problem arises, as theoretical spectra computed for model 
structures are compared to experimental spectra to find the 
best structural model. We will investigate the cosine or Pearson 
correlation coefficient and the Jensen–Shannon divergence 
measure[54] as well as the Pendry R-factor[55] in the future. This 
will also help us to prevent negative peaks in the predicted 
spectral functions.

In this work we used the Kohn–Sham spectrum for sim-
plicity. While Kohn–Sham eigenvalues do not correctly rep-
resent molecular excitation energies, they provide us with a 
convenient and large approximate dataset for developing and 
testing the AI-spectroscopist. In the future, we will extend 
our study to photoemission spectra computed with the GW 
method.[56,57] Due to the much higher computational expense, 
we will always have more data from lower fidelity methods such 
as DFT-PBE. To reconcile datasets at different fidelity levels, we 
are considering Δ-learning techniques[10] that would learn the 
difference between two different fidelity levels (here PBE and 
GW or co-kriging techniques[23,58] that learn different fidelity 
levels simultaneously.

Our deep learning schemes are fully transferable to better 
accuracy computational datasets, but also to experimental 
spectra. We chose a relatively large broadening of computed 
electronic levels to mimic the resolution of common photoemis-
sion experiments, which produce broad and often fairly feature-
less molecular spectra. Future studies will address the effect of 
this broadening on the learning success, but our current find-
ings indicate good quality predictions on broad spectral curves.

10. Conclusion

In summary, we demonstrated that deep neural networks can 
learn spectra to 97% accuracy and peak positions to within 

0.19 eV. Our neural networks infer the spectra directly from 
the molecular structure and do not require auxiliary input. We 
also show that, contrary to popular belief, neural networks can 
indeed work well will smaller datasets, if the network architec-
ture is sufficiently sophisticated. The predictions made by the 
neural networks are fast (a few milliseconds for a single mole-
cule), which facilitates applications to large databases and high 
throughput screening. Our proof-of-principle work can now be 
extended to build more versatile AI-spectroscopists.
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