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from individual cells has been more dif-
ficult due, in part, to the lack of genome-
wide amplification method as in nucleic 
acid analysis for the protein counterpart, 
pointing to the need to develop new tech-
nologies to collect protein information 
from individual cells efficiently and accu-
rately. It is also shown in a host of studies 
that transcriptional and protein-level data 
usually show poor correlation,[4] high-
lighting the importance of integrating pro-
tein-information with the single-cell tran-
scriptomic result for more comprehensive 
understanding of the immune system.

A group of secreted proteins including 
cytokines, chemokines, and cytotoxic 
enzymes produced by immune cells 
play important roles in dictating their 
effector response and mediating collec-
tive cellular functions.[5] Innate immune 
cells exert the protective defense against 
a variety of pathogens/viruses through 
not only phagocytosis but also secretion 
of effector proteins upon activation.[6,7] 
Multiplexed detection of effector proteins 

from single immune cells is the direct measurement of func-
tional phenotype, providing new insights to the mechanism 
of innate immune responses as well as potential correlates 
to clinical outcome.[8,9] Significant efforts have been made to 
characterize single-cell secretion pattern and its correlation 
with cell function. For example, the quality of a CD4+ T-cell 
cytokine response was reported to be a crucial determinant 
in whether a vaccine is protective,[9] which better informs 

The effector response of immune cells dictated by an array of secreted 
proteins is a highly dynamic process, requiring sequential measurement of 
all relevant proteins from single cells. Herein, a microchip-based, 10-plexed, 
sequential secretion assay on the same single cells and at the scale of 
≈5000 single cells measured simultaneously over 4 time points are shown. 
It is applied to investigating the time course of single human macrophage 
response to toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) and 
reveals four distinct activation modes for different proteins in single cells. 
Protein secretion dynamics classifies the cells into two major activation 
states dependent on the basal state of each cell. Single-cell RNA sequencing 
performed on the same samples at the matched time points further dem-
onstrates the existence of two major activation states at the transcriptional 
level, which are enriched for translation versus inflammatory programs, 
respectively. These results show a cell-intrinsic heterogeneous response in 
a phenotypically homogeneous cell population. This work demonstrates the 
longitudinal tracking of protein secretion signature in thousands of single 
cells at multiple time points, providing dynamic information to better  
understand how individual immune cells react to pathogenic challenges over 
time and how they together constitute a population response.

Single-Cell Cytokine Assays

1. Introduction

The advent of high throughput single-cell transcriptomic anal-
ysis has enabled global unbiased analysis of gene expression 
in thousands of individual cells and has revolutionized how 
we study the biological mechanisms at the whole organism 
level and the complex physiological systems such as the 
immune system.[1–3] However, accessing protein information 
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disease mechanism and drug/vaccine development.[10] Cur-
rently, most commonly used tools for multiplexed single-cell 
secretion analysis includes ELISpot (Fluorospot),[11] intra-
cellular cytokine staining (ICS) flow cytometry with either 
fluorescence or mass spectrometry (CyTOF) detection.[12,13] 
Some other multi plexed proteomics profiling methods with 
lower throughput were also reported,[4,14,15] for example, 
Herr and co-workers developed single-cell western blotting 
with ≈11 protein targets detected per cell after multiple fluo-
rophore bleaching–restaining cycles.[15] However, all these 
high-plex methods could not retain live cells after the assay, 
which make them impossible to track the same single cells 
at different time points but also measure a whole panel of 
protein secretions.[16] And such type of dynamic assay can 
provide unique information, which inspires deeper insights 
resolving how immune cells respond and progress upon stim-
ulations.[17–19] With the development of microtechnology, a 
nanowell-based microengraving assay was reported, in which 
sequential release of cytokines from polyfunctional human 
T cells can be captured.[20,21] However, the highest degree of 
multiplexing is four proteins, which is insufficient to dis-
sect the full functional spectrum of heterogeneous immune 
cells.[10,22] Although an integrative microfluidic-based device 
was developed to probe single-cell multiplexed input–output 
dynamic, the cell number to be probed is low (only dozens) 
and device manipulation is highly complex.[23] To characterize 
the dynamic, full spectrum secretion information from large 
quantities of individual cells to understand immune function 
diversity, it is desirable to develop a method to measure the 
same single cells over multiple time points (e.g., ≈4 or more) 
for a panel ≈10 or more protein secretions and such data can 
be obtained from a large number (e.g., ≈5000) of single cells 
while minimize the complexity of device handling.

Here, we described a single-cell microchip thatal-
lows for high throughput (≈5000 single cells), multiplexed 
(≈10 proteins), sequential (4–5 time points) secretion analysis 
of the same single cells. It was used to profile homogeneous 
human macrophages and revealed inherently heterogeneous 
responses over time upon activation with TLR4 ligand lipopoly-
saccharide. Importantly, we found the stimulated response 
exhibited two intrinsic states that appear to be associated with 
the basal function. Single-cell transcriptomic profiles collected 
at different time points from the samples stimulated in the 
same way also confirmed the presence of two cellular states 
with distinct gene expression profiles. Comparing single-cell 
protein secretion dynamics and transcriptome sequencing 
data allows for tracking the states of the same cells that con-
firmed the two states are dependent on initial cell states and 
differentially regulated by translational and proinflammatory 
programs.

2. Results

2.1. Single-Cell Secretomic Analysis Microchip with Higher 
Throughput

The configuration of microchip platform used for dynamic 
multiplexed single-cell assay was modified from previously 

reported devices,[24–27] which was comprised of two compo-
nents: a high-density antibody barcode patterned glass substrate 
for surface immunoassay and a nanoliter microtrough array 
for single cell capture. Notably, we redesigned flow patterning 
microchip to combine spatial multiplexing (multi antibodies 
coflow patterning) and spectral multiplexing (multicolor detec-
tion) (Figure 1A) in a much shorter microtroughs (≈0.48 mm) 
to achieve significantly higher number of single cells to be 
assayed simultaneously (more than 5000 single cells data can 
be obtained in one microchip which is around fivefold increase 
compared to previous work). The flow patterning microchip for 
antibody immobilization consists of 120 repetitive barcodes, 
each of which contains 5 stripes in duplicate. The antibody 
stripes are 30 µm in width and the pitch size of a full barcode 
is 250 µm. Due to increased flow resistance with much longer 
channel length, the antibodies were flow patterned with two 
separated paths to solve this problem. We validated this new 
flow patterning strategy with both fluorescent-bovine serum 
albumin (BSA) and recombinant protein sandwich immuno-
assay to make sure the reproducibility of antibody barcode is 
adequate for single-cell experiments (FiguresS1–S3, Supporting 
Information). The polydimethylsiloxane (PDMS) cell capture 
chip (Figure 1B) was designed according to the dimension of 
flow patterned antibody microarray such that it is long enough 
to contain at least a full set of barcodes, thereby eliminating the 
need for precise alignment of the antibody barcode slide and 
the microtrough array PDMS slab. With this design, more than 
5000 single cells data (around 30% of total number of micro-
troughs (n = 18 000), Figure 1C) can be detected in one micro-
chip with minimal sacrifice of parameters to be plexed. For 
example, up to 15 different proteins can be profiled at the same 
time if three color detection strategy were employed.

2.2. Multiplexed, Sequential Secretion Analysis from the Same 
Single Macrophages Reveals Heterogeneous Cytokine Secretion 
Dynamics

One unique feature of our single-cell assay platform is that 
cells assayed are alive and still isolated in defined locations 
(specifically for adherent cells). High reproducibility in protein 
secretion frequency is also validated (Figure S4, Supporting 
Information). All these make it possible to accurately and 
dynamically track the secreted proteins from the same single 
cells at different time points. Briefly, after measuring protein 
secretion from single cells over a period of time, we removed 
the antibody barcode slide that captured the basal secretion 
profile, and then replaced with a new antibody barcode slide 
to measure protein secretion from the same single cells for 
another period of time, during which stimulation reagents can 
be added, withdrawn, or combined, permitting flexible design 
of the experiment to perturb cell signaling but keeping track of 
the same single cells over time. Repeating this process will lead 
to the measurement of single-cell protein secretion dynamics 
(Figure 2A). The PDMS microchip for cell capture is oxygen 
plasma treated for 1 min just before single cell experiment 
to make its surface hydrophilic to enhance cell adhesion and 
minimize nonspecific protein adsorption.[28] When changing 
a new antibody array slide, the PDMS microtrough chip was 
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rinsed three times (including washing and incubation for 
2 min in each step) with fresh medium to wash out residual 
secreted proteins. This also removes detached cells that may 
dislodge to neighboring microtroughs. Figure 2B shows that 
56% of macrophage cells could be retained after the removal 
and replacing with a new antibody slide. Figure 2C shows a 
representative single cell that was retained in the same micro-
channel throughout the entire secretion dynamics experiment 
and the corresponding secretion patterns.

We applied this platform to investigate the dynamics of U937 
derived macrophages in response to TLR4 ligand lipopoly-
saccharide, which simulates the innate immune response to 
Gram-negative bacteria.[29,30] The U937 monocyte was differ-
entiated into macrophages by 50 ng mL−1 PMA for 48 h and 
confirmed by CD14 surface marker staining (Figure S5, Sup-
porting Information).[31,32] The antibody pairs used in this 
study (Table S1, Supporting Information) were validated with 
corresponding recombinant proteins for crosstalk reactivity to 
ensure technical validity. We also obtained the titration curves, 
which demonstrated the feasibility of comparing the amount 
(or concentration) of secreted proteins semiquantitatively 
(Figures S6,S7, Supporting Information). After assaying for 
four time points, a set of data comprising 1752 single cells, 
each of which has data for a full time course and simultaneous 
detection of 10 secreted proteins was successfully obtained. It 
allowed to compare the dynamic change of different secreted 
proteins of each cell at basal state and with LPS stimulation at 

different time points (Figure 2D). For example, TNF was first 
secreted upon LPS stimulation and the intensity decreased 
after a 2 h period. Other effector proteins like IL-6 and IL-10 
were secreted afterward, which is in agreement with previous 
reports.[33,34]

The dynamic change of each protein in every single cell 
during the time course can thus be visualized in Figure 2D by 
connecting their respective detection results at each time point. 
All single cells (n = 1752) were classified into four subgroups 
according to their secretion dynamics: on–off, off–on, all-on, and 
others. The secretion dynamics designated as “on–off” means the 
protein secretion is active at early time window(s) but stopped in 
a later period; “off–on” means the secretion was not detectable 
initially but became active later on; “all-on” means this specific 
protein was secreted continuously throughout the time course 
of observation; “other cases” include no secretion or oscillatory 
secretion patterns. It is noted that the grouping result differs with 
respect to specific proteins of interest. We noticed that CXCL8 
and CCL2 secretions in most cells is “on” during (at least par-
tially) the period of observation, but their dynamics are quite dif-
ferent: the majority of the cells are not secreting CXCL8 during 
basal state and start turning on CXCL8 secretion after being stim-
ulated. However, the timing for them to turn on CXCL8 secre-
tion is heterogeneous, with comparative numbers of cells turn 
on CXCL8 secretion between 0–2, 2–4, and after 4 h after being 
stimulated. Quite differently, CCL2 secretion in the vast majority 
of cells (71.1%) are kept in the “on” mode independent of being 
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Figure 1. Single-cell secretomic analysis microchip with higher throughput. A) Images showing the captured single cells, corresponding three-color 
fluorescence detection results (red: 635 nm, green: 532 nm, and blue: 488 nm) and their overlay. B) Cross-sectional view of microtroughs. Inset: 
enlarged view of the microtrough cross-sections. The width of each microtrough is 30 µm. C) Distribution of the number of cells per microtrough 
under optimized cell loading conditions (cell density: 0.2 million per mL, loading volume: 200 µL, loading time: 5 min), which reveals around 30% of 
microtroughs would be occupied by single cells.
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stimulated or not, with a small fraction (7.9%) of cells turn CCL2 
secretions off throughout the period of observation. We then 
specifically looked at two factors (IL6 and TNF) regulated by the 

transcription factor nuclear factor kappa-light-chain-enhancer of 
Activated B cells (NF-κB), which is one of the most critical and 
widely recognized transcription factors regulating inflammatory 

Adv. Sci. 2019, 6, 1801361

Figure 2. High-throughput, multiplexed, sequential secretion analysis from the same single cells. A) Schematic illustration of the procedure for tracking 
the secretion from the same single cells at different time points. Single-cell secretions were first profiled at the basal state, then LPS was added to 
induce macrophage responses to TLR4 activation. The time course of LPS-induced activation is measured sequentially within different time windows; 
B) Characterization of single cell retention efficiency with human macrophage cells after a new antibody glass slide was changed to PDMS microchamer 
array (n = 5); C) Representative single cell and its secretion pattern of 10 proteins from the same single cell at 4 time points, before and after LPS 
treatment; D) Line graphs showing the dynamic change of different secreted proteins (CXCL8, IL-6, CCL2, and TNF) from 1752 single cells, which were 
classified into four patterns based on their protein secretion dynamics: on–off, off–on, all-on, or others.
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responses in immune cells. According to our data, a majority 
of the cells are classified as “others,” meaning not secreting 
or secreting in oscillatory manner. This is consistent with the  
previous reports of NF-κB oscillation during transcriptional  
regulation. However, we also observe a small portion of cells with 
stable “on–off” or “off–on” secretion patterns, breaking the rule 
of oscillation. Interestingly, within the population with stable 
secretion patterns, there are far more cells showing “off–on”  
pattern versus “on–off” pattern in IL6 secretion (7.1% vs 0.6%) 
while the trend is reversed in the case of TNF secretion (4.7% vs 
13.4%), suggesting cellular basis of a more transient nature of 
TNF response. We selected 7 proteins being secreted by notice-
able number of cells and with apparent secretion alterations 
during the course of measurement for this analysis. Figure 2D 
shows the single-cell secretion patterns of 4 proteins and 3 others 
are shown in Figure S8 in the Supporting Information. Previous 
study has revealed the stochastic and variable cell switching 
dynamics of NF-κB in response to TNF activation at single cell 
level.[19] Herein we show that the transcriptional and functional 
output of NF-κB activation such as cytokine secretion could 
exhibit oscillation patterns but the cytokine function outputs are 
more diverse, which has never been observed previously.

2.3. Responses of Macrophages are Intrinsically Heterogeneous 
and Dependent on the Basal Functional State

By combining all the single-cell data at four different time 
points (40 proteins parameters) into a unique dynamic, multi-
plexed single-cell data metric, which cannot be obtained using 
other methods, we performed unsupervised hierarchical clus-
tering and resolved two distinct major clusters with 1133 and 
619 cells, respectively (Figure 3A), indicating the presence of 
a dynamic heterogeneity within a phenotypically homogeneous 
macrophage population in response to LPS. Cluster 1 (red label) 
cells are more active in secretion than cluster 2 (black label) 
cells not only after stimulation but also in the basal state. We 
applied a high-dimensional data analysis tool viSNE to visu-
alize multiplexed single-cell data,[35] from which two similar 
clusters can be obtained too with 943 and 809 cells, respec-
tively (Figure 3B). Further analysis identified a ≈70% overlap 
in both clusters using those two clustering methods, indicating 
the robustness of results regardless of clustering algorithms. 
The expression of specific proteins in single cells within each 
cluster (e.g., CCL4, TNF in Figure 3C, and Figure S9 in the 
Supporting Information) at different time points can be shown 
in viSNE plots, from which we confirmed the cells more active 
at basal state are more prone to secreting more proteins upon 
pathogen stimulation. This phenomenon was not observed 
previously, highlighting the value of high throughput dynamic 
detection platform with single cell resolution in resolving how 
biological systems respond and evolve.

Quantitative analysis of single-cell polyfunctionality (the 
ability of a cell to cosecrete multiple cytokines and chemokines 
simultaneously[36]) was performed and compared between the 
basal state and the stimulated states, which showed an increase 
of highly polyfunctional cells upon stimulation (Figure 4A). It 
is previously reported that polyfunctionality index (PI) serve 
as an effective parameter to numerically evaluate the degree of 

polyfunctionality from multidimensional single cell data, per-
mitting more sophisticated statistical analysis.[37] We applied a 
previously described approach (detailed in Supporting Infor-
mation) to calculate PI of single cells.[37] Consistent with 
previous result, we see an increase of PI immediately after 
stimulation comparing with cells in resting state (Figure 4B). 
Interestingly, PI remains constant in the early stage of activa-
tion but increased after 4 h being stimulated. This suggests 
that macro phages increase polyfunctionality immediately 
(<2 h) after being stimulated but it takes several hours (>4 h) 
for them to further increase polyfunctionality an enter a more 
advanced activation state. We then compared polyfunctionality 
of the same individual cells between different time points and 
looked for correlative patterns (Figures 4C–E). Interestingly, the 
resulting averaged polyfunctionality of stimulated single cells 
showed a linear correlation with the basal state polyfunction-
ality (R2 = 0.99, 0.96, 0.98 at 0–2, 2–4, 4–6 h respectively after 
LPS stimulation). This result means that the higher the num-
bers (types) of proteins that a cell is secreting in its basal state, 
the higher numbers (types) of proteins it will likely secrete after 
being stimulated, and the basal state secretion activity can be 
taken as an indication of its later activity, suggesting the activa-
tion potential of macrophages likely predetermined even before 
the arrival of external stimulation and is encoded in the basal 
state intrinsically (Figures 4D,E).

2.4. Single-Cell RNA-Seq Confirms Two Major Clusters with 
Distinct Gene Expression Profiles

We also performed single-cell RNA sequencing analysis on the 
same samples (both basal and stimulated for different times) 
in order to compare to single-cell protein secretion data and 
further investigate the mechanisms underlying the observed 
heterogeneous states. A massively parallel 3′ mRNA capture 
and barcoding in droplets was used and the library construction 
was similar as previously described.[38] The raw sequencing data 
were processed and analyzed for quality assessment (Figure 
S10, Supporting Information) and the generation of single-
cell gene expression matrix. Single-cell transcriptome data of 
all samples including both basal and activated macrophages of 
each time point was combined and analyzed with the R package 
Seurat. Graph-based clustering (resolution = 0.15) identified 3 
clusters when all the samples combined, namely, Clusters 0, 1, 
and 2 (Figures 5A,B). Cluster 2 largely overlaps with the basal 
or resting macrophages before activation, while Clusters 0 and 
1 largely correspond to activated macrophages, indicating the 
existence of two major distinct activation states in agreement 
with single-cell protein secretion data. Those two activation 
states consistently exist in samples of all time points post activa-
tion, marking a highly consistent and possibly stable dichotomy 
in activation states of human macrophages in response to LPS 
and the top-ranked signature genes defining each cluster were 
identified (Figure 5C and Figure S11, Supporting Information). 
Although mRNA data of activated macrophages supports pro-
tein data well, partially confirming our argument that cellular 
states are possibly predetermined and stable, we notice that 
the separation of resting macrophages clearly into two clusters 
is not seen in the transcriptomic profile. In Figures 5A, the 
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observation of three clusters supports the two-state activation 
model derived from single-cell protein sequential secretion. As 
expected for whole transcriptome analysis, tSNE separates basal 
from stimulated cells. The latter however exhibits two clusters, 
suggesting two major activation states as revealed by single-cell 
protein data. Figure 5B further confirmed the gradual change 
of cell states over time and two major states are always pre-
sent at any given time points. Interestingly, the basal state cells 
(Cluster 2) already showed “bifurcation” toward two different 
activation states as defined by Clusters 0 and 1. All these are in 
agreement with single-cell protein secretion data and support 
the conclusion that the activation shows two distinct states.

We then asked what gene pathways and biological processes 
underlie the previously identified two activation states. Gene 
Ontology (GO) analysis was performed with the R package 

Gage using the gene lists and p Values generated from the 
Seurat program as described above, and the marker genes of 
each of the 3 clusters were used. Surprisingly, the GO terms 
highly enriched in Cluster 2 involves mRNA processing, which 
indicates that mRNA processing related genes are highly 
expressed in the macrophages to prepare them for activa-
tion. Furthermore, we found that the GO terms enriched in 
the two clusters of activated macrophages (Clusters 0 and 1) 
involve protein translation (ribosomal genes) and inflammatory 
response (NF-κB pathway, etc.), respectively (Figure 5D). The 
anticorrelation relationship between the activity of protein 
translation and the ability to mount inflammation appears to be 
mutually exclusive in a single macrophage cell such that each 
cell has to opt for only one specific state. However, it is unclear 
if this is a stochastic process or predetermined by the initial 

Adv. Sci. 2019, 6, 1801361

Figure 3. Dynamic heterogeneity of U937 derived macrophages in response to TLR4 ligand LPS. A) Heatmap resolving two clusters exhibiting different 
activation dynamics in response to LPS stimulation. Each row represents a complete protein profile from a single cell and each column is a protein of 
interest. B) viSNE analysis reveals two clusters based on their dynamic functional proteins profiles. C) Distribution of individual proteins (CCL4, TNF 
as examples) in viSNE maps colored by signal intensities in two clusters at different time points. (viSNE plots for distribution of all proteins can be 
found in Figure S7 in the Supporting Information).
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state according to single-cell transcriptome data. The protein 
secretion dynamics measured on the same single cells suggests 
the activation states are dependent on the basal state of each 
macrophage.

We further conducted integrative analysis of single-cell tran-
scriptome and protein secretion data side-by-side, and observed 
gene-dependent correlations between single-cell RNA and 
protein profiles. Figure 5E shows 6 immune function genes 
measured at both transcriptional and protein levels and other 
genes of interest are shown in Figure S12 in the Supporting 
Information. The integrated single-cell transcript/protein data 
can be generally classified into three groups: first, highly corre-
lated genes, including IL6, CCL2, and TNF; second, genes with 
consistent dynamics but distinct expression levels, including 
CXCL8 and CCL4; third, genes with consistent expression 
levels but distinct dynamics. IL10 is an example in this category 
(Figure 5E). IL10 mRNA peaks at 2 h, however, IL10 protein 
secretion reaches maximum between 4 and6 h. This can be 
explained by the time lag between transcription and translation. 

Although the mechanism requires further investigation, our 
results shows consistency and discrepancy in a gene-specific 
manner between single-cell mRNA and protein data, which is 
in agreement with previous reports,[4] highlighting the value to 
integrate information from multiple omic levels to yield a com-
prehensive biological picture.

3. Discussion

We reported a highly multiplexed (≥10) single-cell sequen-
tial secretomic profiling platform to evaluate the dynamic 
immune response from the same single cells at different time 
points. With this platform, we found human macrophages in 
response to TLR4 stimulation exhibit two intrinsically distinct 
states, which were correlated with the basal functional state in 
each single cell. We also applied single-cell RNA-Seq analysis 
to confirm the existence of two major states at the transcrip-
tional level and further revealed that the two activation states 

Adv. Sci. 2019, 6, 1801361

Figure 4. Polyfunctionality analysis of human macrophages. A) Distribution of polyfunctionality among macrophages of each time window (basal  
state included). B) Gradual increase of polyfunctionality index (PI) along the immune activation process. C) Tracking polyfunctionality of each indi-
vidual macrophage over time. D) Distribution of polyfunctionality of activated macrophages of each condition compared with basal polyfunctionality. 
The numbers of single cells with different polyfunctionality (0, 1, 2, 3, 4, >5) are 94, 360, 548, 427, 228, and 95, respectively. The p Value by t test 
between neighbors were <0.05 if not stated otherwise (ns: no significant). E) Linear correlation between later averaged polyfunctionality and the basal 
polyfunctionality.
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Figure 5. Single-cell RNA Seq of U937-derived macrophages during dynamic TLR4 immune activation. A,B) tSNE plots showing dynamic formation of 
two cellular substates in activated macrophages. Cluster 2 overlaps with resting macrophages while clusters 0 and 1 are distinct substates of activated 
macrophages. C) tSNE feature plots showing expression of marker genes of each cellular substate. D) Gene Ontology term enrichment analysis reveals 
differential expression of immune activation and ribosomal genes in two substates among activated human macrophages. E) Comparative analysis of 
single-cell mRNA and protein secretion data.
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are differentially dictated by the expression of protein trans-
lation genes and inflammation-related genes, respectively. It 
has not been possible to obtain this type of comprehensive 
protein secretion dynamics information of individual cells 
using any other methods. An even higher degree of multi-
plexing can be obtained if additional fluorescence channels 
were used. While this work focused on human macrophages, 
this approach can be readily applied to other adherent cell 
types such as epithelial cells, dendritic cells, fibroblasts, etc., 
making it a versatile platform well suited for much broader 
applications.[39–41] This platform will provide an accessible 
tool for more in-depth and comprehensive monitoring of cell 
function and the cognate proteins. It may have the potential 
to further evolve and be adopted in clinical and pharmaceu-
tical studies to evaluate cellular function heterogeneity or 
drug responses,[39,42–44] for example, in the immune system or 
tumor microenvironment.

4. Experimental Section
Fabrication of Antibody Barcode Array Chips and Microtrough Array 

Chips: The mold for both the flow patterning PDMS replica and 
the sub-nanoliter microarray were silicon master etched with deep 
reactive-ion etching (DRIE). Detailed protocol has been described 
elsewhere.[25] The PDMS used was RTV615 from Momentive. A and B 
were in 10:1 ratio.

Cell Culture and Stimulation: Human U937 cell line was purchased 
from American Type Culture Collection (ATCC) and cultured in RPMI 
medium 1640 (Gibco; Invitrogen) supplemented with 10% fetal bovine 
serum (ATCC). The U937 cells were differentiated with 50 ng mL−1 phorbol 
12-myristate 13-acetate (PMA) (Fisher) for 48 h, followed by culture in 
fresh standard medium for 24 h. The cells were harvested with trypsin 
for single-cell experiments. Cells were challenged with 100 ng mL−1 LPS 
(Sigma).

Single-Cell Longitudinal Multiplexed Secretion Assay: PDMS microtrough 
array was first blocked with 3% BSA solution (Sigma) for 2 h and then 
rinsed with fresh cell medium. Cells were suspended in fresh medium 
at concentration of 0.2 million cells per mL, followed by the addition of 
LPS as described previously. The PDMS microtrough array was placed 
facing upward, and cell culture media was removed until only a thin 
layer remained on surface. Cell suspension was pipetted (200 µL) onto 
the microtrough array. After 5 min, the glass slide with antibody barcode 
was put on top of the PDMS microtrough array with the antibody-
patterned side facing the cell-capturing chambers. Then the two 
parts were clamped tightly with screws using a custom polycarbonate 
clamping system. Number and locations of cells were confirmed by 
optical imaging using Nikon eclipse Ti microscope with an automatic 
microscope stage. Bright field images were obtained. The assembled 
microchip was placed in a standard 5% CO2 incubator at 37 °C during 
the period of cell secretion. After every 2 h, the microchip assembly was 
dissembled in fresh media and the antibody barcode slide was removed 
and rinsed with excessive fresh media followed by 2 min of incubation. 
After repeating this step for 3 times, the cell capture microarray chip was 
rinsed with fresh media with stimulants added and a new glass slide 
with antibody microarray was applied on the cell capture microarray 
to generate a new microchip assemble, followed by imaging and 
incubation, as described. On the other hand, the glass slide dissembled 
previously was developed for 1 h at room temperature by introducing 
a mixture of biotinylated detection antibodies. The detection antibody 
mixture consisted of the detection antibodies (Table S1, Supporting 
Information Appendix) at 0.25 mg mL−1 each in 1:200 suspension in 3% 
BSA. Following this step, the slide was rinsed with 3% BSA solution. The 
200 µL of 1:100 suspension APC dye-labeled streptavidin (Biolegend, 
5 µg mL−1) were added onto glass slide to detect the 635 nm detection 

antibody group, followed by incubation of 30 min. Following the BSA 
blocking, the antibody barcode array slide was rinsed with 1× PBS, 
0.5× PBS, and DI water sequentially, dried with forced N2 gas, and 
then scanned with a four-laser microarray scanner (Molecular Devices; 
Genepix 4200A) for protein signal detection. Microtrough array images 
with cell counts were subsequently matched to their protein signals for 
further data analysis.

Titration Experiment Using Recombinant Proteins in Microfluidic Chips: 
The titration curves were obtained using recombinant proteins and 
measured on antibody barcode chips, similar as the ones used for single-
cell protein secretion assay (see above). The antibody barcode glass 
slide was thermally bonded to a PDMS microchannel array slab and then 
blocked with 3% BSA/PBS solution for 1 h. Recombinant proteins with 
different concentrations were introduced into different microchannels 
followed by incubation at 37 °C for 1 h. After that, a cocktail of detection 
antibodies was added to complete the immune-sandwich assay using 
the procedure provided by antibody vendors.

Fluorescence Imaging and Analysis: Genepix 4200A scanners 
(Molecular Devices) were used to obtain scanned fluorescent 
images. Two channels, 488 (blue) and 635 (red), were used to collect 
fluorescence signals. The image was analyzed with Genepix Pro software 
(Molecular Devices) by loading and aligning the microtrough array 
template followed by extraction of fluorescence intensity values per 
antibody per microtrough. Fluorescence results were extracted with 
the image analysis tools in Genepix Pro, and then matched to each of 
the microtrough array for cell counts as previously extracted from the 
optical images.

Analysis of Single-Cell Protein Secretion Data: Cell counting was 
automatically performed by a C++/QT QML software (Isospeak; 
Isoplexis). Protein signal data were extracted from the multicolor 
fluorescent images using GenePix Pro 6.1 (Molecular Devices) by 
aligning a microtrough array template with feature blocks per antibody 
per microtrough to the protein signal features. Data were extracted 
using the image analysis tool to gain the mean photon counts per 
protein signal bar per microtrough and match to the cell counts from 
the microtrough array. The cell counting and protein signal data were 
then matched based on their spatial locations. Only the 1-cell wells 
and their protein signals were used for downstream data analysis. 
0-cell wells and their protein signals were used as on-chip controls 
to provide a measure of local antibody-specific background and were 
averaged across region on chip. Secretion threshold of a specific factor 
is defined as mean of the zero-cell wells of its corresponding antibody 
plus 3 times standard deviation. Values higher than the threshold are 
taken as “secretion” while values below it are taken as “no secretion” 
and are changed to 0. The thresholded data were log2 transformed 
using log2(x+1) before data visualization. Graphpad Prism 7 was used 
to generate scatter plots and line graphs. Hierarchical clustering and 
heamaps were performed in R. Polyfunctionality index is calculated 
using the following equation

PI i0
F i

ni

n
q

∑ ( )=
=

 
(1)

where n = 6 is the cutoff in the number of functions studied, Fi is the 
frequency (%) of cells performing i functions, and q is a positive number 
used to modulate the differential weight assignment of each Fi. Here q is 
set to 1 assuming equal weight of each Fi.

Single-Cell RNA Sequencing: Single-cell RNA Sequencing was 
performed following the standard DropSeq protocol as described before 
in detail.[38] Microfluidic device was built following the exact original 
design file. Beads used in the experiment with oligo synthesize on 
surface was purchased from ChemGenes. Reagents used were listed in 
Table S2 in the Supportring Information Appendix. All oligonucleotides 
used were identical with which was described previously.[38] Sequencing 
was carried out using Hiseq2000 with 4 samples pooled into one 
sequencing lane.

Analysis of Single-Cell Transcriptomic Data: Original fastq data was 
trimmed and transformed into digital expression matrix following 



www.advancedsciencenews.com

1801361 (10 of 11) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedscience.com

Adv. Sci. 2019, 6, 1801361

the DropSeq data analysis pipeline described in detail elsewhere. 
Then a filter was applied to get rid of cells expressing fewer than 
500 genes, which are likely low-quality cells. Then R package “Seurat” 
was applied in performing downstream statistical analysis and 
data visualization using default settings.[45] Marker gene lists and p 
Values output from “Seurat” was taken as input for gene ontology 
and pathway analysis, using packages “Gage” and “Pathview” with 
default settings.[46,47]

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.

Acknowledgements
Z.C. and Y.L. contributed equally to this work. This work was supported 
in part by National Institutes of Health (NIH) grants U54CA193461  
(to R.F.), R33CA196411 (to R.F.), U01DK104331 (to R.F.) U54CA209992 
(Sub-Project ID: 7297 to R.F.), R21CA177393 (to R.F.), National Science 
Foundation CAREER Award CBET-1351443 (to R.F.), NIH grants 
R01CA149109 (to J.L.), R01GM116855 (to J.L.), Connecticut RMRF 
grant 15-RMB-YALE-06 (to J.L.), and Sackler Institute Research Grant. 
Services provided by the NIDDK-supported Yale Cooperative Center of 
Excellence in Hematology assisted this study. The authors acknowledge 
the Becton Nanofabrication Center for supporting microchip fabrication 
and Yale Center for Genomic Analysis (YCGA) for next-generation 
sequencing service.

Conflict of Interest
R.F. serves on the scientific advisory boards of IsoPlexis, Bio-Techne, 
and Singleron with financial interest.

Keywords
heterogeneity, macrophage activation, sequential analysis, single-cell 
cytokine assay, single-cell RNA sequencing

Received: August 15, 2018
Revised: January 3, 2019

Published online: March 13, 2019

[1] E. Shapiro, T. Biezuner, S. Linnarsson, Nat. Rev. Genet. 2013, 14, 
618.

[2] R. Satija, A. K. Shalek, Trends Immunol. 2014, 35, 219.
[3] E. Papalexi, R. Satija, Nat. Rev. Immunol. 2018, 18, 35.
[4] S. Darmanis, C. J. Gallant, V. D. Marinescu, M. Niklasson, 

A. Segerman, G. Flamourakis, S. Fredriksson, E. Assarsson, 
M. Lundberg, S. Nelander, B. Westermark, U. Landegren, Cell Rep. 
2016, 14, 380.

[5] J. L. Zhao, C. Ma, R. M. O'Connell, A. Mehta, R. Diloreto, 
J. R. Heath, D. Baltimore, Cell Stem Cell 2014, 14, 445.

[6] J. L. Stow, P. C. Low, C. Offenhäuser, D. Sangermani, Immunobiology 
2009, 214, 601.

[7] T. A. Wynn, A. Chawla, J. W. Pollard, Nature 2013, 496, 445.
[8] J. R. Almeida, D. A. Price, L. Papagno, Z. A. Arkoub, D. Sauce, 

E. Bornstein, T. E. Asher, A. Samri, A. Schnuriger, I. Theodorou, 

D. Costagliola, C. Rouzioux, H. Agut, A.-G. Marcelin, D. Douek, 
B. Autran, V. Appay, J. Exp. Med. 2007, 204, 2473.

[9] P. A. Darrah, D. T. Patel, P. M. De Luca, R. W. B. Lindsay, 
D. F. Davey, B. J. Flynn, S. T. Hoff, P. Andersen, S. G. Reed, 
S. L. Morris, M. Roederer, R. A. Seder, Nat. Med. 2007, 13, 843.

[10] R. A. Seder, P. A. Darrah, M. Roederer, Nat. Rev. Immunol. 2008, 8, 
247.

[11] A. Tarkowski, C. Czerkinsky, L. Å. Nilsson, H. Nygren, 
Ö. Ouchterlony, J. Immunol. Methods 1984, 72, 451.

[12] E. W. Newell, N. Sigal, S. C. Bendall, G. P. Nolan, M. M. Davis, 
Immunity 2012, 36, 142.

[13] S. C. Bendall, E. F. Simonds, P. Qiu, E. D. Amir, P. O. Krutzik, 
R. Finck, R. V. Bruggner, R. Melamed, A. Trejo, O. I. Ornatsky, 
R. S. Balderas, S. K. Plevritis, K. Sachs, D. Pe, S. D. Tanner, 
G. P. Nolan, Science 2011, 332, 687.

[14] A. V. Ullal, V. Peterson, S. S. Agasti, S. Tuang, D. Juric, C. M. Castro, 
R. Weissleder, Sci. Transl. Med. 2014, 6, 219ra9.

[15] A. J. Hughes, D. P. Spelke, Z. Xu, C.-C. Kang, D. V. Schaffer, 
A. E. Herr, Nat. Methods 2014, 11, 749.

[16] P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, J. C. Love, Nat. 
Immunol. 2014, 15, 128.

[17] A. F. M. Altelaar, J. Munoz, A. J. R. Heck, Nat. Rev. Genet. 2013, 14, 
35.

[18] A. Ferguson, L. Wang, R. B. Altman, D. S. Terry, M. F. Juette, 
B. J. Burnett, J. L. Alejo, R. A. Dass, M. M. Parks, C. T. Vincent, 
S. C. Blanchard, Mol. Cell 2015, 60, 475.

[19] S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, M. W. Covert, 
Nature 2010, 466, 267.

[20] Q. Han, N. Bagheri, E. M. Bradshaw, D. A. Hafler, 
D. A. Lauffenburger, J. C. Love, Proc. Natl. Acad. Sci. USA 2012, 109, 
1607.

[21] Q. Han, E. M. Bradshaw, B. Nilsson, D. A. Hafler, J. C. Love, Lab 
Chip 2010, 10, 1391.

[22] M. Kleppe, M. Kwak, P. Koppikar, M. Riester, M. Keller, L. Bastian, 
T. Hricik, N. Bhagwat, A. S. McKenney, E. Papalexi, O. Abdel-Wahab, 
R. Rampal, S. Marubayashi, J. J. Chen, V. Romanet, J. S. Fridman, 
J. Bromberg, J. Teruya-Feldstein, M. Murakami, T. Radimerski, 
F. Michor, R. Fan, R. L. Levine, Cancer Discovery 2015, 5, 316.

[23] M. Junkin, A. J. Kaestli, Z. Cheng, C. Jordi, C. Albayrak, 
A. Hoffmann, S. Tay, Cell Rep. 2016, 15, 411.

[24] Y. Lu, J. J. Chen, L. Mu, Q. Xue, Y. Wu, P.-H. Wu, J. Li, A. O. Vortmeyer, 
K. Miller-Jensen, D. Wirtz, R. Fan, Anal. Chem. 2013, 85, 2548.

[25] Y. Lu, Q. Xue, M. R. Eisele, E. S. Sulistijo, K. Brower, L. Han, 
E. D. Amir, D. Pe'er, K. Miller-Jensen, R. Fan, Proc. Natl. Acad. Sci. 
USA 2015, 112, E607.

[26] C. Ma, R. Fan, H. Ahmad, Q. Shi, B. Comin-Anduix, T. Chodon, 
R. C. Koya, C.-C. Liu, G. A. Kwong, C. G. Radu, A. Ribas, J. R. Heath, 
Nat. Med. 2011, 17, 738.

[27] Q. Shi, L. Qin, W. Wei, F. Geng, R. Fan, Y. S. Shin, D. Guo, L. Hood, 
P. S. Mischel, J. R. Heath, Proc. Natl. Acad. Sci. USA 2012, 109, 419.

[28] H. Makamba, J. H. Kim, K. Lim, N. Park, J. H. Hahn, Electrophoresis 
2003, 24, 3607.

[29] S. Gordon, P. R. Taylor, Nat. Rev. Immunol. 2005, 5, 953.
[30] D. M. Mosser, J. P. Edwards, Nat. Rev. Immunol. 2008, 8, 958.
[31] M. A. Balboa, R. Pérez, J. Balsinde, J. Immunol. 2003, 171, 989.
[32] A. Grkovich, C. A. Johnson, M. W. Buczynski, E. A. Dennis, J. Biol. 

Chem. 2006, 281, 32978.
[33] Q. Xue, Y. Lu, M. R. Eisele, E. S. Sulistijo, N. Khan, R. Fan, 

K. Miller-Jensen, Sci. Signal. 2015, 8, 381.
[34] I. M. Garrelds, P. T. van Hal, R. C. Haakmat, H. C. Hoogsteden, 

P. R. Saxena, F. J. Zijlstra, Mediators of Inflammation 1999, 8, 229.
[35] E. A. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine, 

S. C. Bendall, D. K. Shenfeld, S. Krishnaswamy, G. P. Nolan, 
D. Pe'er, Nat. Biotechnol. 2013, 31, 545.

[36] C. Ma, R. Fan, M. Elitas, Front. Oncol. 2013, 3, 1.



www.advancedsciencenews.com

1801361 (11 of 11) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedscience.com

Adv. Sci. 2019, 6, 1801361

[37] M. Larsen, D. Sauce, L. Arnaud, S. Fastenackels, V. Appay, 
G. Gorochov, PLoS One 2012, 7, e42403.

[38] E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, 
M. Goldman, I. Tirosh, A. R. Bialas, N. Kamitaki, E. M. Martersteck, 
J. J. Trombetta, D. A. Weitz, J. R. Sanes, A. K. Shalek, A. Regev, 
S. A. McCarroll, Cell 2015, 161, 1202.

[39] B. Gaudillière, G. K. Fragiadakis, R. V. Bruggner, M. Nicolau, 
R. Finck, M. Tingle, J. Silva, E. A. Ganio, C. G. Yeh, W. J. Maloney, 
J. I. Huddleston, S. B. Goodman, M. M. Davis, S. C. Bendall, 
W. J. Fantl, M. S. Angst, G. P. Nolan, Sci. Transl. Med. 2014, 6, 255ra131.

[40] J. M. Irish, N. Kotecha, G. P. Nolan, Nat. Rev. Cancer 2006, 6, 146.
[41] C. E. Meacham, S. J. Morrison, Nature 2013, 501, 328.

[42] E. F. Petricoin, K. C. Zoon, E. C. Kohn, J. C. Barrett, L. A. Liotta, 
Nat. Rev. Drug Discovery 2002, 1, 683.

[43] N. Varadarajan, D. S. Kwon, K. M. Law, A. O. Ogunniyi, 
M. N. Anahtar, J. M. Richter, B. D. Walker, J. C. Love, Proc. Natl. 
Acad. Sci. USA 2012, 109, 3885.

[44] J. R. Heath, A. Ribas, P. S. Mischel, Nat. Rev. Drug Discov. 2015, 15, 
204.

[45] R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, A. Regev, Nat. 
Biotechnol. 2015, 33, 495.

[46] W. Luo, M. S. Friedman, K. Shedden, K. D. Hankenson, P. J. Woolf, 
BMC Bioinf. 2009, 10, 161.

[47] W. Luo, C. Brouwer, Bioinformatics 2013, 29, 1830.


