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ABSTRACT While the vertebrate microbiota is critical to the normal function of
many host traits, hosts may expend a large amount of energy to constrain and inter-
face with their microbiota via their immune system to avoid the high fitness costs
associated with gut dysbiosis, pathobionts, and opportunistic pathogens. All jawed
vertebrates share mucosal immunity dedicated to isolating the microbiota, and a
breakdown of this system can result in chronic gut inflammation. In humans, chronic
gut inflammation negatively affects growth and development. There is little informa-
tion available on the prevalence of chronic gut inflammation in wild animals, but
given that animals with different life histories emphasize different immune re-
sponses, it follows that wild animals may vary in their susceptibility to chronic gut
inflammation, and most animals will experience signaling that can lead to this state.
These can be top-down signals originating from sources like the central nervous sys-
tem or bottom-up signals originating from changes in the gut microbiota. The
sources of these signals might include stress, developmental transitions, food restric-
tion, and dietary shifts. Here, we briefly discuss host-microbiota interactions from the
perspective of life history theory and ecoimmunology, focusing on the mucosal im-
mune system and chronic gut inflammation. We also include future directions for re-
search and the tools necessary to investigate them.
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The microbiota inhabiting the vertebrate gut is crucial to much of host physiology
(1–4). The immune system must interface with the microbiota and defend against

pathogens. The specifics of these interactions have been the subject of many reviews
(5–7). Immune responses can carry a large energetic cost and often come at the
expense of other life history traits, because no animal can maximize all their traits
(8–12). Vertebrate hosts may expend substantial resources to constrain and interface
with gut microbiota, considering the high fitness costs associated with gut dysbiosis,
pathobionts, and opportunistic pathogens (2, 13, 14). Indeed, subinhibitory doses of
antibiotics promote growth in several domestic vertebrate taxa and in two wild-bird
populations by suppressing growth and virulence factors of the gut microbiota, likely
reducing the strength and cost of the immune response necessary to constrain it
(15–19). In this review, we provide a brief discussion of what is known about host-
microbiota interactions from the perspective of life history theory and ecoimmunology,
the investigation of variation of immune responses (20). We focus on the mucosal
immune system and the costs and causes of chronic inflammatory responses in the gut.
We conclude with questions to address and the tools necessary to investigate them.

HOST IMMUNE RESPONSES
Complexity of host immune response and life history evolution. The vertebrate

immune system is a complex collection of interacting immune factors, rather than a
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single trait defined as “immune function” (21, 22). Vertebrate innate immune factors are
mostly nonspecific defenses (21–23), including anatomical boundaries, humoral factors,
and cellular responses (21, 24). Innate factors are relatively inexpensive to maintain, but
their activation, particularly cellular responses, carries large energetic and nutritional
costs (8, 21, 25). Furthermore, cellular and humoral innate factors are often nonspecific
and risk self-damage (21, 26). This potential for self-damage is particularly true of the
inflammatory response, in which increased permeability of vascular-endothelial bound-
aries allows leukocytes and proteins to travel into affected tissues (26). The damage
caused by inflammation underlies the pathophysiology of many diseases (27). In
contrast, adaptive immune factors, mediated by lymphocytes, are more specific and
slower, although they allow for faster responses upon subsequent exposure to the
same pathogen and are less likely to cause self-damage (21, 26, 27). However, adaptive
immune responses are costly to develop, maintain, and use because of the expense of
lymphocyte proliferation and somatic hypermutation (21, 28, 29).

Vertebrates emphasize different immune factors, based on demands specific to their
life history (21). An animal’s life history encompasses birth, growth, reproduction, and
death (30, 31). Natural selection acts on traits, discrete aspects of an animal’s pheno-
type, such as immune function. However, increasing the performance of one trait
comes at the expense of another, due to limited resource pools; this limits trait
combinations (32, 33). For example, the strength of any one immune factor does not
necessarily correlate with fitness, because the cost of activating an immune factor may
exceed its benefit (8, 9, 25, 27, 34, 35).

The pace-of-life hypothesis predicts that a species’ life history should affect traits like
immunity. Species exhibiting a “slow” pace of life, with long developmental times and
life spans, are more likely to invest in relatively expensive adaptive immune responses,
because they are pathogen specific and less likely to inflict self-damage (21, 36).
“Fast-paced” species, with short developmental times and life spans, may exhibit
weaker adaptive immune responses because of the high costs of lymphocyte prolifer-
ation and activation (21, 28). Fast-paced species likely rely on the innate immune
response because the maintenance costs are low, but if an initial response does not
clear a pathogen, there is a risk of an expensive, self-damaging, inflammatory response
(8, 21). Phylogenic differences in metabolism can also affect immunity. Ectotherms with
low mass-specific metabolisms may lack the energy for rapid somatic hypermutation
and antibody responses (29). For example, reptile antibody titers and binding affinity
do not increase with secondary pathogen exposure, and the binding affinity of mam-
malian antibodies increases orders of magnitude more than those of amphibians
exposed to the same challenge (37, 38). These weaker adaptive responses may occur
because the lymphoid tissue of amphibians and reptiles is relatively simple, lacking
lymph nodes and germinal centers (37, 38), but a definitive mechanism for these
differences remains unclear.

Explanations of life history trade-offs between vertebrate immune factors have
largely focused on their ability to defend against microbial threats (21, 22). However,
the microbiota contains many beneficial microbes, pathogens, and pathobionts (39). A
healthy microbiota plays immunological roles both by stimulating host immunity and
via interactions with pathogens. For example, colonization of commensal strains of
Escherichia coli in the gut stimulates the development of intestinal T cells and inhibits
the growth of pathogenic strains of E. coli (40). An optimal immune response to the
microbiota should sequester harmful microbes and their by-products, allow passage of
useful substances, and avoid damage of self or beneficial microbes. This response is
also likely continuously active, because the gut microbiota is always present (5–7).
There is no reason to suspect that an organism can attain this optimal immune
response, and thus, sequestration, allowing passage, and avoiding damage are likely
competing traits. Understanding how the immune response to the microbiota governs
the balance between these traits may be crucial to life history evolution, because these
dynamics may underlie other crucial traits such as development, growth, and metab-
olism (16, 17, 41–44).
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Vertebrate mucosal immunity and conservation of antibodies. The gut mucosal
immune system must isolate microbes, particularly pathogens and pathobionts, while
limiting the activation of the systemic immune system in response to commensal and
symbiotic organisms (45). These selective pressures, particularly the high cost of
inflammation, have driven the evolution of dedicated gut mucosal immunity in verte-
brates (46–48).

The intestinal epithelium sequesters the microbiota and prevents microbes from
escaping the gastrointestinal (GI) tract. Intestinal epithelial cells are polarized to reduce
proinflammatory signaling from the lumen while promoting inflammation if signals
originate from basolateral surfaces (45). They also form tight junctions that restrict
transport across cell layers and secrete mucus and antimicrobial peptides, all of which
control microbial organization (49–51). Adaptive immune responses aid in the seques-
tration of the microbiota.

All major clades of jawed vertebrates, save cartilaginous fish, have evolved immu-
noglobulins (Igs) specific to the mucosal immune system that help prevent microbes
from crossing the intestinal epithelium (5, 7, 38, 46–48, 52–54). IgA is present in
mammals, birds, and crocodilians; is well described due to its role in human GI health;
and descended from amphibian IgX (5, 6, 55). Some species of snakes, lizards, and
turtles have lost IgX and IgA orthologues, and it is unclear why losses occurred in these
clades (38, 47, 48, 52). However, some species that lack IgA may use IgM as a substitute
(53). Bony fish have evolved IgT independent of the tetrapod Ig lineage (46, 54). A
complete review of the coevolution of mucosal Igs is beyond the scope of this review.
However, Kaetzel (48) provides an exhaustive review of mucosal Igs and suggests that
selective pressures favored the evolution of transmembrane proteins that transport Igs
across intestinal epithelia without compromising epithelial barrier integrity and that the
complexity of IgA evolved to protect the molecular structure against proteolytic attack.

Despite similarities in the mucosal epithelium and Igs, other aspects of mucosal
immunity differ across taxa (54, 55). For example, the gut-associated lymphoid system
(GALT) in mammals is concentrated into lymphoid follicles, such as Peyer’s patches.
Fish, amphibians, and reptiles lack these structures; the lymphoid follicles that make up
their GALT are more spread out, possibly because ectothermic metabolisms cannot
support rapid somatic hypermutation and lymphocyte proliferation (29, 38, 45, 54, 55).
Mammals also have more diverse classes of innate lymphoid cells and more dendritic
cells present in their mucosa (54, 55).

Gut mucosal immunity in vertebrates seems to carry a substantial energetic cost. For
example, subinhibitory doses of antibiotics promote growth in livestock and two
species of wild birds by negatively affecting the microbiota and allowing animals to
invest in somatic growth rather than mucosal immunity (15–19). Chickens also grow
larger under germfree conditions, presumably because they are less reliant on their
microbiota to extract energy and nutrition from food than mammals and fish (16).
However, the cost of gut mucosal immunity is lower than that of the chronic gut
inflammation that can occur if microbes or their associated peptides pass the intestinal
epithelium (49–51, 56).

Chronic gut inflammation and pace of life. Chronic gut inflammation, which
presents in humans as inflammatory bowel disease, is one of the most studied diseases
related to the human microbiota, and this state can also be induced in vertebrate
models (57, 58). Chronic gut inflammation occurs when the innate and adaptive arms
of the systemic immune system respond to microbes, or their associated peptides, that
have crossed the intestinal epithelium (59–61). Information on the frequency of chronic
gut inflammation in wild animals is limited. There is evidence from wild mice that
stabilizing selection acts on host immune responses that constrain the microbiota,
because hybrid house mice (Mus musculus) exhibit altered microbiota and pathology
consistent with chronic gut inflammation (62). Information on the prevalence of such
pathology in wild animals may be important data for ecoimmunological theory,
because chronic gut inflammation is associated with life history trade-offs, specifically
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reduced growth and delayed puberty, independent of changes in nutrient absorption
(63, 64). If chronic gut inflammation is common in wild populations, it could represent
an understudied energetic and nutritional cost and a potential source of life history
variation. However, the immunological and energetic consequences of chronic gut
inflammation may vary across vertebrates, because differences in host life histories and
immune factors could affect systemic immune responses to the microbiota.

Fast-paced vertebrates and ectotherms that rely on innate immunity may be more
likely to initiate a systemic inflammatory response to the microbiota if a reliance on
innate immunity means that they have more innate immune cells in their intestines.
Innate cells in the intestinal mucosa can begin a signaling cascade that recruits the
adaptive immune system and inflammatory processes (60). However, without strong
adaptive immunity, the inflammation may be weak or short-lived. Adaptive immune
factors, specifically the balance of Th1 and Th2 cytokines, mediate the strength and
duration of inflammatory responses in the gut (60). Thus, slow-paced species, and
perhaps endotherms whose metabolisms can support stronger adaptive immune
responses (29), may be less likely to initiate an inflammatory response to their micro-
biota but suffer longer and more-intense gut inflammation when it does occur.
Mammals, for example, exhibit critical windows in early development where shifts in
the gut microbiota are more likely to result in autoimmune diseases, including chronic
gut inflammation (50, 65, 66).

It is difficult to predict how pace of life may affect gut inflammation, because the
data on gut inflammation and mucosal immunity in nonhuman animals are mostly
limited to mammalian laboratory models (67), which may limit the applicability of these
results to other taxa. There have been some efforts to expand these investigations to
other vertebrate hosts (54, 55, 57, 68, 69), but these are mostly laboratory based. We
suggest that the next step is to explore the natural causes of gut inflammation in
populations.

It is unclear whether chronic gut inflammation is influenced primarily by top-down
interactions, where changes in endocrine signaling induce alterations in gut morphol-
ogy and immune responses, or by bottom-up interactions, wherein changes in the gut
microbiota induce maladaptive immune responses (70). Regardless, animals regularly
experience circumstances that can alter top-down signaling, like environmental stres-
sors and developmental transitions, and bottom-up signaling, such as dietary changes,
starvation, and fasting (71–77). In the following section, we review some potential
causes of chronic gut inflammation as a guide for future inquiry.

TOP-DOWN SIGNALING: THE HPA/I AXIS AND CHRONIC GUT INFLAMMATION

Vertebrates mediate many of their physiological responses to environmental stres-
sors via the conserved hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis (78). The
hormones secreted by this axis can regulate many traits that are often involved in life
history trade-offs, such as immune function, development, growth, metabolism, and
nutrient balance (79–83). The HPA/I axis is also central to understanding gut inflam-
mation and therefore may mediate some microbiota effects on animal life history.

Hormonal stimulation of gut inflammation. Part of the larger brain-gut (BG) axis,
the HPA/I axis has effects on gut physiology and host-microbiota communication (84).
The HPA/I axis affects the inflammatory state of the gut via actions of corticotropin-
releasing factor (CRF) and glucocorticoid (GC) hormones, altering the BG axis at several
levels of organization (49, 56, 85, 86). CRF promotes inflammation by increasing
intestinal permeability, activating immune cells, and inhibiting anti-inflammatory path-
ways of the vagus nerve (49, 56, 85, 86). CRF also slows gastric emptying and small
intestinal motility while promoting motility in the colon (86). CRF’s downstream actions
lead to the release of GC hormones, which suppress appetite (80, 87). Although GC
hormones typically have anti-inflammatory actions, these effects do not seem to
counteract the inflammatory action of CRF on the BG axis (49, 82). There is some
evidence that GC hormones increase intestinal epithelial permeability and bacterial
adherence to intestinal mucosa (88).
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The effects of HPA/I axis activation can alter host physiology and the microbiota and
lead to chronic gut inflammation. However, changes in the microbiota can also increase
intestinal epithelial permeability and elicit an inflammatory response (70). The pleio-
tropic effects of the HPA/I axis on other aspects of host physiology and life history could
increase the chances or exacerbate the consequences of a maladaptive inflammatory
response in the gut, particularly in young and developing animals.

The HPA/I axis, development, and the microbiota. Young and developing ani-
mals are often more susceptible to pathogens and pathobionts, due to their naive
immune systems (37, 89, 90). Additionally, the HPA/I axis mediates trade-offs between
development and somatic maintenance that can further weaken immune responses
(83, 91–94). During this time period, many animals also undergo dietary and ontoge-
netic changes that exert strong effects on microbiota community structure (71, 95–97).

Amphibian larvae present an informative case study of these effects. In late-stage
amphibian larvae, GC hormones synergize with thyroid hormones to accelerate devel-
opment (87). This allows larvae to escape poor-quality aquatic habitats by metamor-
phosing (87, 98, 99). However, accelerated development comes at a cost. Shorter larval
periods constrain the time available for growth, and HPA/I activation allocates re-
sources toward development at the expense of growth and immune function (91, 92,
100). The microbiota can moderate this trade-off by changing the size of the energy
pool. For example, wood frog (Lithobates sphenocephalus) larvae inoculated with
bullfrog (Lithobates catesbeianus) microbiota both developed and grew faster than
wood frog larvae inoculated with microbiota from conspecifics (182). These results
imply that the microbiota of wood frog larvae inoculated from bullfrogs provided more
energy, perhaps owing to the increased presence of anaerobic fermentative bacteria
(182).

It is possible that amphibians and other vertebrates with complex life histories,
where morphology, physiology, habitat, and diet differ greatly between life stages, are
more tolerant of microbiota alterations during early development and metamorphosis
because their life histories include radical shifts in physiology, diet, habitat, and, thus,
their associated microbes. In addition, metamorphosis constrains many physiological
processes, including immune function. Larvae downregulate multiple immune factors
during metamorphic climax to avoid attacking newly formed adult tissue (37, 101–104).
As a result, the immune system of larval amphibians may be unlikely to respond to
changes in the gut microbiota by initiating a chronic inflammatory response. It seems
possible that animals with more-predictable microbial environments could have more-
maladaptive responses to microbiota alterations.

Microbiota transplants between vertebrate species with simpler life histories have
affected metabolism and obesity phenotype. Microbiota from human fecal material
successfully colonized mice and altered metabolic pathways, gene expression, and
adiposity (105). Altering the microbiota of preweaned mice with subtherapeutic levels
of antibiotics produces similar phenotypes that persist after the reestablishment of a
normal microbiota (106). While faster development and larger size at metamorphosis
are adaptive in amphibians (99, 107–110), this is not true of increased adiposity in mice.
Indeed, this phenotype in mice is associated with increased gut permeability, weaker
mucosal responses in the gut, and changes in systemic inflammatory responses (106,
111).

BOTTOM-UP SIGNALING: DIET AND CHRONIC GUT INFLAMMATION

The immune system can affect microbiota community structure by acting as a filter
during community assembly (112, 113). However, these effects may be weak in
comparison to other aspects of community assembly, such as the environmental
species pool (113, 114). Diet seems to be a strong driver of microbiota community
structure on individual, population, and species levels (72, 77, 115–120). The diet of
animals can vary considerably between habitats and seasons, and the vertebrate gut
microbiota can strongly influence host metabolism, nutrition, and the inflammatory
state of the gut (121–126). Changes in diet are associated with chronic gut inflamma-
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tion in mice, humans, and fish (54, 127, 128). For animals, changes in food type and
availability are common (129–131). Both of these could affect the microbiota and the
host’s immune response (34, 126).

Food restriction: starvation and fasting. Animals often experience bouts of food
limitation. Even single instances of food deprivation can initiate responses that can
affect the gastrointestinal tract and the microbiota (132, 133). However, there is a
distinction between starvation, caused by extrinsic forces, and fasting, initiated by
internal stimuli (132). For example, a period of food deprivation during winter is
starvation, while hibernation through winter is fasting. The adaptations and acclima-
tions that help animals survive starvation differ from those that allow them to fast (132).

Starvation’s effects on physiology are dependent on the length of food deprivation
(134). While chronic starvation can lead to protein catabolism and death (134), low food
availability, short-term food deprivation, or intermittent starvation instigates changes
that allow animals to extract maximum energy from food. The gastrointestinal tract can
maintain its mass, or even enlarge, despite decreases in body mass (135). Additionally,
the absorptive area of the small intestine can increase, and the mucin layer thins,
allowing for increased glucose and lipid transport across the intestinal epithelium
(135–138). For the microbiota, these are drastic habitat alterations, coupled with a lack
of energetic and nutritional inputs. Starvation causes significant changes in the micro-
biota community, but this varies by host taxa, likely reflecting differences in the initial
microbiota community or host physiology (133).

Caloric restriction also activates the HPA/I axis (139). All of this indicates that
starvation could cause chronic gut inflammation. This could again affect hosts differ-
ently depending on their life history, because the strength of vertebrate immune
factors is limited by many micro- and macronutrients that are limited during starvation
(8, 139, 140). For example, zinc, vitamin A, and caloric intake can affect the balance of
T-lymphocyte responses (28), and cellular responses, from both the innate and adaptive
arms, require amino acids (8).

Research into the effects of starvation should examine the microbiota and the
strength of mucosal immune factors during starvation as well as how they recover with
the restoration of food. There is evidence that microbes are critical to reestablishing gut
health. For example, live Lactobacillus murinus bacteria increased colonic epithelial cell
proliferation of starved mice following refeeding (141). It would also be valuable to
investigate these dynamics in species that are adapted for periodic starvation versus
those that are not, because their physiological responses may be different (132). For
example, the gastrointestinal tracts of animals that feed intermittently can undergo
considerable morphological and physiological changes following a meal (142).

The physiological and microbial responses to fasting are distinct from those for
starvation (132, 143). Birds can endure fasting during migration by fueling their flight
mainly on lipid reserves. (144). Hibernating bears reduce their energy expenditure by
half, preserve muscle density, and recycle almost all of the nitrogen in their urea.
Ureolytic microbes present in the bear microbiota are crucial to this process and may
also contribute to a “healthy obesity phenotype” (145, 146). Microbial ureolysis in
hibernating amphibians has also been documented (147). Ground squirrels exhibit
distinct winter microbiota with similar microbial communities occurring in different
species, dominated by microbes that survive on endogenous host resources (148, 149).
This may represent a specialized, hibernatory microbiota (148). It would be valuable to
track the mucosal immune responses of animals that undergo periodic fasts to see if
and how they suppress gut inflammation and how these responses differ from those for
starvation.

Diet shifts. The microbiota is integrated in metabolism and nutrient uptake and can
allow for ecological acclimation and adaptation to nutritional landscapes (121, 150,
151). Subpopulations of fire salamander (Salamandra salamandra) larvae exhibited no
changes in growth rate when transplanted between stream and pond habitats, possibly
because rapid changes in their microbiota allowed them to extract nutrition from
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different food sources (74). Similarly, microbiota shifts in animals that experience
seasonally varied food resources allow them to compensate for fluctuations in energy
and nutrient availability (152–155). Despite adaption to pond or streams, salamander
larvae are generalist, gape-limited predators (74). The mucosal immunity of generalists
and animals with seasonally varied diets may be less likely to initiate an inflammatory
response when confronted with shifts in the microbiota.

In contrast, the microbiota of specialist herbivores such as woodrats (genus Neo-
toma) and the greater sage-grouse (Centrocercus urophasianus) allow their hosts to
exploit otherwise toxic food sources (156, 157). These host-microbe relationships seem
closer than those of generalists. Woodrat microbiota directly detoxify food and stim-
ulate detoxifying enzymes in the liver (157). They also retain about 60% of their wild
microbiota in captivity, and microbiota transplants can confer detoxification ability on
naive congeners (157). Since the immune system can act as a filter for the microbiota
(112, 113), it would be interesting to see if the immune systems of woodrats and other
dietary specialists select for the colonization of mutualistic, detoxifying microbes.

TOOLS AND AREAS OF CONSIDERATION FOR ECOIMMUNOLOGICAL STUDIES

Quantifying the cost of mucosal immunity and chronic gut inflammation and tying
these costs explicitly to physiological trade-offs and fitness require some methods
familiar to ecoimmunologists (23) and some that may not be. Assays that assess the
strength of systemic immune responses (23, 158, 159) may not correlate with the state
of mucosal immunity and the microbiota. Ideal methods for measuring chronic gut
inflammation should quantify the inflammatory responses within the gastrointestinal
tract. A direct method is counts of innate immune cells within the intestines. Intestinal
cross sections can be slide mounted and stained, and immune cells can be counted
manually (68). Slide-mounted cross sections also allow measurement of histological
damage associated with chronic gut inflammation (160). Manual counts are cost-
effective but labor-intensive. Flow cytometry costs more but provides higher through-
put and allows for simultaneous measurements of phagocytosis and respiratory burst
(160, 161). An advantage of both types of cell counts is that they are applicable to many
species. Gene expression assays, such as quantitative PCR, the microarray technique,
and RNA sequencing, can also provide a quantitative measure of inflammation with
simple comparison to a baseline state or control group (162). However, these assays are
expensive and require tightly controlled, standardized workflows for accurate results
(163–165). The disadvantages of cell counts and gene expression are that they are
laboratory based and sacrificial. They preclude longitudinal investigations, may com-
plicate field studies, and are impractical for large or endangered species.

Nonlethal markers may provide indirect measures of gut inflammation (166), but
these markers were developed as human diagnostic tools. Extending use to animal
models requires validation. For example, C-reactive protein levels in the blood rise
during inflammatory responses, and chronically elevated levels can be indicative of
chronic gut inflammation in humans (166). However, blood levels that indicate disease
in humans likely do not translate to animal models, especially for wild populations that
may exhibit variance in inflammation in response to parasitism. Ecoimmunologists
seeking indirect methods to detect chronic gut inflammation should consider fecal
calprotectin levels. Calprotectin represents the majority of granulocyte cytosolic pro-
teins and correlates directly with intestinal permeability and neutrophils in the gastro-
intestinal tract (166–168). Calprotectin can also remain stable in feces for about a week
at room temperature (166). While used widely in human studies, this could be adapted
for use in wild-animal models relatively simply, as has been done in laboratory-raised
rats (169).

Beyond measurements of gut inflammation, a practical first step for investigating
the cost of mucosal immunity is administration of subinhibitory doses of antibiotics to
wild populations (18, 19). Such studies could be performed across multiple species and
life stages, providing information on what traits are negatively associated with mucosal
immunity and providing a direct measurement of fitness costs to reproductive adults.
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Another potential area of inquiry is comparisons of gut inflammation with the endog-
enous level of systemic immune responses, as these arms of the immune system may
compete for resources.

Researchers should keep in mind that mucosal immune responses have a healthy
basal state where the host is successfully constraining the microbiota (170). Even high
levels of gut inflammation may be adaptive if they occur in response to enteric
pathogens (63, 170). Additionally, genes associated with gut inflammation may confer
advantages to animals during reproductive life stages and exact costs later, when
morbidity and mortality have less of an impact on fitness (63, 170, 171). Therefore, tools
that compare both induction and basal states of the immune responses in the gut
would be beneficial.

Finally, studies of mucosal immunity and gut inflammation should include measure-
ments of the microbiota. There are multiple methods to sequence and measure the
microbiota (172–174); a full discussion is beyond our scope. However, investigations
that account for microbiota community structure should take the Anna Karenina
hypothesis into account: healthy microbiotas are similar, but transitions to an unhealthy
microbiota are stochastic and may be difficult to detect (2). Additionally, just as we have
increased our knowledge of the microbiota of model organisms, from Drosophila to
humans (175–178), we must also identify, characterize, and create databases for the
microbiota of nonmodel organisms. This task is increasingly feasible with next-
generation sequencing (179). However, there is a need to compare the microbiota, host
genetic background, and immune markers simultaneously and nonlethally, especially
for rare species and wild populations, and there are few nonlethal methods for
extracting high-quality RNA and DNA from a single sample. This may limit longitudinal
studies across the dietary, physiological, and ecological shifts described in this review.
Thus, researchers should carefully consider their questions and the methods available
to answer them.

CONCLUSIONS

In recent decades, ecoimmunology has emerged as an integrative field and may
help inform forces driving life history evolution (158). At the same time, our under-
standing of the microbiota and its important role in human health, immune function,
and evolutionary theory has increased (3, 39, 180, 181). The microbiota is an integral
part of metabolism and the vertebrate immune system, a source of pathogens and
pathobionts, and a potential trigger for chronic inflammatory responses. Ecoimmuno-
logical investigations into the cost of immune responses and their negative effects on
other traits cannot afford to ignore the interaction between host mucosal immune
responses and the microbiota. Indeed, combining the methods and hypotheses of
these two fields has the potential to include these proximate interactions between the
microbiota and the immune system, particularly the costs of chronic gut inflammation,
into the frameworks of developmental trade-offs and dietary evolution.
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Bender DV, Krznarić Ž, Verbanac D. 2018. Methodology challenges in
studying human gut microbiota— effects of collection, storage, DNA
extraction and next generation sequencing technologies. Sci Rep
8:5143. https://doi.org/10.1038/s41598-018-23296-4.

174. Inglis GD, Thomas MC, Thomas DK, Kalmokoff ML, Brooks SPJ, Selinger
LB. 2012. Molecular methods to measure intestinal bacteria: a review. J
AOAC Int 95:5–23. https://doi.org/10.5740/jaoacint.SGE_Inglis.

175. Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D,
Vázquez-Baeza Y, Jansson JK, Gordon JI, Knight R. 2013. Meta-analyses
of studies of the human microbiota. Genome Res 23:1704 –1714.
https://doi.org/10.1101/gr.151803.112.

176. Erkosar B, Storelli G, Defaye A, Leulier F. 2013. Host-intestinal microbi-

Meeting Review Applied and Environmental Microbiology

May 2019 Volume 85 Issue 10 e02147-18 aem.asm.org 12

https://doi.org/10.1111/j.1600-0706.2008.17202.x
https://doi.org/10.1038/ncomms2668
https://doi.org/10.1128/AEM.00692-09
https://doi.org/10.1128/AEM.00692-09
https://doi.org/10.1016/j.celrep.2016.01.026
https://doi.org/10.1098/rspb.2018.0241
https://doi.org/10.1098/rspb.2018.0241
https://doi.org/10.1128/AEM.01537-14
https://doi.org/10.1152/ajpregu.00387.2012
https://doi.org/10.1152/ajpregu.00387.2012
https://doi.org/10.1371/journal.ppat.1002223
https://doi.org/10.1016/j.jinsphys.2012.10.011
https://doi.org/10.1038/ismej.2015.53
https://doi.org/10.1038/srep26035
https://doi.org/10.1371/journal.pone.0142409
https://doi.org/10.1007/s00248-014-0554-7
https://doi.org/10.1007/s00248-014-0554-7
https://doi.org/10.1093/femsle/fnw144
https://doi.org/10.1093/femsle/fnw144
https://doi.org/10.3389/fmicb.2016.01165
https://doi.org/10.1093/icb/icu046
https://doi.org/10.1093/icb/icu082
https://doi.org/10.1093/icb/icu082
https://doi.org/10.1053/j.gastro.2009.07.069
https://doi.org/10.1053/j.gastro.2009.07.069
https://doi.org/10.1016/j.fsi.2014.04.023
https://doi.org/10.1007/978-1-4939-3652-6_3
https://doi.org/10.1007/978-1-4939-3652-6_3
https://doi.org/10.1016/j.ymeth.2010.01.005
https://doi.org/10.1016/j.ymeth.2010.01.005
https://doi.org/10.1038/nbt.1665
https://doi.org/10.1038/nbt.1665
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1136/gut.2005.069476
https://doi.org/10.1136/gut.2005.069476
https://doi.org/10.1136/gut.47.4.506
https://doi.org/10.1373/49.6.861
https://doi.org/10.1016/j.cellimm.2013.04.004
https://doi.org/10.1146/annurev-ecolsys-040212-092530
https://doi.org/10.1146/annurev-ecolsys-040212-092530
https://doi.org/10.1093/emph/eow001
https://doi.org/10.1093/emph/eow001
https://doi.org/10.1038/nrg3129
https://doi.org/10.1038/nrg3129
https://doi.org/10.1038/s41598-018-23296-4
https://doi.org/10.5740/jaoacint.SGE_Inglis
https://doi.org/10.1101/gr.151803.112
https://aem.asm.org


ota mutualism: “learning on the fly.” Cell Host Microbe 13:8 –14. https://
doi.org/10.1016/j.chom.2012.12.004.

177. Krych L, Hansen CHF, Hansen AK, van den Berg FWJ, Nielsen DS. 2013.
Quantitatively different, yet qualitatively alike: a meta-analysis of the
mouse core gut microbiome with a view towards the human gut
microbiome. PLoS One 8:e0062578. https://doi.org/10.1371/journal
.pone.0062578.

178. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh
CM, Guillemin K, Rawls JF. 2011. Evidence for a core gut microbiota
in the zebrafish. ISME J 5:1595–1608. https://doi.org/10.1038/ismej
.2011.38.

179. Solomon KV, Haitjema CH, Thompson DA, O’Malley MA. 2014. Extract-
ing data from the muck: deriving biological insight from complex
microbial communities and non-model organisms with next genera-

tion sequencing. Curr Opin Biotechnol 28:103–110. https://doi.org/10
.1016/j.copbio.2014.01.007.

180. Guinane CM, Cotter PD. 2013. Role of the gut microbiota in health and
chronic gastrointestinal disease: understanding a hidden metabolic
organ. Therap Adv Gastroenterol 6:295–308. https://doi.org/10.1177/
1756283X13482996.

181. Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the
evolution of animals and plants: the hologenome theory of evolution.
FEMS Microbiol Rev 32:723–735. https://doi.org/10.1111/j.1574-6976
.2008.00123.x.

182. Warne RW, Kirschman L, Zeglin L. 2019. Manipulation of gut microbiota
during critical developmental windows affect host physiological per-
formance and disease susceptibility across ontogeny. J Anim Ecol
https://doi.org/10.1111/1365-2656.12973.

Meeting Review Applied and Environmental Microbiology

May 2019 Volume 85 Issue 10 e02147-18 aem.asm.org 13

https://doi.org/10.1016/j.chom.2012.12.004
https://doi.org/10.1016/j.chom.2012.12.004
https://doi.org/10.1371/journal.pone.0062578
https://doi.org/10.1371/journal.pone.0062578
https://doi.org/10.1038/ismej.2011.38
https://doi.org/10.1038/ismej.2011.38
https://doi.org/10.1016/j.copbio.2014.01.007
https://doi.org/10.1016/j.copbio.2014.01.007
https://doi.org/10.1177/1756283X13482996
https://doi.org/10.1177/1756283X13482996
https://doi.org/10.1111/j.1574-6976.2008.00123.x
https://doi.org/10.1111/j.1574-6976.2008.00123.x
https://doi.org/10.1111/1365-2656.12973
https://aem.asm.org

	HOST IMMUNE RESPONSES
	Complexity of host immune response and life history evolution. 
	Vertebrate mucosal immunity and conservation of antibodies. 
	Chronic gut inflammation and pace of life. 

	TOP-DOWN SIGNALING: THE HPA/I AXIS AND CHRONIC GUT INFLAMMATION
	Hormonal stimulation of gut inflammation. 
	The HPA/I axis, development, and the microbiota. 

	BOTTOM-UP SIGNALING: DIET AND CHRONIC GUT INFLAMMATION
	Food restriction: starvation and fasting. 
	Diet shifts. 

	TOOLS AND AREAS OF CONSIDERATION FOR ECOIMMUNOLOGICAL STUDIES
	CONCLUSIONS
	REFERENCES

